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Abstract: The rapid growth of point-of-care polysomnographic alternatives has necessitated stan-
dardized evaluation and validation frameworks. The current average across participant validation
methods may overestimate the agreement between wearable sleep tracker devices and polysomnog-
raphy (PSG) systems because of the high base rate of sleep during the night and the interindividual
difference across the sampling population. This study proposes an evaluation framework to assess
the aggregating differences of the sleep architecture features and the chronologically epoch-by-epoch
mismatch of the wearable sleep tracker devices and the PSG ground truth. An AASM-based sleep
stage categorizing method was proposed to standardize the sleep stages scored by different types of
wearable trackers. Sleep features and sleep stage architecture were extracted from the PSG and the
wearable device’s hypnograms. Therefrom, a localized quantifier index was developed to charac-
terize the local mismatch of sleep scoring. We evaluated different commonly used wearable sleep
tracking devices with the data collected from 22 different subjects over 30 nights of 8-h sleeping. The
proposed localization quantifiers can characterize the chronologically localized mismatches over the
sleeping time. The outperformance of the proposed method over existing evaluation methods was
reported. The proposed evaluation method can be utilized for the improvement of the sensor design
and scoring algorithm.

Keywords: wearable device; polysomnography; sleep monitoring; sleep stage scoring; sleep stage as-
sessment

1. Introduction

The emerging trend in transforming point-of-care sleep tracking devices to polysomno-
graphic alternatives has necessitated methods to evaluate and validate sleep monitoring
functions. Wearable devices with actigraphy sensors have been used widely for sleep
monitoring, although their accuracy is still controversial [1,2]. It has been shown that
even though actigraphy is a more approachable and accepted alternative to PSG for non-
laboratory settings [3–8], sleep staging (i.e., annotating of N1, N2, N3, or REM stage)
functions of actigraphy are still questionable [9]. In addition to actigraphy, wearable sleep
tracking devices have recently been developed with additional sensors to record different
physiological parameters during the sleeping time [10]. Concurrently, their performances
have improved considerably [11]. However, when considering the detailed distribution of
sleep stages consisting of all wake, light sleep, deep sleep, and REM stages, as well as the
transitions among these stages during sleep, the current wearable sleep trackers do not
show comparable results with those from the PSG gold standard [12]. As the point-of-care
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technologies in sleep monitoring offer more details on sleep staging beyond just sleeping
and waking [13], such detailed information can be used for the diagnosis of many other
sleep-related disorders [14–17]. An assessment method to compare the detailed distribution
of sleep stages and quantify the transition among sleep stages between wearable sleep
tracking devices and PSG is critical.

Although different validation tests have been proposed, very few (if any) works
have investigated and characterized the localized mismatch of sleep staging in wearable
sleep tracking devices. Previous studies to validate sleep tracking devices can be divided
into three groups. The first group of methods utilized Tryon’s approach to compare the
sensitivity, specificity, and overall accuracy of the correct sleep staging [18] generated by
the wearable devices and PSG system. The sensitivity is the proportion of PSG-registered
epochs, also identified as sleep stages by the sleep tracker devices, whereas specificity
for sleep is the proportion of wake epochs correctly identified by the sleep tracker de-
vice. The second group of methods evaluates the differences in the overall sleep stages of
multiple sleep tracking devices using statistical tests such as paired sample t-tests [19,20],
the two-way repeated measure analyses of variance [18,20], and Bland–Altman plotting’s
test [21]. The third group of methods evaluates the overall epoch-by-epoch correlations
using the confusion matrix of Pearson correlations [18,19,22], Cohen’s kappa, and Fleiss’
kappa [23]. Those comparative methods provide only overall sleep staging comparisons
without quantifying the transition mismatch among sleep stages and the monotone cor-
relations among sleep episodes. Such an estimation fails to take into account the chance
agreement because of the high base rate of sleep during the night and the interindividual
difference across the sampling population. Furthermore, the previous comparisons were
performed using different sleep stage classifications, which were usually defined subjec-
tively by the sleep staging algorithms of the sleep tracker devices. Such an invariance of
the sleep staging—-relative to the American Academy of Sleep Medicine (AASM) sleep
classification guideline [24]—-among different sleep tracking devices hinders the accuracy
of the interdevice validation study. Very few previous validation methods investigated
temporal-ordered epoch-to-epoch disagreements between wearable sleep tracker devices
and the PSG ground truth with the adjustment of AASM-based sleep classification.

This paper proposes a systematic framework to quantitively assess the performance of
wearable sleep tracking devices relative to the PSG gold standard. The proposed framework
not only characterizes the difference in the sleep stage distribution, but also quantifies the
chronologically localized mismatches over the sleeping time. Three major components of
the framework consist of AASM-based sleep stage classification, sleep staging distribution
analysis, and localized comparison analysis. The proposed research extends our earlier
work on evaluating commercial sleep trackers compared to PSG [11,25,26]. The proposed
method was illustrated and validated on a set of different commonly used wearable sleep
tracking devices. The rest of the paper is organized as follows: the Methodology Section
describes the methodology of the general sleep feature evaluation, sleep stage evaluation,
and localized quantifier estimation of the proposed evaluation framework. The validation
of the proposed framework to evaluate four different wearable devices with sleep tracking
functions is described in the Results Section. A discussion of the results and conclusions is
presented in the last section.

2. Methodology

The proposed evaluation framework consists of four steps: (1) data preparation,
(2) wake-sleep feature evaluation, (3) sleep stage evaluation, and (4) localized mismatch
quantification. The details of each step are described in Figure 1. In this figure, each vertical
block describes the sequential steps, the corresponding tasks performed, and the resulting
metrics for the evaluation of the PSG and sleep tracker device sleep staging mismatch. In the
first step, the hypnograms from the wearable devices and PSG system were collected and
synchronized. The sleep staging annotated by the sleep tracker device was synchronized
with that annotated by PSG using the AASM sleep guideline. Therefrom, the general
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sleep features and sleep stage distribution were extracted and compared between PSG and
wearable device hypnograms in the second and third step. The wake-sleep analysis, sleep
staging distribution comparisons, and localized analysis were performed in sequence on
the extracted sleep features and index to evaluate the sleep scoring performance of the
wearable devices. Finally, the localized quantifier index was extracted, and the localized
mismatch measured by the percentage of the correct transition was evaluated in step 4.
The details of each step are described below.
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2.1. Data Preparation

Data collected from the wearable devices and PSG system needs to be preprocessed for
further comparison. In the initial step, the time synchronization of the signals from PSG and
wearable devices was performed using the referenced clock time of the hosted computer.
Next, the segmentation of the synchronized data into a 30-s epoch was implemented. This
procedure is critical for the epoch-by-epoch (EBE) analysis and comparison. The sleep
hypnogram–a graph that depicts sequential sleep stages in 30-s epoch over the sleeping
time–from the PSG system was annotated by the sleep physician. The sleep hypnograms
annotated by the wearable device’s algorithm were also segmented into the 30-s epoch. As
multiple raters might be involved in the PSG scoring process, the Fleiss’ kappa statistic
κ —the measurement to characterize the agreement at epoch level among the raters—is
considered for testing the interrater reliability [27]. The Fleiss’ kappa is estimated as
κ =

(
P− Pe

)
/
(
1− Pe

)
, where P is the relative observed agreement among the raters and

Pe is the probability of a chance agreement. If the raters completely agree upon the PSG
hypnogram, κ = 1, otherwise κ < 1. The threshold of Fleiss’ kappa κ < 0.8 is used to
determine if the hypnogram should be concurrently revised and agreed upon among the
raters before proceeding to the next step [23].

Sleep stage classifications among the wearable devices and the PSG are matched
based on the American Academy of Sleep Medicine’s (AASM) guideline. Although the
sleep stages, comprising of Wake, N1, N2, N3, and REM, were explicitly defined by
AASM [24], not all commercial wearable devices interpret this sleep staging regulation
consistently. The scoring of each PSG epoch to Wake, N1, N2, N3, and REM requires
visual identification by professionally trained personnel. The expert interprets specific
patterns (e.g., arousals, K-complexes, spindles) and tonic (e.g., percentage of slow-wave
sleep within an epoch) features from the multiple EEG and physiological channels of
PSG. The limitations of sensors and expertise interpretation have simplified the annotation
of wearable sleep trackers. In particular, the wearable sleep trackers label sleep stages
as Wake–Light–Deep or Wake–REM–Light–Deep. We annotated “Device type I” for the
device group defining sleep stages into Wake–REM–Light–Deep and “Device type II” for
the device group defining sleep stages into Wake–Light–Deep. In order to provide a fair
comparison among wearable devices relative to PSG, light sleep is defined as N1 and N2,
while deep sleep is N3 (in case of Device type I) or N3 and REM (in case of Device type II)
as shown in Table 1.
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Table 1. Methods of categorizing sleep staging scored by wearable devices and the corresponding
sleep stages according to AASM guidelines.

Sleep Stages

Wearable Devices
PSG

Wake N1 N2 N3 REM

Type I Wake Light Deep REM

Type II Wake Light Deep

2.2. General Features and Sleep Stage Distribution Evaluation

Two groups of features, namely the wake-sleep feature and sleep stage distribution,
were extracted from wearable sleep trackers and PSG and were pairwise compared. The
wake-sleep features comprise three subgroups—sleep quality, sleep disturbance, and wake-
sleep transition. Sleep quality features characterize the influence of the mental, social,
and physical impacts of sleep on human health [28]. Sleep disturbance and wake-sleep
transition, on the other hand, quantify the temporal shifting between sleep and wake
stages and are used mainly for the diagnosis of common sleep disorders such as insomnia,
narcolepsy, and depression [29]. These features were estimated from the timing diagram
(as shown in Figure 2) defining the onset and the offset of the significant events and the
elapsed time from the start to the end of the data recording. The sleep stage distribution
features characterize the duration and percentage of light, deep, and REM sleep over the
total sleeping time. The alterations of these features are frequently used to screen for
pathologically architectural changes in several sleep disorders such as insomnias, dyssom-
nias, parasomnias, sleep-related breathing, and circadian rhythm sleep disorders. The
description and derivation of these features are summarized in Table 2. The comparative
statistics of these features separate the aggregate differences of the wake-sleep patterns and
sleep architectures annotated by wearable sleep trackers and the PSG system.
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and durations.

2.3. Localized Quantifier Index

A localized mismatch index (LMI) was proposed to characterize the epoch-to-epoch
difference between the sleep stages annotated from PSG and those from wearable devices
over the sleeping time. The LMI was estimated on the basis of comparing the annotated
hypnograms derived from the PSG systems and the wearable devices. The hypnographic
sequences of the wearable devices were denoted as YW =

{
YW1 , YW2 , YW3 . . . YWn

}
, and

of the PSG system as YP =
{

YP1 , YP2 , YP3 . . . YPn

}
, where each sequence element was the

designated values of the sleep stages at the ith epoch and n was the number of epochs
over the night. At first, a set of the epoch index at which the sleep stage transition in PSG
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and wearable device hypnograms were different was estimated. This set was calculated
as A =

{
i
∣∣∆YPi = YPi+1 −YPi 6= 0∨ ∆YWi = YWi+1 −YWi 6= 0

}
, where YPi and YWi were

the hypnogram value of the PSG and the wearable device, respectively, and ∆YPi and
∆YWi were the PSG and wearable hypnogram difference at epoch i, respectively. The to
characterize the correlations in the sleep stage transitions between the wearable device
and PSG hypnograms at epoch ith was estimated as LMIi = ∆ YWi × ∆YPi . Finally the
percentage of correct PSG-wearable sleep stage transitions was computed based on the
LMIi with the range of i from 1 to n.

Table 2. Derivation of wake-sleep features and sleep stage distribution from the timing features defined in Figure 2.

Category Features Description Formula Unit

Total sleep time (TST)
Time spent on sleeping

during sleep period
time (SPT)

TST = TLST + TDST + TRST min

Wake-sleep features

Sleep quality

Sleep period
time (SPT)

Elapsed time from sleep
onset (SO) to last epoch

of sleep (LSP)
SPT = LSP-SO min

Sleep efficiency (SE)
Ratio of total sleep time

(TST) to sleep period
time (SPT)

SE = TST/SPT %

Sleep disturbance Wakefulness after
sleep onset (WASO)

Awake time (AWT)
during sleep onset (SO)

to lights on (LO) [30]
WASO = SPT-TST+WAS min

Wake-sleep transition Sleep onset (SO)

The point of time when
the subject undergoes a

transition from
wakefulness into sleep.

1st N1/N2/N3/REM hh:mm:ss

Sleep stage distribution

Percentage of light
sleep (PLS)

Ratio of total light sleep
time (TLST) over total

sleep time (TST)
PLS = TLST/TST %

Percentage of deep
sleep (PDS)

Ratio of total deep sleep
time (TDST) over total

sleep time (TST)
PDS = TDST/TST %

Percentage of REM
sleep (PRS)

Ratio of total REM sleep
time (TRST) over total

sleep time (TST)
PRS = TRST/TST %

Each component of the hypnographic sequence was assigned as YWi = 1 if the epoch
was annotated as Wake, YWi = 2 as Light, and YWi = 4 as Deep. Hence, all possible combina-
tions of sleep stage transition in the hypnographic sequences were Wake to Light (W–L),
Wake to Deep (W–D), Light to Deep (L–D), Light to Wake (L–W), Deep to Light (D–L)
and Deep to Wake (D–W), and the resulted ∆YPi and ∆YWi of the sleep stage transition
were 1, 3, 2, −1, −2, and −3, respectively. The possible localized mismatch index values
of LMIi estimated from the ∆YPi and ∆YWi are presented in Table 3. It is noted that, as a
consequence of the indices defined above, the table of LMIi values is symmetrical about
the diagonal, as indicated by the yellow highlighted portions. The values in the diagonal
line (i.e., 1, 4, and 9) indicate the full correlation between wearable devices and PSG while
the off-diagonal values indicate the uncorrelated relationship. Accordingly, LMIi = 1, 4,
and 9 denotes the correct detection of the wearable device for the Wake and Light, Light
and Deep, and Wake and Deep transitions, respectively. If only the wake and sleep (ie.,
Light and Deep) transitions are considered, LMIi = 1 and 9 denotes the correct Wake tran-
sition, respectively, while LMIi = 4 denotes the correct Light/Deep transition. The other
off-diagonal values including −9, −4, −6, −2, −3, −1, 2, 3, and 6 denote the other possible
wrong detections of sleep stage transition. The algorithm was applied on each sleep tracker
device if multiple devices were evaluated simultaneously. The implementation algorithm
is presented in Table 4 and a detailed description of LMI for the evaluation of the type I
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sleep tracker with more sleep stages including Wake, Light, Deep, and REM is included in
Table A1 in the Appendix A.

Table 3. The localized mismatch index values between wearable Device type II and PSG with “W” annotated for Wake, “L”
for Light, “D” for Deep, and the operation ‘-‘ for the transition between sleep stage (i.e., W–L is Wake to Light transition).

LMI Value Device Type II W–L W–D L–D L–W D–L D–W

PSG ∆YP
∆YW 1 3 2 −1 −2 −3

W-L 1 1 3 2 −1 −2 −3
W-D 3 3 9 6 −3 −6 −9
L-D 2 2 6 4 −2 −4 −6
L-W −1 −1 −3 −2 1 2 3
D-L −2 −2 −6 −4 2 4 6
D-W −3 −3 −9 −6 3 6 9

Table 4. Implementation of the proposed evaluation.

-Data preparation
+Synchronize and align the data using clock time of the host computer
+Specify the AASM sleep scoring category of the wearable device
+Establish agreement among sleep raters on the PSG hypgram

-General features and sleep stage distribution evaluation
+Extract general sleep features
+Extract sleep state distribution features

-Localized quantifier estimation
+Construct the hypnographic states of wearable device YW =

{
YW1 , YW2 , YW3 . . . YWn

}
+Construct the hypnographic states of PSG YP =

{
YP1 , YP2 , YP3 . . . YPn

}
+Compute sleep state difference ∆YP and ∆YW
+Detect epochs with sleep stage transition as A
+Estimate sleep stage correlation indexes LMIi
+Determine the correct and incorrect sleep transition epoch based on the LMIi

-Overall evaluation
+Estimate ρ and η2 for wake-sleep features and sleep stage distribution comparison
+Estimate the percentage of the correct sleep stage transition
+Estimate sensitivity, specificity, and accuracy from percentage of correct transition of each sleep stage.

2.4. Statistical Test

The paired sample t-test, Wilcoxon signed-rank test, and Cohen’s d effect were used
for the comparative tests. As the measurements from the PSG and wearable devices
were taken on the same subjects at the same time, paired sample t-tests were performed to
compare normally distributed features, while the Wilcoxon signed-rank test was performed
for non-normally distributed features. The paired sample t-tests and Wilcoxon signed-rank
test were utilized to test the null hypothesis that the sleep features from the PSG system
are the same as those from the sleep tracker device. In addition, Cohen’s d effect size value
annotated as η2 was used to measure the level of difference between the mean values of
the sleep features detected from PSG and wearable devices. The larger the effect size, the
more significant difference between the PSG and wearable devices. The significant level of
ρ of 0.05 was used for all of the statistical tests. The confusion matrix of the sensitivity–the
proportion of PSG-registered epochs also identified as the same sleep stages by the sleep
tracker devices–, and specificity–the proportion of wake epochs correctly identified by the
sleep tracker device–, were also considered.

3. Results

To highlight the salient features of the proposed framework, we evaluated four dif-
ferent sleep tracker devices’ performance with the PSG ground truth and compared the
results with the other evaluation methods. The experimental setup and data collection
for the evaluations are presented. Next, we explain the results of the aggregating sleep
features and the localized mismatch quantifier of each sleep tracker, and the comparison
among the four sleep trackers. The aggregating features of wake-sleep patterns and sleep
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architectures are demonstrated using the data obtained from the four sleep tracker devices.
The chronologically epoch-to-epoch mismatch of the wearable sleep tracker devices and
the PSG ground truth is described. Finally, the comparison of the proposed method and
the existing evaluation methods is reported.

3.1. Experimental Setup and Data Collection

The proposed framework was demonstrated to validate the performance of four
different wearable sleep tracker devices and the PSG system in a research sleep laboratory
setting. The data collection was performed at the Sleep Lab of International University, Ho
Chi Minh City, Vietnam National University (IU-VNU HCMC). The data was collected on
22 (14 males, 8 females) subjects in the age range of 18 to 36. The study IRB was approved
by the research ethics committee of the IU-VNU HCMC. The polysomnographic data were
collected using an Alice5 Philips™ PSG system. The setup of the polysomnography system
and data acquisition is shown in Figure 3. In our setup, all of the measurements were
collected on the subject’s left hand with a negligible difference in the rotating angle on
the forearm’s volar (back) side. Furthermore, we set up the wearable device in the same
oriented directions with the random placement order. With such a setup, we assumed that
the sensor placements were comparable among the wearable devices. The PSG system
consisted of 11 sensor types, including electroencephalogram (EEG), electrooculography
(EOG), electrocardiography (ECG), leg electromyogram (EMG), chin EMG, thermal flow,
snoring, chest, and abdomen respiration sensors, a positioning sensor, and a pulse oximeter.
During the experiment, participants were also required to simultaneously wear the four
types of wearable devices (described below) on their wrist, along with the PSG system.
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Among the 72 overnight datasets collected, 42 were excluded because of the incom-
pleteness of the collected signals (6 came from PSG problems, 32 from wearable devices,
4 from both). The exclusion criteria were: (1) missing overnight hypnogram collected by the
wearable device because of the intermittent battery issue or unexpected bluetooth paring
problem; (2) missing PSG signals for the sleep physician to determine the sleep stage caused
by the movement of the subject during the experiment, which leads to the displacement or
dislocation of PSG sensors, especially the EEG signals. To have the devices fairly compared,
all devices were tested to ensure the proper functioning before the data collection and two
physicians were available to monitor and readjust the dislocated sensors over the night.
A set of 30 overnight datasets with approximately 8 sleeping hours per night were used
for data analysis. The PSG data were interpreted and scored by a sleep physician using
AASM scoring criteria [24]. Finally, the data were de-identified and stored anonymously
for further analysis. To minimize the intrarater errors, the procedures to set up the device
and to collect the data were standardized and performed by the trained technicians.

The commercial wearable sleep tracking devices with sleep monitoring functions were
named as devices A, B, C, and D and compared anonymously. In detail, all four devices
used accelerometer sensors to continuously record 3-axis translational wrist motion during
the night. In addition to the accelerometers, Device B was equipped with an optical sensor
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to measure the heart rate, and Device C contained a bio-impedance sensor to measure heart
rate, respiratory rate, body temperature, and galvanic skin response. All devices streamed
data automatically onto an online server, from which the algorithms were used to classify
sleep data into different sleep stages. Here, the sleep staging algorithms were developed
by the wearable device companies and the device users were not permitted to intervene in
the annotated staging. Devices A, B, and D are categorized as type II, whereas Device C is
a type I device.

3.2. Wake-Sleep Analysis

The evaluation of wake-sleep features from four wearable sleep trackers benchmarking
with the PSG system was investigated. Here, as the measurements from PSG and wearable
devices were concurrently taken on the same subject, the paired sample t-tests were
performed to compare the normally distributed features of SPT and SO, and Wilcoxon
signed-rank tests were performed for non-normally distributed features of WASO and SE.
The null hypothesis is that the mean/median of sleep features from the wearable devices
and those from the PSG are equal. The differences were significant based on the value
of ρ and the power of the test η2. On the basis of these criteria, Table 5 demonstrates the
comparative results of each device with the PSG system over four different wake-sleep
features column-wise, and among four different devices row-wise. As noted, Device C
was the most comparable to PSG. Specifically, there was no significant difference between
the SE and WASO features of Device C and those of the PSG. Even though significant
differences were found for the SPT and SO features of Device C relative to the PSG, it is
important to note that those tests had the lowest η2 values relative to the other comparative
pairs. Devices D and A were ranked after Device C. Of all the devices, Device B showed the
highest discrepancies for both SE and WASO features benchmarked to the PSG system, in
terms of the number and strength of the significant differences obtained. The SPT and SO
features of Device B also had significant statistical differences relative to PSG, but evidently
not as strong.

Table 5. Summary of ρ and η2 values for paired sample t-tests performed on wake-sleep features.

Features PSG and Device A PSG and Device B PSG and Device C PSG and Device D

SPT (*)ρ = 0.005
η2 = 0.572

(*)ρ = 0.001
η2 = 0.717

(*)ρ = 0.027
η2 = 0.297

(*)ρ < 0.001
η2 = 0.782

SE (*)ρ = <0.001
η2 = 4.613

(*)ρ <0.001
η2 = 5.566

(*)ρ = 0.039
η2 = 2.301

(*)ρ = 0.001
η2 = 3.365

WASO (*)ρ <0.001
η2 = −19.508

(*)ρ <0.001
η2 = −24.017

(*)ρ = 0.032
η2 = −9.492

(*)ρ = 0.002
η2 = −14.500

SO (*)ρ <0.001
η2 = 0.083

(*)ρ <0.001
η2 = 0.083

(*)ρ = 0.042
η2 = 0.034

(*)ρ = 0.001
η2 = 0.079

“(*)” indicates significant difference between the device and PSG system, for a significance level ρ = 0.05. The power of the test η2 indicates
the separation between sleep features from the wearable devices and those from the PSG; the larger the η2, the more different the device
and the PSG.

3.3. Sleep Stage Distribution Evaluation

The evaluation of the sleep stage distribution demonstrated the agreement of sleep
architectures from the four wearable sleep trackers and the PSG ground truth were investi-
gated. Table 6 summarizes the comparative results of sleep distribution features from the
four different wearable devices and the PSG system. Devices A, B, and D were categorized
as type II sleep tracker devices with the sleep stages of Wake–Light–Deep, while Device C
was categorized as type I with Wake–Light–REM–Deep stages. Hence, in addition to the
PLS and PDS features, the sleep distribution features of type I devices also include the PRS
feature. These differences were significant based on the value of ρ and the power of the
test η2. From the testing results, the PRS feature in Device C, and the PLS and PDS features
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in Device A yielded an insignificant difference between the PSG and wearable devices.
Although Device C detected the REM stage well, it was not able to provide good Light and
Deep sleep detection, as shown in the testing results of the PLS and PDS features.

Table 6. Statistical comparison of Light, Deep, and REM stages among four sleep tracker devices.

Device A
(Accelerometer Sensor)

and PSG

Device B
(Accelerometer Sensor,

Optical Sensor) and PSG

Device C
(Accelerometer sensor,

Bio-Impedance Sensor) and PSG

Device D
(Accelerometer Sensor)

and PSG

PLS
(**) ρ = 0.254

η2 = 0.250
(*) ρ < 0.001
η2 = 6.638

(*) ρ = 0.001
η2 = 0.898 (*) ρ = 0.002

η2 = 0.853
PDS (*) ρ < 0.001

η2 = 1.373

PRS (**) ρ = 0.820;
η2 = 0.057

“(**)” means no significant difference between the wearable device and PSG system. “(*)” indicates significant difference between the
device and PSG system, for significance level ρ = 0.05. The power of the test η2 indicates the separation between sleep features from the
wearable devices and those from PSG; the larger the η2, the more different the device and the PSG.

3.4. Localized Mismatch Analysis

The localized mismatch of the sleep staging annotated by the weareable sleep tracker
devices with PSG benchmark was reported. Figure 4 demonstrates the hypnograms from
the PSG and wearable devices and the corresponding estimated LMI from a demonstrative
dataset. The lower graph describes the hypnograms of PSG system and wearable device
from 10:22 p.m. to 6:00 a.m., a zoomed-in portion of the hypnograms from 3:13 to 4:21 a.m.
is highlighted in the middle graph. The LMI values were grouped into four groups. The
epochs with different possible transitions include correct wake (LMI = 1, 9), correct sleep
(LMI = 4), incorrect wake (LMI = 2, 6,−1,−2,−3,−6,−9), and incorrect sleep (LMI = 3, −4),
and are presented in the upper subgraph. The LMI vectore was estimated using the
presented algorithm. Each element i of the LMI vector quantifies a sleep stage transition
and the value LMIi describes the sleep stage difference of PSG and the sleep tracker device’s
hypnograms. It should be noted that the LMI vector and the variation of the LMIi values
quantify repspectively the chronological mismatch and the distribution of them over the
data collection of the PSG and sleep tracker devices.

Clocks & Sleep 2021, 3, FOR PEER REVIEW  10 
 

 

quantify repspectively the chronological mismatch and the distribution of them over the 
data collection of the PSG and sleep tracker devices. 

 
Figure 4. Representative PSG and Device A’s hynograms of a subject with the mismatch from 3:13 to 4:21 a.m. 

The percentage of correct and incorrect transition rates within the collected datasets 
and compared wearable devices were reported. Figure 5 presents the percentage of the 
correct and incorrect stage transitions of 30 datasets collected by Device A. It is noted that 
the overall incorrect rate (striped portions) outweigh the correct rate (solid portion). This 
confirmed the findings that the wearable devices were poor in capturing sleep stage tran-
sition, especially in the wake stage transition shown as the solid green portion in the fig-
ure. A summary of the percentage of correct and incorrect stage transitions for the four 
wearable trackers is reported in Table 7. This table can be used to compare the sleep stage 
scoring performance among the different wearable devices benchmarking to the PSG sys-
tem. 

 
Figure 5. Reported results for the correct and incorrect sleep and wake stage transition in 30 da-
tasets collected by Device A. 

Figure 4. Representative PSG and Device A’s hynograms of a subject with the mismatch from 3:13 to 4:21 a.m.



Clocks&Sleep 2021, 3 283

The percentage of correct and incorrect transition rates within the collected datasets
and compared wearable devices were reported. Figure 5 presents the percentage of the
correct and incorrect stage transitions of 30 datasets collected by Device A. It is noted
that the overall incorrect rate (striped portions) outweigh the correct rate (solid portion).
This confirmed the findings that the wearable devices were poor in capturing sleep stage
transition, especially in the wake stage transition shown as the solid green portion in the
figure. A summary of the percentage of correct and incorrect stage transitions for the
four wearable trackers is reported in Table 7. This table can be used to compare the sleep
stage scoring performance among the different wearable devices benchmarking to the
PSG system.
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Table 7. Correct and incorrect sleep stage transition rates among the four wearable devices.

Correct Transition Rate Incorrect Transition Rate

Device A 31.83% 68.17%

Device B 24.35% 75.65%

Device C 24.66% 75.34%

Device D 28.86% 71.14%

A detailed sleep stage annotated by the wearable devices benchmarked to the PSG in
all sleep stages is reported in Table 8. The sensitivity and specificity of each sleep stage were
used to quantify the accuracy of the epoch-to-epoch correlation of the sleep tracker device
and the PSG’s hypnograms. It should be noted that the wearable devices were capable
of detecting the awake stage with very high specificity; however, they also overestimated
the awake stage, as shown by low sensitivity. The imbalance between sensitivity and
specificity is also prevalent in the Light, Deep, and REM sleep stages. Among the devices,
Device B was distinctive because of the unbalanced sensitivity and specificity of detecting
the Deep sleep stage (over 98% for sensitivity and under 10% for specificity), which is
attributed to the tendency to annotate all sleep times as the Deep sleep stage. On the
contrary, the other devices were more likely to classify sleep as the Light sleep stage. The
overall accuracy of all devices was low, which quantitatively supports the premise that
there is likely discrepancy between wearable devices and the PSG in scoring sleep stages.
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Table 8. Confusion matrix of epoch-by-epoch comparison among the four wearable devices and the PSG’s hypnograms for
the four sleep stages of Wake, Light, Deep, and REM.

Wearable Devices
Wake Light Deep REM

Acc.
Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec

Device A 9.24 99.17 55.94 43.75 50.91 64.36 65.10

Device B 3.39 99.92 2.87 92.97 98.70 8.71 61.75

Device D 27.88 98.57 41.40 62.10 65.76 51.63 66.38

Device C 40.17 95.54 73.30 47.81 28.07 92.93 25.01 84.51 40.17

3.5. Comparison with Other Methods

In this section, we compare the performance of the proposed method with three other
methods, including Pearson correlation [19,22], two-way repeated ANOVA [19,22], and
Tryon’s approach [18,22]. To make it comparable, the other methods were also used to
assess the four wearable sleep trackers with the PSG on the basis of the same dataset as
described in Section 3.1. The ranking of the device accuracy benchmarking to the PSG
system is reported in Table 9. Accordingly, the results obtained from evaluating the general
sleep features among different evaluation methods were quite similar. The three methods
agreed that Device C gave the closest outcome to the PSG system, and Devices A and
B yielded the least accuracy. For the SPT feature, however, while our method showed
that Device D was the least comparable to PSG, the result from the Pearson correlation
test ranked Device D as the second most accurate device. For the evaluation of the sleep
distribution features, we compared our method with the Tryon’s approach. Table 10 shows
two epoch-by-epoch comparisons, one using a confusion matrix for the multiple classes
used in this study, and the other as a confusion matrix for the two classes of wake and sleep
presented in Tryon’s approach [18,22]. The proposed method produced the same results
in the wake-sleep sensitivity and specificity. However, instead of considering the REM,
Light, and Deep stages as sleep, our proposed method was more advanced in providing
the evaluating and ranking according to the discrepancy of each device in a detemined
evaluated sleep stage.

Table 9. Comparison among different evaluation methods and the proposed method on evaluating
the general sleep features with the ranking according to the accuracy with PSG.

General Sleep
Feature Evaluation

Proposed Method
(ρ Statistic)

Pearson Correlation
(r Statistic) [19,22]

Pairwise Comparison
(Two-Way ANOVA)

[19,22]

SPT Device C, A, B and D Device C, D, A and B Device C, A, D and B

SE Device C, D, A and B Device C, D, A and B Device C, D, A and B

WASO Device C, D, A and B Device C, D, A and B Device C, D, A and B

SO Device C, D, A and B Device C, D, A and B Device C, D, B and A

Table 10. Comparison between the proposed method and Tryon’s approach on evaluating sleep
distribution feature with the ranking according to the accuracy with PSG.

Sleep Distribution Evaluation Proposed Methods Tryon’s Approach [18,22]

Light Device A, D, C and B
Device C, D, A and BDeep Device A, D, C and B

REM Not significantly different
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4. Discussion and Conclusions

Our results from the proposed framework confirmed the findings from previous
studies that, compared to the PSG ground truth, wearable sleep tracker devices effectively
detect sleep onset and sleep period time, but are deficient in estimating N1, N2, N3, and
REM stages [31]. The evaluation results highlighted the accuracy of actigraphy devices
in detecting the wake-sleep stage. Although they perform well in detecting wake-sleep
patterns, actigraphy wearable devices are not unified in defining the sleep stage as shown
in results in the sleep staging distribution comparision. In particular, Devices A, C, and D
seemed to define N1 and N2 as Light sleep, and N3 and REM as Deep sleep; meanwhile,
Device B gave the best result when considering N1 as Light sleep and N2, N3, and REM
as Deep sleep, which is still not quite suitable for the diagnosis of a sleep disorder in a
clinical setting.

Moreover, on the basis of our evaluation, we found that the wearable devices supple-
mented by cardiorespiratory sensors rather than actigraphy data yield better sleep staging
results. In particular, the results showed that among the four wearable devices, Device C
with its bio-impedance sensor was the best one for accurately detecting both sleep-wake
patterns and REM sleep. It is inferred that an appropriate way to define sleep stages is
by especially considering the integrated bio-signal data (i.e., heart rate, respiration rate,
skin impedance, body temperature) in scoring sleep, which can enhance sleep scoring
accuracy in wearable sleep tracker devices [32,33]. The localization quantifiers can be used
to evaluate the effectiveness of the bio-signal sensors (i.e., heart rate, respiration, skin
impedance, body temperature sensors) integrated within wearable devices in scoring sleep
stages. Hence, the use of our proposed method is recommended for wearable devices
with the inclusion of new bio-sensors that enable the detection of sleep stages defined by
the AASM guildelines. One of the limitations of the proposed method is the constrain of
the concurrent sleep staging and agreement among sleep raters on the PSG hypnogram
if the Fleiss’ Kappa’s exceeds the threshold. Future work should consider multiple sleep
staging from independent sleep raters and the correspoinding sensitivity of the local sleep
mismatch index.

This paper proposed a method to assess and evaluate the sleep stage scoring in
wearable sleep trackers with PSG ground truth. The framework’s three major steps consist
of an AASM-based sleep stage classification, aggregating sleep feature evaluation, and
localized mismatch evaluation. Overall, our study provides a comprehensive assessment
tool for the evaluation and validation of sleep tracking devices benchmarking with the
PSG system. Significantly, wake-sleep analysis results using a paired sample t-test are
in line with previous results from the ANOVA and the Pearson correlation. Besides, our
proposed quantifier is more advanced than the previous method, able to characterize
the local mismatch between the hypnogram of PSG and sleep tracker devices. Besides
the same results for wake-sleep sensitivity and specificity, it can evaluate the chrological
difference over other sleep stages, such as REM, Light, and Deep sleep. Furthermore, the
proposed method outweighed the other methods in tracking the sleep stage transition of
REM, Light, and Deep sleep. By simultenously comparing results among different devices,
the proposed method can be used to evaluate the effectiveness of the add-on bio-signal
sensors (i.e., heart rate, respiration, skin impedance, body temperature sensors) integrated
within the wearable devices in scoring sleep stages. The proposed method provides a
more detailed and systematic procedure to assess and validate the emerging point-of-care
polysomnographic alternatives.
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Appendix A

Table A1. Detailed LMI table for the evaluation of the type I sleep tracker. The localized mismatch index values between
wearable device type I and PSG with “W” annotated for Wake, “R” for REM, “L” for Light, “D” for Deep and the operation
‘-‘for the transition between sleep stages (i.e., W-L, Wake to Light transition).

LMI
Value Device Type I W–R W–L W–D R–L R–D L–D R–W L–W D–W L–R D–R D–L

PSG ∆YP
∆YW 1 3 8 2 7 5 −1 −3 −8 −2 −7 −5

W-R 1 1 3 8 2 7 5 −1 −3 −8 −2 −7 −5
W-L 3 3 9 24 6 21 15 −3 −9 −24 −6 −21 −15
W-D 8 8 24 64 16 56 40 −8 −24 −64 −16 −56 −40
R-L 2 2 6 16 4 14 10 −2 −6 −16 −4 −14 −10
R-D 7 7 21 56 14 49 35 −7 −21 −56 −14 −49 −35
L-D 5 5 15 40 10 35 25 −5 −15 −40 −10 −35 −25
R-W −1 −1 −3 −8 −2 −7 −5 1 3 8 2 7 5
L-W −3 −3 −9 −24 −6 −21 −15 3 9 24 6 21 15
D-W −8 −8 −24 −64 −16 −56 −40 8 24 64 16 56 40
L-R −2 −2 −6 −16 −4 −14 −10 2 6 16 4 14 10
D-R −7 −7 −21 −56 −14 −49 −35 7 21 56 14 49 35
D-L −5 −5 −15 −40 −10 −35 −25 5 15 40 10 35 25
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