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Abstract: High-quality, reproducible tip coatings are essential for minimizing faradaic currents in
electrochemical scanning tunneling microscopy (EC-STM), especially during in situ and operando
measurements. The variability inherent in manual coating methods, influenced by the operator’s
skill and a lack of standardization, can lead to inconsistent results, increased research costs, and a
greater workload. This study introduces an Automated Tip Coater (ATC) designed to automate and
standardize the tip coating process. The ATC features a tip movement system using stepper motors,
a rotation module with a DC motor, and a heating block based on a soldering iron. It is controlled
by an Arduino development board, supported by motor drivers, and has a user-friendly interface
with an OLED display and encoder. The ATC coating mechanism includes a redesigned plate with a
reduced gap size and a milled tray to precisely control the amount of insulating material applied to
the tip. A fast cyclic voltammetry test in a 0.1 M HClO4 electrolyte demonstrated that over 75% of
ATC-coated tips achieved excellent insulation with leakage currents below ±50 pA—and 30% below
±10 pA—suitable for highly sensitive experiments. Further measurements with EC-STM using the
newly coated tips investigated the electrochemical behavior of highly oriented pyrolytic graphite
(HOPG), revealing detailed atomic structures under dynamic electrochemical conditions. The ATC
significantly enhances reproducibility, reduces dependency on operator skills, and lowers research
costs while improving the accuracy and reliability of EC-STM measurements.

Keywords: electrochemical scanning tunneling microscopy (EC-STM); automated tip coater (ATC);
tip insulation; cyclic voltammetry (CV); in situ measurements; operando conditions; electrocatalysis;
high-resolution imaging; HOPG surface

1. Introduction

Electrochemical scanning tunneling microscopy (EC-STM) is a powerful technique
that enables the study of various surface phenomena at the atomic level under electro-
chemical conditions [1–3]. This capability is crucial for advancing our understanding of
dynamic processes in various fields, including electrocatalysis [4–6], corrosion [7,8], energy
storage [9,10], and nanotechnology [11,12]. By enabling in situ and operando measure-
ments, EC-STM allows researchers to observe real-time changes in the surface structure
and composition during electrochemical reactions, providing insights that are essential for
developing next-generation technologies in these areas [13,14].

Recent advancements in EC-STM have demonstrated the potential to identify elec-
trocatalytically active sites with atomic precision by analyzing noise in the tunneling
current [13,15–26]. By using this approach, it is possible to monitor catalytic sites during
electrochemical reactions, offering insights into their stability and providing quantitative
information related to the macroscopic onset potential, Tafel slope, and turnover frequency
(TOF) with sub-nanometric spatial resolution, even for single-atom catalytic sites. This new
method enables the determination of the nature, relative abundance, and specific activity of
the sites where electrocatalytic processes occur, all at the atomic level. However, one of the
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major challenges in obtaining accurate and reliable EC-STM data is maintaining faradaic
currents at negligible levels. These currents, which arise from electrochemical reactions
at the tip due to the applied bias potential, can significantly interfere with the tunneling
current, especially during in situ and operando measurements where dynamic changes in
the electrochemical environment are prevalent.

Therefore, the EC-STM tips must be coated with a chemically and electrochemically
inert insulating material, leaving only the apex exposed to the electrolyte [27]. Effective
tip coatings markedly reduce unwanted faradaic leakage currents. Various insulating
techniques have been developed, differing in the choice of coating materials and special-
ized equipment required. These methods include glass coating [28–31] followed by the
sputter deposition of SiO [32], the application of cataphoretic paint [33,34], the thermal
evaporation of silicon or magnesium oxides [35], and the use of waxes [36,37] or poly-
mers such as nail varnish [38–40], epoxy resin [41–43], and silicon rubber [41,44]. Molten
polymers [29,30,45,46] or Apiezon wax [47–51] are commonly selected for their straight-
forward use and excellent insulating properties [33]. However, the quality of tip coatings
obtained using these techniques is often highly dependent on the operator’s manual skills,
introducing variability that can range from well-insulated tips to those with inadequate
or even complete insulation. Without the prior assessment of the tip coating quality, such
irregularities can adversely impact the reliability of the EC-STM data, especially when an
atomic-scale resolution is required but cannot be realized due to insufficient tip insulation.

Achieving the precision and consistency required in techniques such as EC-STM
necessitates eliminating factors that compromise the integrity of results, particularly those
associated with manual procedures like tip coating. In recent years, there has been a
growing emphasis on automation and standardization in scientific research, driven by the
need for reproducibility, efficiency, and a reduction in human errors [52]. The development
of automated systems, such as the Automated Tip Coater (ATC) introduced in this study,
represents a crucial step toward overcoming these challenges. By automating fundamental
steps like tip coating, the ATC removes operator dependency and standardizes the process,
aligning with the broader trend of enhancing experimental reproducibility and accuracy.
The ATC uses molten polymers or Apiezon wax to provide a consistent insulating layer.
Its key features include a precision tip movement system controlled by stepper motors,
a rotational module driven by a DC motor, and a temperature-controlled heating block
with a redesigned plate featuring a reduced gap size and a milled tray for the precise
application of insulating material. The system is managed by an Arduino development
board, with control software developed in C++ using PlatformIO for stand-alone operations.
Furthermore, the ATC is user-friendly and requires minimal training, allowing users of
all experience levels to achieve consistent results. Its modular design enables seamless
adjustments to accommodate various EC-STM tip specifications—including tip diameter
and length, as well as insulating material properties—ensuring the system can be tailored
to the specific practices of any laboratory.

This study aims to address the challenges of achieving high-quality, reproducible tip
coatings in EC-STM by developing the ATC. The primary objectives are to standardize the
coating process, reduce operator-induced variability, and improve the reliability of EC-STM
measurements under in situ and operando conditions. By achieving these goals, the study
seeks to enhance the utility of EC-STM as a tool for investigating surface phenomena at
the atomic scale, ultimately contributing to advancements in fields such as electrocatalysis,
materials science, and energy storage.

2. Materials and Methods
2.1. Electrochemical Etching of W Tips

The STM tips were prepared by standard EC etching from a tungsten wire of 0.25 mm
diameter in a 2 M KOH solution [53,54]. Briefly, the etching process involves using a
platinum wire loop with a diameter of 6 mm that serves as the counter electrode. The
tungsten wire is placed in the center of the Pt loop so that 7 mm of the W wire is below the
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horizontal plane of the Pt loop. The loop is then immersed in the electrolyte to suspend a
thin lamella of electrolyte. A rectangular AC voltage of 8 Vpp and a frequency of 100 Hz is
applied between the tungsten wire and the Pt wire loop. The etching process continues
until the free end of the tungsten wire falls off into the Teflon container. The W tip is then
rinsed with high-purity water and dried.

2.2. System Design and Architecture of the ATC

The ATC was developed with a focus on reliability, repeatability, and ease of use. A
complete image of the working device is shown in Figure 1. The core design incorpo-
rates several key modules: a precise tip positioning system, a rotational module, and a
temperature-controlled heating block with a redesign tray for melting insulating materials.
The ATC is designed with a user-friendly interface, allowing researchers to configure all
relevant parameters, including the immersion depth, coating duration, rotation speed, and
horizontal and vertical movement speeds.
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Figure 1. Image of the ATC system with labeled components: (1) Horizontal movement module;
(2) Vertical movement module; (3) Rotational module; (4) Tip holder; (5) Coating tray; (6) Heating
module; (7) OLED display; (8) Encoder for user input; (9) RGB status indicator.

The mechanical design focuses on precise and controlled movements. Most of the
components were made using 3D printing technology, providing flexibility in design
iterations and rapid prototyping. The system includes vertical and horizontal movement
modules, driven by precision stepper motors, that provide micron-level accuracy in tip
positioning. The vertical motion is controlled by a Nema 17 stepper motor coupled with
an 8 mm lead screw, enabling smooth and repeatable linear displacement. A smaller
stepper motor, typically used in DVD drives, facilitates accurate lateral positioning. The
incorporation of linear bearings in both systems minimizes friction and enhances stability,
allowing for highly controlled tip immersion and withdrawal during the coating process.

The key innovations that distinguish this device are the redesigned coating tray and
the addition of a rotational module. The coating tray has been engineered with a narrow
slit that is only 50 µm wider than the tip diameter (see Figure 2). Furthermore, the tray is
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milled to enhance the distribution and volume control of the insulating material within
the cavity, which ensures that the correct amount of insulating material adheres to the tip,
minimizing excess and resulting in a consistent insulation layer.
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Figure 2. (a) A 3D model illustrating the tip passing through the slit in the tray (5) during the coating
process, with red arrows indicating the direction of movement (upward) and rotation. (b) Photograph
showing the coated tip emerging from the tray after the insulation process.

The rotational module, powered by a DC motor, is another feature designed to achieve
uniform coatings. This module includes a holder that secures the tip during the coating
process while allowing it to rotate smoothly around its axis. The rotation speed and
duration are fully adjustable to match the properties of the insulating material, ensuring an
even coverage across the entire tip surface.

The durability and performance of coated tips are greatly influenced by the choice of
insulating material. The system is compatible with various materials, including molten
polymers and Apiezon wax, which are widely used for their known insulating properties
and chemical resistance. In this study, we primarily used Pattex PTK1 hot melt glue sticks
(Henkel, Germany), an Ethylene Vinyl Acetate Copolymer (EVA) adhesive with a softening
temperature of 85 ± 5 ◦C. The heating block is based on a modified TS100 soldering iron,
capable of reaching temperatures up to 400 ◦C with minimal hysteresis. The material
is heated to the desired viscosity within the tray cavity, which is monitored in real-time
through a temperature sensor, allowing precise adjustments as needed.

2.3. Tip Coating Process

The process of insulating the tips begins by depositing the insulating material into the
tray cavity (5) (Figures 1 and 2). During the heating phase, the tip holder (4) is positioned
at the lower end, opposite the tray, allowing for the safe and secure placement of the tip in
the holder. Once the insulating material reaches its melting point, it is evenly distributed
within the tray cavity. Excess material is removed using a flat tool (e.g., a utility knife)
swept across the edges surrounding the tray cavity, ensuring a consistent volume of applied
insulating material. Any material leaking through the slit is also removed with the flat tool
before the coating process begins.

Next, the tip holder is automatically moved beneath the tray containing the insulating
material. By gradually passing through the slit from below, the tip is immersed in the
insulating material (Figure 2). Depending on the type of insulating material used, the
tip rotation can be initiated at one of three stages: (1) while passing through the slit,
(2) immediately after passing through the slit, or (3) during withdrawal from the slit. These
parameters can be adjusted by the user based on experience to achieve optimal coating
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coverage. After a few seconds, the platform returns to its initial position, allowing for the
safe removal of the coated tip. This process is shown in videos 1 and 2, which are included
in the online Supporting Information.

2.4. Cyclic Voltammetry of Coated Tips

The CV measurements in 0.1 M HClO4 electrolyte of the ATC-coated tips were carried
out in a home-built three-electrode cell using a PocketPotentiostat developed by Matsub-
ara [55]. Pt wires were used as counter and reference electrodes, placed less than 1 cm from
the working electrode. The Pt quasi-reference electrode was calibrated with respect to RHE
in argon-saturated 0.1 M HClO4. All potentials thereafter are quoted with respect to RHE at
pH = 1. The electrochemical cell was placed in a Faraday cage to minimize noise introduced
by electromagnetic interference, which is essential for picoelectrochemical measurements.

2.5. EC-STM Measurements

The EC-STM measurements were carried out using a home-built EC-STM working in a
constant-current mode, as described in detail by Wilms et al. [56]. This system is enhanced
with a high-speed ADC acquisition card (Texas Instruments) that captures data at a rate
up to 640 kSps. It features six channels simultaneously recording signals from the EC-
STM, including lateral piezo displacement, working electrode potential, and sample current.
Channels allocated for the recording of tunneling current and z-axis tip displacement during
forward and backward scans enable the acquisition of both current and topographical
STM images.

All electrolytes were prepared using deionized water from a Millipore-Pure system
(Merck, Burlington, MA, USA) with a specific resistance of 18.2 MΩ·cm and minimal
organic impurities in the ppb range. Prior to use, the electrolytes were purged with argon
gas for several hours. The chemicals used, obtained from Sigma-Aldrich (Saint Louis,
MO, USA), were of the highest commercially available purity and were used without
further purification.

The HOPG electrode (TipsNano, ZYB quality, mosaic spread: 0.8 ± 0.2◦) was prepared
through mechanical exfoliation of the topmost layers by adhesive tape. To prevent re-
contamination of the surface, the HOPG was immediately mounted into the EC cell of the
EC-STM and covered with a drop of degassed electrolyte.

All electrode potentials in the publication are referred to as an RHE reference electrode,
while all tip bias potentials are reported with respect to the working electrode. Therefore,
the bias voltage to the tip can be referred to as the RHE electrode in accordance with
this equation:

Ub vs. ref = E + Ub

where Ub vs. ref represents the bias applied to the tip versus the reference electrode, E
denotes the electrode potential, and Ub is the bias versus working electrode potential [53].

3. Results and Discussion
3.1. Visual Assessment of Tip Coating Quality

The quality of the coated tips was evaluated using a two-step process involving both
optical inspection and electrochemical testing. The first step focused on assessing insulation
continuity, uniformity, and coating thickness under an optical microscope (Figure 3). The
results revealed that tips coated using the ATC displayed smooth and consistent insulation
with minimal excess material. In contrast, manually coated tips often exhibited significant
excess material, forming polymer tails that required mechanical trimming. These tails,
resulting from the adhesive nature of the coating material, are a common issue in manual
coating processes and can introduce variability in the insulation layer, particularly near the
tip apex. This variability not only affects the reproducibility of EC-STM measurements but
also increases the risk of damaging the insulation during the trimming process.
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shows smooth and consistent insulation without excess material or polymer tails. In contrast, the
manually coated tip (right) exhibits a significant excess of insulating material, forming a tail that
requires mechanical trimming.

The ATC rotational module effectively addresses this issue by maintaining continuous
rotation during the withdrawal phase of the coating process. By rotating the tip as it is
withdrawn from the insulating material, the rotational module prevents the formation
of polymer tails, ensuring a uniform and smooth coating without the need for further
mechanical intervention (Figure 3). This automation of the coating process reduces the
dependence on operator skill and eliminates a significant source of variability.

3.2. Electrochemical Testing of Coated Tips

The second and most crucial phase of quality assessment involved conducting fast
cyclic voltammetry (CV) tests to evaluate the electrochemical stability and insulation
performance of the coated tips. In these tests, tungsten tips coated using the ATC were
assessed in 0.1 M HClO4 at a scan rate of 50 mV/s within an electrode potential window of
−500 mV to 500 mV. The relatively high scan rate was chosen to expedite the evaluation
process, allowing multiple tips to be tested in a shorter timeframe.

Figure 4 presents two key outcomes: on the left, the CV curve of a coated tip, and on the
right, the statistical analysis of the insulation performance across a total of 60 tips sourced
from five independent batches (batch 1: 15 tips, batch 2: 12 tips, batch 3: 6 tips, batch 4:
9 tips, batch 5: 18 tips). The CV curve illustrates that the ATC-coated tip maintained a low
leakage current within the range of ±10 pA, signifying effective insulation. The statistical
analysis revealed that 30% of the tips exhibited leakage currents below ±10 pA, with an
additional 30% maintaining leakage below ±50 pA. Furthermore, 17% of the tips showed
leakage currents below ±20 pA, while only 10% exhibited currents exceeding ±100 pA,
indicating minor defects. A small percentage (2%) were fully isolated, showing negligible
current leakage. A contrasting trend emerges in the analysis of manually coated tips, as
illustrated in Figure S2 of the Supporting Information. Among the 74 tips examined, 28%
were fully isolated, while a significant 43% displayed leakage current exceeding ±100 pA.
Notably, only 6% of tips recorded leakage current below ±10 pA, with an additional 2%
maintaining leakage levels below ±20 pA. These results further highlight the effectiveness
of the automated approach to tip coating employed by the ATC.
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Understanding the role of insulation quality is key to determining the suitability of
tips for diverse EC-STM experiments. The distribution shown in Figure 4b demonstrates
that the ATC can produce tips suitable for a wide range of experimental needs, from general
imaging to highly sensitive EC-STM measurements, especially with the bias tip potential
kept constant versus sample potential.

The required level of tip insulation depends significantly on the specific type of EC-
STM experiment being conducted. While high-resolution imaging of atomic structures can
often be achieved with tips exhibiting leakage currents exceeding ±100 pA—by adjusting
the bias voltage to match the open circuit potential of the tip and increasing the tunneling
current setpoint—certain advanced measurements demand higher insulation quality.

For instance, experiments involving step or cyclic voltammetry (CV) potentiodynamic
measurements and quasi-spectroscopy are particularly sensitive to leakage currents. In
these techniques, the tip potential is varied over a range, and any leakage current can
interfere with the accuracy of the measurements by introducing additional faradaic currents
or disturbing the electrochemical equilibrium at the tip-sample interface. Therefore, tips
with leakage currents below ±50 pA, ±20 pA, or even ±10 pA are preferred for such
sensitive experiments.

By producing a significant proportion of tips with leakage currents below ±10 pA
and ±20 pA, the ATC provides researchers with the ability to select tips based on the
specific insulation quality required for their experiments, enhancing the versatility and
reliability of EC-STM studies. This improvement not only elevates the quality of imaging
and measurements but also reduces the frequency of tip replacement, thereby lowering
operational costs.

Therefore, the performance of the ATC-coated tips at such a high scan rate is par-
ticularly notable, as EC-STM measurements are typically conducted at lower scan rates
to minimize Faradaic current. Maintaining low leakage currents at 50 mV/s highlights
the high-quality insulation provided by the ATC. It also demonstrates the system’s ro-
bustness under more demanding conditions than are typically encountered in standard
EC-STM experiments. Furthermore, the ability to perform such fast checks significantly
enhances workflow efficiency, allowing researchers to quickly assess the insulation quality
of multiple tips.

3.3. In Situ and Operando EC-STM Performance

To further evaluate the performance of the ATC-coated tips, they were tested under
in situ and operando conditions on an HOPG surface in 0.1 M HClO4 electrolyte. These
experiments aimed to determine the stability and resolution of the tips in a dynamic
electrochemical environment.
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Figure 5 displays a typical CV curve recorded during these experiments, along with
large-scale and high-resolution STM images. The CV curve reflects the expected electro-
chemical behavior of the HOPG surface, with the electrode potential window limited by
the hydrogen evolution reaction (HER) on the cathodic side and perchlorate ion interca-
lation followed by the oxygen evolution reaction (OER) on the anodic side [57–59]. The
large-scale STM image (Figure 5b), captured at an electrode potential of 270 mV, reveals
terraces separated by monoatomic steps approximately 3.3 Å in height, consistent with
the known interlayer spacing of graphite [60]. At atomic resolution, Figure 5c shows the
hexagonal lattice structure of the HOPG surface, with a lattice spacing of approximately
2.46 Å. This spacing corresponds to the periodicity of every second carbon atom in the
hexagonal lattice, a result of the ABAB stacking of graphene layers in HOPG [61].
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Figure 5. (a) CV curve of a HOPG surface recorded in Ar-saturated 0.1 M HClO4 electrolyte. (b) Large-
scale topography STM image of the HOPG surface, recorded at an electrode potential of 270 mV; inset
shows the cross-section corresponding to the red line in (b). (c) High-resolution current STM image
of the HOPG surface under the same conditions, demonstrating the tip’s ability to maintain precise
imaging at the atomic scale. Tunneling conditions: (b) It = 1.6 nA, Ub = −235 mV; (c) It = 0.5 nA,
Ub = −104 mV.

The ATC-coated tips were further subjected to rigorous testing under potentiodynamic
conditions to evaluate their performance in maintaining atomic resolution during rapid
and continuous changes in electrode potential. Figure 6 illustrates two critical scenarios
where the electrode potential was dynamically varied while capturing STM images.

In Figure 6a, an STM image of the HOPG surface with atomic resolution is shown.
During the imaging process, the electrode potential was rapidly changed at a specific point,
as indicated by the corresponding time-aligned plots in Figure 6b,c. The y-axis of the STM
image in Figure 6a is directly correlated with the time axis in Figure 6b,c, providing a
clear visualization of how the STM image changes as the electrode potential is abruptly
altered. Despite the rapid potential change, the ATC-coated tip maintained its resolution,
successfully capturing the atomic structure of the HOPG surface without any significant
loss of imaging quality.

Figure 6d–f presents a second scenario where the electrode potential was continuously
varied during the STM imaging process. In this experiment, the potential was systematically
ramped up and down at a rate up to 100 mV/s, as shown in the corresponding plots. The y-
axis in the STM image (Figure 6d) again corresponds to the time axis in the electrochemical
data plots (Figure 6e,f). Even under these dynamically changing conditions, the ATC-
coated tip consistently resolved the atomic lattice of the HOPG surface, demonstrating its
robustness and stability under potentiodynamic conditions.
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Figure 6. Potentiodynamic STM imaging of the HOPG surface using an ATC-coated tip. (a) Atomic
resolution STM image captured during rapid changes in electrode potential. (b) Corresponding
current density vs. time plot, illustrating the current response to the dynamic potential changes.
(c) Electrode potential vs. time plot, showing the timing of the rapid potential changes during
the STM scan. (d) STM image of the HOPG surface obtained during continuous potentiodynamic
imaging, with the electrode potential modulated at a rate of up to 100 mV/s, maintaining atomic
resolution throughout. (e) Current density vs. time plot corresponding to the continuous potential
modulation. (f) Electrode potential vs. time plot, demonstrating the continuous modulation of the
electrode potential during imaging. Tunneling conditions: (a) It = 0.5 nA, Ub = −104 mV; (b) It = 1 nA,
Ub = 234 mV.

These results underscore the capability of the ATC-coated tips to operate reliably
under challenging electrochemical environments. The ability to maintain atomic resolution
during rapid and continuous changes in electrode potential is a crucial requirement for
in situ and operando EC-STM studies, where capturing real-time structural dynamics at
the atomic level is essential. The ATC’s consistent performance under these conditions
validates its effectiveness in producing high-quality, insulated tips that can withstand the
rigorous demands of advanced EC-STM research.

4. Conclusions

This study presents the development and application of an Automatic Tip Coater (ATC)
designed to address the challenges of achieving high-quality, reproducible tip coatings for
EC-STM. The ATC key features, including a precision tip movement system, a rotational
module, and a temperature-controlled heating block, enable the consistent and uniform
application of insulating materials, significantly reducing the variability often associated
with manual coating methods.

The ATC-coated tips demonstrated a superior insulation performance, as evidenced
by cyclic voltammetry (CV) tests conducted at a scan rate of 50 mV/s in a 0.1 M HClO4
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electrolyte. The results showed that over 75% of the tips maintained leakage currents below
50 pA, with a substantial subset (30%) achieving currents as low as ±10 pA, indicating
the high quality of the coatings. The ability to perform reliably at such a high scan rate
is particularly noteworthy as it allows for the rapid screening and evaluation of multiple
tips, an important factor in EC-STM research. In contrast, manually coated tips often
struggle to achieve such a consistent performance due to issues with excess material and
uneven coatings. This can result in significant variability in tip performance, leading to
inconsistencies in data quality and reliability. By standardizing the coating process and
reducing dependence on operator skills, the ATC ensures a consistent coating quality across
batches, making the process more accessible to new users while significantly reducing the
variability associated with manual methods.

Further validation under in situ and operando conditions using the HOPG surface con-
firmed the stability of the ATC-coated tips. The tips maintained an atomic resolution even
under dynamic electrochemical conditions, demonstrating their robustness and reliability
in capturing detailed surface phenomena.

In summary, the introduction of the ATC offers a reproducible solution for tip coating
that enhances the accuracy and reliability of the EC-STM studies. By automating a process
that traditionally relies heavily on operator skill, the ATC reduces experimental variability,
lowers research costs, and contributes to the standardization of EC-STM methodologies.
This innovation aids the exploration of surface phenomena at the atomic level, particularly
in fields such as electrocatalysis, energy storage, and materials science, where precise and
reliable measurements are paramount.

5. Patents

Patent application PL448634 has been submitted to the Polish Patent Office for the
ATC described in this paper.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/surfaces7040065/s1, Videos S1 and S2: Movies demonstrat-
ing the tip coating process. Figure S1 shows images of manual tip coater, and Figure S2 presents CV
curves and statistical analysis of insulation performance for 74 manually coated tips.
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