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Abstract: The extensive global use of rubber results in significant microplastic pollution from the
release of tire wear particles and microplastic leachate, impacting the environment, human health,
and ecosystems. Waste tires are normally recycled and used for the production of new products, such
as rubber tiles. The presented study aims to show the possibility of further decrease in the negative
environmental impact of materials based on recycled rubber. This paper presents the modification of
rubber tiles with a titanium dioxide (TiO2) coating, focusing on surface integrity, rubber particle wear
release, and the consequent environmental impact of leachate release. Both reference and modified
rubber tiles were subjected to artificial accelerated aging in a solar simulator for 4, 6, and 8 weeks,
followed by an abrasion test. The carbonyl index was calculated from FTIR characterization after
each time frame to indicate the degradation of organic compounds and chemical changes caused by
UV exposure. A 24 h leaching test with a liquid-to-sample ratio of 1:20 was performed on both rubber
tile samples prior to and after 8 weeks of aging along with the aged wear particles for the purpose
of the non-target screening of released organic leachate by LC/MS QTOF. The results of carbonyl
indices showed that the TiO2 coating contributes to the stabilization of polymer degradation and,
to a certain extent, reduces the leaching of organic compounds, such as phthalates. However, the
increased wear and release of rubber particles and the subsequent degradation of organic leachates
require further in-depth research.
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1. Introduction

Rubber is ubiquitous in everyday life; it is vital to our lives and difficult to replace.
Many people are unaware of our reliance on this material and the fact that our current
way of life would likely be impossible without it [1]. One of the most important revolu-
tions involving rubber was the development of automobile tires, which made widespread
travel possible [1,2]. In 2020, new-tire sales in Europe accounted for 324 million units,
89.5% (70 wt%) for passenger cars and light duty vehicles, 4.9% (20 wt%) for heavy duty
vehicles (trucks and buses), 3.6% (1 wt%) for motorbikes and scooters, and 1.9% (9 wt%)
for agricultural and off-road vehicles [1,2]. The automotive sector accounted for 65% of
general tire production. The rubber can withstand both heat and cold and is resistant to a
number of chemicals. There is a continuous search for new substances, compounds, and
materials to improve the performance of final rubber products and replace them with safer
and cheaper alternatives [1]. Despite all the benefits of rubber, it has a high environmental
impact, since it is not biodegradable [3]. Rubber degrades over time due to environmental
factors such as heat, light, and ozone, which cause molecular changes that can significantly
affect its mechanical properties and service life [4]. It is well known that tires degrade when
exposed to light, particularly ultraviolet (UV) irradiation, making it essential to study and
understand this degradation as the use of rubber in outdoor applications increases [5,6].
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Alongside rubber, plastic is also one of the most widely used materials today [7,8] due
to its corrosion resistance, light fastness, and low cost [9,10]. However, widespread use
has led to significant environmental pollution [8,11–13]. At first, concerns centered on the
biodegradability of synthetic polymers from aspects of waste management. Later, the focus
shifted to the release of microplastic particles (MPs), defined as fragments smaller than
5 mm, according to the US National Oceanic and Atmospheric Administration (NOAA), the
European Chemicals Agency, and the United Nations Environment Program (UNEP) [8,9].
This caused significant concern about the potential adverse impact on human health and
ecosystem [8,10,12–15]. Microplastics are categorized as being primary, created during man-
ufacturing, and secondary, created from the breakdown of larger plastic due to mechanical
stress, hydrolysis, oxidation, UV exposure, heat, and microorganisms [16], with secondary
microplastics being the main contributor to the total amount of microplastic pollution [17].
Furthermore, tire tread wear particles are one of the major sources of microplastics, dis-
persing into water, air, and soil [18–26]. These particles are formed either by tire abrasion
from traffic, known as tire and road wear particles (TRWPs) [23], from recycled tire crumbs,
or from particles generated during tire repairs. They are collectively referred to as tire
wear microplastics (TWMs) [15,27,28]. Annually, approximately 6,000,000 tons of TWMs
are released into the environment worldwide [15,21,22,29–32]. Apart from microplastics,
various chemicals used as additives in rubber are not covalently linked, allowing harmful
substances like PAHs, heavy metals, and zinc to leach into the environment, posing risks to
human health and aquatic organisms by acting as carcinogens, endocrine disruptors, and
mutagens with bioaccumulation and toxicity potential [33,34]. Monitoring rubber particles
is challenging and requires standardized methods to accurately assess their presence and
impact [35–37]. Non-targeted analysis has provided deeper insights into the complex
chemical mixtures that can leach from tire materials, which have been detected in the
environment [34]. A multi-analytical study [33] using high-resolution liquid chromatog-
raphy, gas chromatography, and mass spectrometry identified 296 potential compounds,
demonstrating that mass spectrometry methods offer more precise quantification, such
as Pyro-GC-MS (pyrolysis coupled with gas chromatography–mass spectrometry) [32,38].
A recent study also highlighted the importance of identifying organic compounds leach-
able from complex rubber matrices, such as recycled rubber, where 46 sample-specific
compounds were identified by GC/MS [39].

In Europe, the disposal of end-of-life tires (ELTs) has significantly shifted from landfills
to recovery methods [40] to reduce the need for virgin materials [41] and repurpose them
into various applications like playground flooring [42], artificial turf, concrete products [43],
asphalt [44], beds for train lines, noise barriers, and outdoor tiles [41,45]. However, the
literature presents mixed findings on the potential environmental and human health risks
associated with these materials. While some studies indicate that ELTs are safe [45,46],
others suggest potential hazards [41,47]. One study has revealed the presence of 306
chemicals in rubber particles released from EOL products, with 197 meeting carcinogenic-
ity criteria [48]. Implementing science-based regulations and standardizing tire-derived
products could improve their safety and acceptance, especially in sensitive applications
involving vulnerable populations like children [41], since a recent study [49] of 10 play-
grounds in Sydney highlighted the risk of serious skin burns in children due to the high
surface temperatures of playground flooring in the sun, particularly wet pour rubber and
synthetic turf.

In our previous research [50], we successfully immobilized titanium dioxide (TiO2) on
the surface of rubber tiles made from EOL tires and achieved photocatalytic decomposition.
TiO2 is of particular interest due to its numerous properties; including the photocatalytic
decomposition of organic substances [51–53], which enhances surface self-cleaning [54–56],
achieves an antibacterial effect [57–59], helps reduce photoaging through the absorption of
ultraviolet light [60,61], and improves the mechanical properties of the material [59]. For
this reason, we studied how the modification of existing rubber tiles by immobilizing TiO2
using the sol–gel method would impact on the aging process under the UV irradiation of
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the material, focusing on surface integrity, rubber particle wear release, and the consequent
environmental impact of leachate release.

2. Experimental Section
2.1. Materials

The reference rubber tiles (RRTs) used in this work were produced from recycled waste
tires obtained from Gumiimpex-GRP Ltd. (Varaždin, Croatia). The waste tires were me-
chanically ground into rubber granulates of sizes 0.0–0.5 mm, 0.5–2.0 mm, and 2.0–3.5 mm.
The rubber tiles used in this paper measured 1000 × 1000 × 10 mm and were made using
9 kg of rubber granulate, 380 g of binder (polyurethane Stobicoll® R352.00, STOCKMEIER
Urethanes, Cernay, France), and 5 g of catalyst (DABCO K 2097, Air Products, Allentown,
Pennsylvania, SAD). These ingredients were mixed for 5 min with an industrial mixer,
placed in a mold, and pressed at 120 ◦C for 4 min. After pressing, the rubber tiles were
removed from the mold and allowed to cool. The rubber tiles consisted mainly of 20%
granulates sized 0.5–2.0 mm and 80% granulates sized 2.0–3.5 mm.

The prepared rubber tiles were then modified to achieve photocatalytic properties
according to the procedure described in a previously published paper [50]. The modification
involved the sol–gel immobilization of the TiO2 photocatalyst, resulting in the sol–gel tile
(SGT). The first step was preparing the rubber tile by etching its surface with sodium
hydroxide solution (NaOH, 1:10, w:v) to achieve a rougher surface and to form -OH
groups [62]. Next, the sol–gel solution was prepared by mixing 2 g of TiO2 (Evonik
Industries AG, Essen, Germany, Aeroxid®, TiO2 P25, 30 nm, 56 m2/g, 75:25 anatase to
rutile mas’ ratio), 200 mL of deionized water, 200 mL ethanol (96%, GramMol, Zagreb,
Croatia), 70 mL acetic acid (99–100% p.a., LabExpert, Split, Croatia), and 5 mL of tetraethyl
orthosilicate (TEOS, ≥99.9% Sigma-Aldrich, St. Louis, MO, USA). This solution was stirred
at 50 ◦C for 1 h. The rubber tile was then soaked in the solution for 10 min and dried at
80 ◦C for 20 min, four times in a row. At the end, the tile was left to dry for a week at room
temperature.

2.2. Aging Test

The reference (RRTs) and modified rubber tiles (SGTs) were subjected to artificial
accelerated aging in a solar simulator, the ISOSun (InfinityPV ApS, Jyllinge, Denmark). The
chamber uses a 1200 W metal halide lamp as a UV source, which also heats the chamber.
The temperature inside the chamber is controlled by a fan. The solar simulator generates
bright white light that closely mimics the sun’s spectrum, producing ozone and heat.
Depending on the filter used, ISOSun can provide a good spectral match, with an intensity
ranging from 0.5 to 1.5 solar equivalents, as well as widely used solar simulators with
xenon lamps [63]. The spectral irradiance (standard filter) of the solar simulator (ISOSun)
compared with the reference global horizontal irradiance spectrum (AM 1.5G) is shown
in Figure 1. AM 1.5G is commonly used in terrestrial solar cell research, in accordance
with the American Society for Testing and Materials (ASTM) G-173, as well as with the
International Electrotechnical Commission IEC60904.

The samples were fixed in the chamber and exposed to UV irradiation for 28, 42, and
56 days, i.e., 4, 6, and 8 weeks. The correlation between accelerated aging time and real
time for the material (rubber tiles) is calculated according to the following equation [64,65]:

Accelerated Aging Time (AAT) =
Desired Real Time (RT)

Q
(

TAA−TRT
10 )

10

(1)

The accelerated aging temperature (TAA) was maintained at 85 ◦C, while the ambient
temperature (TRT) was maintained at 19 ◦C. The ambient temperature aging factor (Q10)
typically ranges between 1.8 and 2.5, with 2.0 being the most common value. According
to the given setup parameters, 56.5 days of accelerated aging time (AAT) correspond to
15 years of desired real time (RT) [64,65]. Consequently, 4 and 6 weeks correspond to
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7.5- and 11-year-old rubber tiles, respectively. Therefore, six rubber tiles were studied,
differing in time period (weeks; W); RRT4W, RRT6W, and RRT8W, and SGT4W, SGT6W,
and SGT8W, respectively.

Surfaces 2024, 7, FOR PEER REVIEW  4 
 

 
Figure 1. Representation of reference solar spectral irradiance (AM 1.5G—a global horizontal irradiance 
spectrum) compared with the one of the solar simulator (ISOSun) provided by the manufacturer. 

2.3. Mechanical Properties—Abrasion Testing 
The reference rubber tiles and TiO2 sol–gel-coated rubber tiles were subjected to aging in 

the solar simulator (as described above). After undergoing the accelerated aging test, the 
mechanical properties in the form of abrasion were tested. The rubber wear test was 
performed using a Gibitre Abrasiometre A (Gibitre Instruments, Bergamo, Italy), which 
estimates the sample’s resistance to abrasion according to the [66]. Abrasion was measured on 
a standard sample using a rotating drum equipped with standardized sandpaper, against 
which the specimen was pressed with a defined force until a rotating length of 40 m was 
achieved. Each sample was analyzed 3 times, and the results were expressed as the averages 
of these three measurements. The rubber particles collected after testing were characterized 
by FTIR and LC/MS QTOF analysis (as described below). 

2.4. Characterization 
2.4.1. FTIR Spectroscopy 

The infrared spectra of the investigated materials were recorded using a Fourier 
transform infrared (FTIR) spectrometer (Bruker Vertex 70, Billerica, MA, USA) equipped 
with an attenuated total reflection (ATR) accessory with a diamond crystal. In total, 32 scans 
were collected for each measurement over the spectral range of 375–4000 cm−1 with a 
resolution of 2 cm−1. 

2.4.2. Carbonyl Index (C.I.) 
As an indicator of degradation and chemical changes due to UV aging, the indices of 

carbon–oxygen bonds (C−O) and carbonyl group bonds (C=O) were monitored, and the 
carbonyl index (C.I.) was calculated. The C.I. was calculated by the ratio between the 
integrated band absorbance of the carbonyl (C=O) peak from 1850 to 1650 cm−1 and that of the 
methylene (CH2) scissoring peak from 1500 to 1425 cm−1, as expressed in the following 
equation [12,67]: C. I. (C = O) = area under band Aଵ଼ହିଵହ ୡ୫షభarea under band Aଵହିଵସଶହ ୡ୫షభ (2) 

For the carbon–oxygen bonds, peaks from 1300 to 1140 cm−1 were considered and are 
expressed in the following equation [12,68]: C. I. (C െ  0) = area under band Aଵଷିଵଵସ ୡ୫షభarea under band Aଵହିଵସଶହ ୡ୫షభ (3) 

Figure 1. Representation of reference solar spectral irradiance (AM 1.5G—a global horizontal irradi-
ance spectrum) compared with the one of the solar simulator (ISOSun) provided by the manufacturer.

2.3. Mechanical Properties—Abrasion Testing

The reference rubber tiles and TiO2 sol–gel-coated rubber tiles were subjected to aging
in the solar simulator (as described above). After undergoing the accelerated aging test,
the mechanical properties in the form of abrasion were tested. The rubber wear test was
performed using a Gibitre Abrasiometre A (Gibitre Instruments, Bergamo, Italy), which
estimates the sample’s resistance to abrasion according to the [66]. Abrasion was measured
on a standard sample using a rotating drum equipped with standardized sandpaper,
against which the specimen was pressed with a defined force until a rotating length of 40 m
was achieved. Each sample was analyzed 3 times, and the results were expressed as the
averages of these three measurements. The rubber particles collected after testing were
characterized by FTIR and LC/MS QTOF analysis (as described below).

2.4. Characterization
2.4.1. FTIR Spectroscopy

The infrared spectra of the investigated materials were recorded using a Fourier
transform infrared (FTIR) spectrometer (Bruker Vertex 70, Billerica, MA, USA) equipped
with an attenuated total reflection (ATR) accessory with a diamond crystal. In total, 32 scans
were collected for each measurement over the spectral range of 375–4000 cm−1 with a
resolution of 2 cm−1.

2.4.2. Carbonyl Index (C.I.)

As an indicator of degradation and chemical changes due to UV aging, the indices
of carbon–oxygen bonds (C−O) and carbonyl group bonds (C=O) were monitored, and
the carbonyl index (C.I.) was calculated. The C.I. was calculated by the ratio between the
integrated band absorbance of the carbonyl (C=O) peak from 1850 to 1650 cm−1 and that of
the methylene (CH2) scissoring peak from 1500 to 1425 cm−1, as expressed in the following
equation [12,67]:

C.I.(C = O) =
area under band A1850−1650cm−1

area under band A1500−1425cm−1
(2)



Surfaces 2024, 7 790

For the carbon–oxygen bonds, peaks from 1300 to 1140 cm−1 were considered and are
expressed in the following equation [12,68]:

C.I.(C − 0) =
area under band A1300−1140cm−1

area under band A1500−1425cm−1
(3)

The area under the band was calculated using the peak analysis tool in the Spectra-
Gryph 1.2 spectroscopy software options.

2.5. Water Leachate Testing (LC/MS QTOF)

Six samples were prepared for the water leachate test. The first four samples included
reference rubber tiles (RRTs) before and after 8 weeks of artificial accelerated aging (RRT8W)
and modified rubber tiles (SGTs) before and after 8 weeks of artificial accelerated aging
(SGT8W). The last two samples were rubber particles (RRT8W-RP, SGT8W-RP) obtained
via abrasion from the RRT8W and SGT8W. The masses of all 6 samples were weighed and
placed in laboratory beakers, to which distilled water was added at the liquid-to-sample
ratio (L:S) of 1:20, and were sealed with parafilm. The first four samples, consisting of whole
substrates, were left to soak for 24 h, mimicking the static conditions of tiles placed in the
environment, while the rubber particles obtained after surface abrasion were placed on a
magnetic stirrer for 24 h, mimicking the dynamic conditions of particles in the environment.
After 24 h, the samples were filtered (0.22 µm, PET, Chromafil, Macherey-Nagel, Düren, Ger-
many) and prepared for high-resolution analysis by liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry (LC/MS QTOF, Agilent 6530 C Accurate Mass
Q-TOF LC/MS with LC System Agilent 1260 Infinity II, Santa Clara, CA, USA). The samples
were analyzed in accordance with the modified LC/MS method 5991-6627EN [69], created
for acquiring the Agilent MassHunter Water Screening Personal Compound Database
and Library (PCDL), which includes a list of more than 1400 environmental contaminants
(Agilent Water Screening PCDL B.07.00 Water).

Chromatographic separation was performed on an Agilent Zorbax SB-Aq column
(4.6 × 150 mm, 3.5 µm, Agilent Technologies, Santa Clara, CA, USA) at 40 ◦C with a
20 min run time and 5 min post time. Prior to each analysis, the column was conditioned
and equilibrated with the intended solvent by running a sample method without sample
injection. The flow rate was 0.40 mL/min with an injection volume of 5 mL. For the
analysis, chemicals of LC/MS purity were used as follows: ultrapure water (LC/MS, VWR
Chemicals BDH, Radnor, PA, USA), acetonitrile (LC/MS, Honeywell, Seelze, Germany),
acetic acid (LC/MS, VWR Chemicals BDH, Radnor, PA, USA), and ammonium acetate
(LC/MS, Carlo Erba Reagents, Milan, Lombardy, Italy). The mobile phase contained
solvent A (MilliQ water with 0.1% acetic acid and 1 mM ammonium acetate (v/v/v))
and solvent B (0.1% acetic acid in acetonitrile). The first gradient mode started with a
2.00 min isocratic elution at 100% A, followed by a 12.00 min linear gradient and a 2.00 min
isocratic elution with 2% A. Afterwards, the gradient was linearly returned to 100% A over
3.00 min and maintained until the end of the run time. The analyses were conducted in
both positive and negative ion modes with collision energies set at 0, 10, and 40 V. The
mass spectrometry parameters were as follows: drying gas temperature at 160 ◦C with a
flow rate of 12 L/min; sheath gas temperature at 350 ◦C with a flow rate of 12 L/min; and
a nebulizer pressure of 30 psi. The fragmentor voltage was set at 100 V, while the nozzle
and capillary voltage were 1000 V and 3500 V in negative mode, and 500 V and 4500 V
in positive mode, respectively. A summarized overview of the LC/MS QTOF method
parameters is shown in Tables S1 and S2.

The obtained data were processed by using MassHunter Workstation Profinder Soft-
ware B.10.00 in both positive and negative modes. A targeted-feature-extraction data
mining algorithm was employed, and results with a sufficient score were further discussed
(>85). In the positive mode, [M+H]+ and [M+NH4]+ species were considered as charge
carriers, while in the negative mode, [M-H]− and [M+CH3COO]− species were considered,
as these species are predominantly represented in the MS spectra included in the Water
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Screening PCDL B.07.00 database. Furthermore, based on a literature review [34], common
plasticizers were listed and analyzed by using MassHunter Workstation Qualitative Analy-
sis Software B.10.00. Details can be found in the Supplementary Materials in Table S3 and
Figures S1–S3. Compounds were identified based on these criteria.

3. Results and Discussion
3.1. FTIR Analysis

The photooxidative degradation of the studied rubber tiles was examined by FTIR
to monitor changes in the structure of macromolecules. Figure 2 shows the FTIR spectra
of the reference rubber tile before and after 4, 6, and 8 weeks of exposure to UV irradi-
ation. Photooxidative decomposition resulted in the appearance of peaks at 1715 cm−1,
1432 cm−1, 1150 cm−1, and 1080 cm−1, attributed to newly formed chemical structures,
namely ketones (C=O) and carbon–oxygen groups (C−O, O−C=O, C−O−O−) [12,70]. As
observed in Figure 2, the increase in the intensity of the C=O bands is centered around
1715 cm−1 [12,68,70–72]. The absorption band at 1432 cm–1 is a characteristic of CH2 for-
mation [71]. Furthermore, the bands around 1085–1150 cm–1 can be attributed to C-O
stretching [68,73]. As shown in Figure 2, the peaks are proportionally intensified with
prolonged UV irradiation, which can be attributed to the initial stability of the rubber
granulate and polyurethane.
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Figure 3 shows the FTIR spectra of both the reference and modified rubber tiles that
were UV-irradiated for 8 weeks to compare the results.

It can be seen that the peak at RRT8W around 1715 cm−1 has increased, which may be
associated with stronger photooxidative degradation in this sample [12,70,71]. Additionally,
Figure 3 shows a broad peak, approximately between 3200–3500 cm–1, which can be
attributed to the presence of a hydroxyl group [15,68,71]. The RRT8W spectra show peaks
at 1100 cm−1, likely due to C−O stretching, and around 1400 cm−1, which could be related
to S=O stretching. In contrast, SGT8W has one peak stronger at 2390 cm−1, potentially
related to O=C=O stretching from carbon dioxide [74].
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3.2. Carbonyl Index (C.I.)

Table 1 lists the indices of the carbonyl index calculated for the C=O and C−O groups
using the reference peaks in the range of 1500 to 1425 cm−1, similarly as in the published
literature [12,67]. In addition, the indices were determined for the upper (U) side (RRT/x/U;
SGT/x/U) and the bottom (B) side (RRT/x/B; SGT/x/ B) of the rubber substrate exposed
to UV irradiation to determine whether the UV irradiation had penetrated through the
entire substrate [12]. Regarding the upper (U) side of the RRT and SGT substrates, the
index calculated for the C=O group region showed an increase with UV aging, indicating
the oxidation and degradation of the rubber material [12]. Initially, SGT/0 had a lower
value (0.5410) compared to RRT/0 (0.6204). After 4 weeks, both substrates (RRT/4W/U
and SGT/4W/U) exhibited an increase in the C=O index, followed by a trend in decreasing
values at 6 weeks (RRT/6W/U and SGT/6W/U). Ultimately, SGT/8W/U showed a lower
C=O index (0.8130) compared to RRT/8W/U (1.1850), suggesting that TiO2 may effectively
reduce the extent of oxidation and degradation in the UV-exposed upper part [75].

Table 1. Indicators of carbonyl (C=O, 1715 cm−1) and carbon–oxygen groups (C−O, 1180, 1230 cm−1)
of initial and aged rubber samples.

Sample C=O
1850–1650

C−O
1300–1140 Sample C=O

1850–1650
C−O

1300–1140

RRT/0 0.6204 1.2262 SGT/0 0.5410 1.1561
RRT/4W/U 1.5639 7.3035 SGT/4W/U 0.8111 1.3107
RRT/6W/U 0.9748 4.2755 SGT/6W/U 0.7781 1.2532
RRT/8W/U 1.1850 0.8438 SGT/8W/U 0.8130 1.2663
RRT/4W/B 1.1167 2.3274 SGT/4W/B 0.7811 1.0137
RRT/6W/B 2.1125 1.3821 SGT/6W/B 0.7234 1.5315
RRT/8W/B 0.7485 1.2005 SGT/8W/B 0.8445 1.1907

As for the bottom (B) side of the substrates, after 4 weeks of irradiation, RRT/4W/B
exhibited a twofold increase compared to SGT/4W/B. Subsequently, RRT/4W/B continued
to show an upward trend, with RRT/6W/B increasing significantly to 2.1125. On the other
hand, SGT/4W/B stagnated, and the value for SGT/6W/B was even lower (0.7234). After
8 weeks of irradiation, the value for RRT/8W/B decreased (0.7485), while SGT/8W/B had
a final value of 0.8445.
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The TiO2 sol–gel coating effectively contributed to maintaining a lower carbonyl index
for the C=O region throughout the irradiation period, as it was observed in [75]. Finally,
SGT/8W/U showed significantly better results compared to RRT/8W/U. Although the
value for SGT/8W/B was higher than that for RRT/8W/B, the SGTs maintained more
consistent values throughout the entire irradiation period, with minimal fluctuations, as
was the case with the RRTs.

A similar trend was observed for the C−O groups. Initially, the indices were ap-
proximately equal: RRT/0 = 1.2262, SGT/0 = 1.1561. However, after 4 weeks of irra-
diation, RRT/4W/U increased significantly to 7.3035, followed by a decreasing trend
(RRT/6W/U = 4.2755, RRT/8W/U = 0.8438). On the other hand, the indices for SGT/4W/U,
SGT/6W/U, and SGT/8W/U remained relatively stable without any drastic fluctuations.
The value for SGT/8W/U was 1.2663, which is higher than RRT/8W/U, but the TiO2
coating also contributed to maintaining lower indices during the entire irradiation pe-
riod. Overall, the values for the C−O groups were approximately similar, with no major
deviations observed.

Therefore, fluctuations in the RRT values confirm that the aging of polymer materials
under the combined effects of light, heat, and oxygen is an autocatalytic process primarily
driven by free radical reactions. When the energy from UV light exceeds the bond disso-
ciation energy of the polymer molecules, it causes bond breakage and the formation of
more reactive groups. This promotes the initiation of chain reactions, marking the first
stage of aging. As the chain reactions progress, their transfer increases rapidly, signifi-
cantly accelerating the aging process. On the other hand, TiO2 can absorb and reflect UV
irradiation, thereby inhibiting the initial stage of the aging chain reaction. This prevents
the propagation and transfer of chains during the second stage, slowing down the overall
aging process [75].

3.3. Mechanical Properties—Abrasion Testing

The abrasion results (Figure 4) indicate that for both samples (RRT and SGT), the
values increase with the weeks of experimental accelerated aging testing. While the volume
of the abraded particles increases linearly for the unmodified RRT (Figure 4a), it increases
logarithmically for the modified SGT (Figure 4b). Initially, the mechanical stress causes
a greater release of rubber particles from the SGT compared to the RRT due to the sol–
gel immobilization process, which degrades the surface integrity of the reference rubber
tiles. However, the results of the carbonyl indices indicate that TiO2 coating stabilizes
degradation processes under UV irradiation, slowing down the autocatalytic processes of
polymer degradation [75]. Therefore, while TiO2 coating stabilizes polymer degradation
caused by UV irradiation on the main SGT compared to the RRT, the drawback of the
sol–gel immobilization process is an increased release of particles. Consequently, the
application of the SGT is limited to the area where less abrasion is expected, such as noise
barrier tiles.
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3.4. Water Lecheate Testing (LC/MS QTOF)

In the literature review [34,76], it was widely recognized that most chemicals of con-
cern present in rubbers will eventually be found in tire wear particles, such as polycyclic
aromatic hydrocarbons (PAHs), metals, volatile organic compounds (VOCs), plasticiz-
ers, antioxidants, and additives. Phthalates, a common class of compounds used in tire
manufacturing, are widely utilized as plasticizers typically incorporated into rubber at
concentrations below 30% by weight. The most commonly used phthalates are dibutyl
phthalate, diethyl phthalate, di(2-ethylhexyl) phthalate [77], diisobutyl phthalate, and
dimethyl phthalate. A recent study on tire and road wear microplastic (TRWMP) composi-
tion in China highlighted phthalates as being predominant in TRWMP release, accounting
for 64.8% of release on average [78].

In this paper, three out of the stated five compounds were identified in water leachates
(Figure 5). All three phthalates were also reported in rubber particles obtained above
a football pitch and playground fabricated from crumb rubber [42,79]. As can be seen,
a lower amount of diethyl phthalate and diisobutyl phthalate will be released into the
environment when rubber tiles are coated with a TiO2 layer. However, higher amounts
will be released when it comes to dibutyl phthalate, most probably due to the impact of
the immobilization process by the sol–gel method. Throughout the time and exposure of
rubber tiles to UV irradiation, the TiO2 coating on the SGT will contribute to less release
dibutyl phthalate and diethyl phthalate. This is noteworthy, since dibutyl phthalate was
detected in the air (17 ng/m3) above the playgrounds where rubber tiles from secondary
materials were placed [42].
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Figure 5. Identified phthalates (microplastics) in leachate samples (prior to and after accelerated
aging tests) by LC/MS QTOF. DP stands for degradation product. The red color visually reflects the
trend of the graph within the table.

Thus, as observed with the carbonyl indices, the TiO2 coating generally contributes to
the stabilization of and reduction in polymer degradation in the main SGT. However, when
analyzing the release of specific compounds, the results indicate that a straightforward
correlation cannot be established, as this relationship is influenced by several factors,
including the chemical properties of the compounds, the rubber matrix, and environmental
conditions. The same applies to the leaching of phthalates from rubber particles. Although
abrasion tests indicated a higher release of particles from the SGT compared to the RRT
(Figure 4), and a greater release of diisobutyl phthalate from rubber particles, the results for
the other two phthalates suggest the degradation of the initial compounds, which requires
further in-depth research.

Apart from phthalate release, a group of cyclic amines, benzothiazoles, benzotria-
zoles, alkylphenol ethoxylate, and derivatives are released into the environment from
TWPs [34], but also from rubber tiles made from secondary raw materials [42]. Some
benzothiazoles, such as N-cyclohexylbenzothiazole-2-sulfenamide (DCBS), dibenzothia-
zolyldisulfide (MBTS), and 2-(4-morpholinyl)-benzothiazole, are used as vulcanization
accelerators in rubber production, and their transformation products have been frequently
reported in the context of tires and road runoff, such as hydroxybenzothiazole (HOBT),
mercaptobenzothiazole (MBT), and benzothiazole sulfonic acid (BTSA). However, not
all of these compounds persist in the environment for long; they are either biodegraded
(HOBT) or degraded via chemical reactions (such as MBT) [80]. In this study, benzotia-
zole, MBT, BTSA, and HOBT were identified after a database search (Table 2) as possible
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compounds occurring in the leachate. Apart from HOBT, an additional two compounds
with the same retention time were identified as possibly occurring: benzisothiazolinone
and 2-mercaptobenzoxazole, also used in industrial applications for the vulcanization of
rubber [39,81,82]. Apart from the plasticizers that were identified based on the literature
review, plasticizers and solvents, dibutyl adipate, camphor, isoborneol, and acetamid were
identified through a database search (Tables 2 and S4). These compounds are added to
rubber to enhance flexibility and workability. Furthermore, the 4-nonylphenoxyacetic
acid was identified as well. It is a degradation product of nonylphenol ethoxylates, used
as surfactants and plasticizers [83]. Furthermore, additives, antioxidants, and corrosion
inhibitors, such as 2-tert-butyl-4-methoxyphenol, methylsalicylate, 4-tert-octylphenol, and
4-hydroxybenzoic acid, were also identified in leachate (Table 2).

Table 2. List of identified compounds compiled using the Water Screening PCDL B.07.00 database
(Agilent Technologies) with a matching score above 85.

Name CAS Mass RT
(min)

RSD
(Mass, ppm) Possible Origin

HOBT/2-Hydroxybenzothiazole 934-34-9 151.0101 14.617 1.59 rubber accelerator

BIT/Benzisothiazolinone 2634-33-5 151.0101 14.617 1.59 rubber and polymerized
materials preservatives

2-Mercaptobenzoxazole 2382-96-9 151.0101 14.617 1.59 rubber accelerator

4-Nonylphenoxyacetic acid 3115-49-9 278.1885 17.605 1.57 Surfactant degradation

Benzothiazole-2-sulfonic acid 941-57-1 214.9721 12.509 2.52 rubber accelerator

4-Hydroxybenzoic acid 138.0326 12.576 2.58 Additive, corrosion inhibitor

Camphor 152.1205 17.122 1.46 Additive, plasticizer

Isoborneol 124-76-5 154.1359 16.247 5.03 Flavor and fragrance additive

Dibutyl adipate 105-99-7 258.1839 16.576 2.38 Plasticizers

Methylsalicylate 119-36-8 152.0484 13.839 1.45 UV light stabilizer

4-Methoxybenzoic acid 100-09-4 180.1156 17.132 5.6 Flavoring Agents

2-tert-Butyl-4-methoxyphenol 25013-16-5 192.1523 16.786 5.3 Antioxidant, additive

Ionone 256.0636 17.671 1.94 Flavoring agent

N4-Acetylsulfaguanidin
(Acetamide) 19077-97-5 206.1682 18.594 5.27 solvent, plasticizer, stabilizer

4-tert-Octylphenol 140-66-9 125.9992 5.377 1.84 rubber additives, antioxidant

Ethyl sulfate 540-82-9 135.0155 12.801 1.44 Environmental contaminant

4-tert-Butylbenzoic acid 98-73-7 144.1147 16.283 2.86 Regulator of polymerization,
inhibitor of corrosion

Benzothiazole 166.9865 15.414 1.56 rubber accelerator

MBT/2-Mercaptobenzothiazole 149-30-4 198.1414 17.767 4.38 Rubber accelerator

All these compounds are susceptible to further transformations. For instance, a recent
study [84] investigated the environmental impact on air quality of rubber tiles derived from
shredded EOL tires, which are commonly used in artificial turf and playgrounds. The re-
searchers developed and validated an analytical method using ultrasound-assisted extraction
and liquid chromatography-tandem mass spectrometry (UAE-LC/MS) to detect 11 hazardous
compounds, including N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD), N,N′-
diphenyl-p-phenylenediamine (DPPD), N-cyclohexylbenzothiazole-2-sulfenamide (CBS), 1,3-
di-o-tolylguanidine (DTG), and hexamethoxymethylmelamine (HMMM). On the other
hand, using high-resolution mass spectrometry (HRMS), out of 219 identified chemicals,
29 tire-related compounds, such as HMMM, 1,3-diphenylguanidine (DPG), dicyclohexy-
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lurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA), were detected in roadway
runoff [85]. Photolysis experiments showed that compounds like DCU, DCMA, and DPG
have low degradation rates, indicating their persistence in runoff. Consequently, the photo-
catalytic properties of TiO2 can play a crucial role in reducing hazardous emissions and
leachate into air and water by harnessing TiO2

′s ability to degrade organic pollutants under
UV light.

4. Conclusions

This study aimed to evaluate whether modifying existing rubber tiles made from waste
tires with TiO2 using the sol–gel method will affect the aging process under UV irradiation,
with a focus on surface integrity, rubber particle wear, and the resulting environmental
impact of leachate release.

The TiO2 sol–gel coating contributed to maintaining a low C.I. for both the C=O
and C-O regions throughout the irradiation period. The SGT/8W/U sample exhibited
a significantly better C.I. for the C=O region compared to RRT/8W/U. As for the C-O
region, although the C.I. for SGT/8W/U was 0.4255 higher than RRT/8W/U, the values
for SGT/8W/U remained relatively stable and low throughout the irradiation period. The
RRT/4W/U for the C-O region was 7.3035, which in real time would represent several
years of exposure to such a high index. This is followed by RRT/6W/U, with an index
of 4.2755. The sol–gel coating with TiO2 led to stable and low indices, without large
deviations, thereby inhibiting the initial stage of the aging chain reaction that was observed
with the RRT.

Furthermore, this study found that rubber tiles coated with TiO2 (SGTs) release lower
amounts of diethyl phthalate and diisobutyl phthalate into the environment compared to
uncoated tiles (RRTs). However, the release of dibutyl phthalate was higher, most probably
due to the impact of the sol–gel immobilization process. Despite increased rubber tile wear
and rubber particle release into the environment, the TiO2 layer helps to reduce the release
of dibutyl phthalate and diethyl phthalate from aged rubber tiles. However, the increased
wear and release of rubber particles and the subsequent degradation of organic leachates
require further in-depth research.

Additionally, aging may also affect the analytical assessment of microplastics (MPs)
in environmental samples, which are likely to contain aged MPs. In contrast, many an-
alytical methods are validated using pristine plastics, which may not accurately reflect
the properties and behaviors of aged MPs [86]. This discrepancy underscores the need
for further research to understand how aging influences the release and degradation of
compounds, such as phthalates, from rubber materials, and their subsequent environmental
and health impacts.
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