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Abstract: The influence of loading rate on the environment-assisted cracking (EAC) behavior of
AA7075-T651 immersed in 0.6 and 1.0 M NaCl solution was assessed at applied potentials ranging
from −800 to −1200 mVSCE via a slow-rising stress intensity (K) testing methodology. Measured
crack growth rates under rising K loading are compared to those obtained using a fixed K protocol,
which revealed that rising K-based testing consistently yields increased crack growth rates relative to
static K approaches across all tested conditions. However, relative to other alloy systems, EAC in
AA7075-T651 is only modestly loading rate-dependent, as demonstrated by testing conducted at fixed
dK/dt ranging from 0.25 to 2.0 MPa

√
m/h. The implications of the observed results are considered

in the context of current EAC testing specifications, with specific focus on the conservatism and
efficiency of rising K-based approaches.
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1. Introduction

It is well-established that 7xxx-series Al alloys are susceptible to environment-assisted
cracking (EAC) when immersed in halide-containing solutions [1–7], with the degree of
susceptibility strongly depending on alloy composition and heat treatment [8–11]. His-
torically, a common approach for assessing EAC susceptibility in 7xxx-series Al alloys
has been the slow strain rate test (SSRT) method [12–18], where a smooth or notched
specimen is immersed in the environment of interest and then subjected to a slow, but
constant extension rate (often yielding an initial strain rate > 10−5 s−1) [19–21]. However,
the results of SSRT experiments cannot be utilized for design (as explicitly stated in the
governing ASTM G129 specification [22]) due to generally poor agreement with in-service
performance [19,20] and a strong dependence on testing-related variables (e.g., surface
finish, geometry, etc.) [23–28]. Additionally, subcritical cracking (i.e., crack initiation and
growth below the alloy’s fracture toughness) has been widely reported during SSRT exper-
iments [29–37], which compromises the interpretation of obtained EAC data and limits the
utility of SSRT for even susceptibility screening-based activities [24,37].

Conversely, fracture mechanics-based methods for evaluating EAC, such as those
codified in ASTM G168 [38], ASTM E1681 [39], ASTM F1624 [40], and ISO 7539-9 [41],
enable the direct extension of laboratory-generated data to the design and lifting of in-
service components [42–44] via the similitude principle [44–46]. This distinct advantage
has led to the use of such methods to quantify EAC susceptibility in 7xxx-series Al alloys
in a wide range of environments and heat treatment conditions [7–9,47–54], with the
primary goal being the quantification of the threshold stress intensity (KTH) and the
relationship between the applied stress intensity (K) and crack growth rate. However, there
are several challenges associated with these fracture mechanics-based approaches. These
experiments are more costly and complex to perform than SSRT experiments and often
require specialized equipment [19,21]. However, the primary limitation is the long testing

Corros. Mater. Degrad. 2021, 2, 360–375. https://doi.org/10.3390/cmd2030019 https://www.mdpi.com/journal/cmd

https://www.mdpi.com/journal/cmd
https://www.mdpi.com
https://doi.org/10.3390/cmd2030019
https://doi.org/10.3390/cmd2030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cmd2030019
https://www.mdpi.com/journal/cmd
https://www.mdpi.com/article/10.3390/cmd2030019?type=check_update&version=2


Corros. Mater. Degrad. 2021, 2 361

times required for ASTM E1681 [39], which is the most widely utilized fracture mechanics-
based testing approach for Al alloys [7–9,47–50,52–54]. ASTM E1681 experiments are
generally conducted under fixed displacement conditions (a fixed load analogue is also
standardized in ASTM E1681 [39]), where a fatigue precracked specimen is loaded to a
pre-determined crack mouth opening displacement (CMOD), such that the applied K is
above the suspected KTH for EAC [39]. The specimen is then exposed to the environment
of interest, resulting in the onset of subcritical crack growth, with KTH defined as the K
level after a specific time interval has passed. Critically, the standardized time interval for
Al alloys is 10,000 h [39]. Recent studies in Ni and Fe-based alloys assessing the effect of
loading rate (generally quantified by the change in either K or displacement with time)
on EAC susceptibility demonstrated that rising K or displacement-based experiments
(e.g., dK/dt > 0) yielded similar or conservative metrics relative to testing that exhibited
dK/dt = 0 or dK/dt < 0 (such as ASTM E1681) [51,55–57]. Critically, these rising K
experiments are significantly accelerated relative to ASTM E1681, with the conservativism
of the approach demonstrated for a Ni-Cu superalloy to a dK/dt = 20 MPa

√
m/h (which

corresponded to a test time of ~4 h) [55]. Given the extended times required for assessing
EAC in Al alloys using ASTM E1681, the use of such accelerated testing methods would
provide significant advantages. However, studies examining the influence of loading rate
on the EAC behavior of Al alloys are highly limited for fracture mechanics-based testing to
date [51], thereby hindering the demonstration of conservatism for rising K-based testing
in Al alloys.

The objective of this study is to assess the influence of the applied loading rate on
the EAC susceptibility of AA7075-T651 immersed in aqueous NaCl solution at applied
potentials ranging from −800 to −1200 mVSCE. The evolution of the EAC susceptibility
is evaluated using a slow-rising K testing methodology over dK/dt ranging from 0.25 to
2.0 MPa

√
m/h. Results are compared to crack growth rates measured via a static K testing

approach, thereby providing insights into the efficacy of different proposed methods for
evaluating EAC. The implications of these results on current standardized approaches for
measuring EAC are then discussed.

2. Materials and Methods
2.1. Material

All experiments were conducted on a single material heat of AA7075-T651 (Alcoa,
Pittsburgh, PA, USA) procured in the form of a 50.8-mm thick plate, with the elemental
composition reported in Table 1. This material heat was previously utilized in an interdis-
ciplinary multiscale airframe fatigue prognosis study to simulate the alloy composition
typical of AA7075 employed in legacy aircraft structures [58]. This material heat meets the
current elemental specification for AA7075 [59] but contains a modestly elevated Fe content
relative to typical modern-day AA7075 heats. The alloy exhibited the ‘pancake’-type grain
structure typical of rolled aluminum plate; more detailed microstructural analyses of the
tested material heat are presented elsewhere [60,61]. Mechanical properties obtained from
tensile specimens oriented such that loading occurred parallel to the short transverse
direction of the procured plate are shown in Table 2.

Table 1. Composition of tested AA7075-T651 material heat (in wt. %).

Al Zn Mg Cu Cr Fe Si Mn Ti

Bal 5.7 2.5 1.7 0.19 0.26 0.06 0.03 0.03

Table 2. Mechanical properties of tested AA7075-T651 material heat along S-direction.

σYS (MPa) σUTS (MPa) E (GPa) RA

482 561 70.7 0.086



Corros. Mater. Degrad. 2021, 2 362

2.2. Fracture Mechanics-Based Testing

Single edge notch tensile (SEN(T)) fracture mechanics specimens were excised from the
plate with gage section dimensions of 6.60± 0.52 mm in thickness (B), 17.25 ± 0.055 mm in
width (W). The SEN(T) specimens were oriented such that the loading occurred parallel to
the short-transverse (S) direction of the plate and Mode I crack growth occurred parallel to
the rolling (L) direction (i.e., tested in the S-L orientation). A notch with a height of 0.2 mm
was placed at the midpoint of the gage section, which corresponded to the mid-thickness
(t/2) of the plate, to a depth (a0) of 1.90 ± 0.05 mm using electrical discharge machining.
Specimens were loaded using a pinned-ends configuration via a clevis-based load train,
where the threaded ends of the SEN(T) were screwed into tangs that were pin-fastened
into clevises connected to the mechanical load frame crosshead and actuator, respectively.
The pins, clevises, and tangs were all machined from 17-4PH steel tempered to the H900
condition [62]. After being placed in the mechanical load frame, specimens were aligned
with the clevises to allow for free rotation, in compliance with the K solution boundary
conditions for this geometry and fixturing condition [63].

Each specimen was fatigue precracked in laboratory air prior to EAC testing using
the following protocol: fixed Kmax = 5 MPa

√
m from the initial notch depth (~1.90 mm)

to a cumulative notch plus crack length of 2.25 mm at a constant stress ratio (R) of 0.2
and frequency of 5 Hz. This reduced precrack distance was utilized to minimize crack
closure-induced shorting of the direct current potential difference (dcPD) system and was
sufficient in length to ensure the crack-tip stress field was not influenced by the stress field
associated with the notch [64,65]. The crack length was actively monitored throughout both
the fatigue precrack and EAC segment of each experiment via the dcPD technique [66,67]
using a constant applied current of 6.000 ± 0.005 A. Voltage measurements were taken
using 36-gage copper wires spot welded above and below the EDM notch at a distance of
~0.6–0.75 mm from the notch mid-plane, yielding a dcPD gage length of 1.2 to 1.5 mm [68].
The dcPD-measured potentials were then converted to crack lengths using Johnson’s
equation [68], shown in Equation (1):

a =
2W
π

cos−1

 cosh
( πy

2W
)

cosh
{(

V
V0

)
cosh−1

[
cosh( πy

2W )
cos(πa0

2W )

]}
 (1)

where W is the specimen width, y is one-half the spacing between the two dcPD probes, V
is the instantaneous voltage for given crack length (a), and V0 is the potential associated
with the initial notch length (a0). Each potential measurement was corrected for thermally
induced voltages using current-polarity reversal and represented the average of at least
500 individual voltage readings. Crack growth rates (da/dt) were then calculated from the
measured crack length data using the incremental (n = 3) polynomial method in ASTM
E647-13 Appendix XI [69].

Fracture mechanics testing at a monotonically increasing elastic K (dK/dt) was
achieved by coupling active crack length measurement via dcPD [67] with software-
controlled, servo-hydraulic actuator displacement. This allowed for experiments to be
conducted under K control, where the actuator displacement was automatically adjusted at
a specified time interval (between 15 to 30 s, depending on the applied dK/dt) to maintain a
specific K vs. time profile. All experiments, with one exception, were performed under full
immersion in quiescently aerated 0.6 or 1.0 M NaCl solution at applied potentials ranging
from −800 to −1200 mVSCE (vs. saturated calomel electrode). These applied potentials
were selected to cover the likely range of coupled potentials for proposed Al and Zn-based
metal-rich primer coatings in 7xxx-series Al alloys. A single experiment was performed in
dry N2 to serve as an inert environment comparison to the full immersion experiments. To
isolate the specimen in the testing environment, the gage section of the SEN(T) specimen
was placed inside a sealed 240 mL cylindrical acrylic cell, with the test solution circulated
from a 2L reservoir at ~20 mL/min. For all experiments, the applied potential (referenced
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to a standard calomel electrode) was controlled by a Biologic PG581 potentiostat (Biologic,
Seyssinet-Pariset, France) operated in floating ground mode. The SEN(T) specimen was
grounded through the load train components to the testing machine. A Pt-coated Nb mesh
counter-electrode and the reference electrode were placed in the environmental cell, with
the counter-electrode mesh positioned such that it completely encircled the specimen. Only
a ~6 mm-wide window, centered about the Mode I crack path, was exposed to the test
solution; all other specimen surfaces within the environmental cell were covered with
a butyl rubber-based lacquer (Tolber Miccro XP-2000 Stop-off Lacquer, Tolber Chemical
Division, Hope, AR, USA). A generalized schematic illustrating this experimental setup
can be found elsewhere [70]. For the dry N2 experiment, testing was completed by flowing
dry N2 into the environmental cell at a rate that maintained a measured relative humidity
(RH) of less than 5% for the duration of loading.

Prior to the onset of EAC testing in NaCl solution, the open circuit potential of
the specimen was monitored for 1 h, followed by the specimen being polarized to the
applied potential of interest for one hour. Both of these holds were conducted while the
sample was held at a load of 1 kN, which corresponded to an applied K ≈ 1 MPa

√
m

(based on a 2.25 mm crack length). Upon completion of these two holding periods, K was
monotonically increased at a specified, fixed dK/dt up to K = 20 MPa

√
m. The experiment

was then automatically shifted to a constant K protocol, where the load was adjusted based
on the dcPD-indicated crack length to maintain K = 20 MPa

√
m. This constant K was held

for at least 1× 105 s. The crack growth rate for this constant K segment was then quantified
via a linear regression of the measured crack length versus time trace. After completion of
the constant K segment, each sample was rapidly fractured using displacement control,
rinsed with deionized water, ultrasonically cleaned in acetone and methanol for 15–20 min
each, and then dried with compressed air.

3. Results
3.1. Comparison of Rising vs. Static K Testing for AA7075-T651 Immersed in 0.6 M NaCl as a
Function of Applied Potential

Literature demonstrates that ‘false’, non-crack extension-related dcPD voltage in-
creases will be induced by increasing strain [71–73] (as will occur during rising K or
displacement experiments), which can obfuscate the comparison of crack growth rates
measured with rising K and static K approaches. At the low stress intensities pertinent to
EAC, prior work has postulated that this strain-induced ‘false’ crack growth is likely driven
by plasticity-induced modifications of the material resistivity within the plastic zone at
the crack tip [55,73–75]. Strain-induced modifications in sample geometry have also been
suggested as a possible contribution [71,76]. Regardless of the source, it is necessary to
correct rising K-generated data to remove these ‘false’ dcPD-indicated crack extensions so
that the ‘true’ crack extension can be determined. An example of the subtraction-based cor-
rection procedure [55] employed in the current study is shown in Figure 1 using the results
from the experiment on AA7075-T651 immersed in 0.6 M NaCl at an applied potential of
−1200 mVSCE and dK/dt = 0.5 MPa

√
m/h. It should be noted that this subtraction-based

correction can be performed using either the da/dt vs. K or K vs. crack length paradigm
due to the fixed dK/dt testing methodology [55]; in the current study, the subtraction is
performed using the K vs. crack length paradigm. It is recognized that other methods
to account for this ‘false’ crack growth contribution to the dcPD signal have been pro-
posed [77,78]. However, these approaches assume that the ‘false’ crack growth contribution
is negligible upon the onset of real crack extension. Such an assumption is not necessarily
rigorous for subcritical cracking experiments due to the potential for slow crack growth, as
will be shown for the current alloy under certain environmental conditions.
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Figure 1. (a) Example of the correction procedure utilized to remove the ‘false’ crack extension due
to localized plasticity, which is quantified by the apparent crack extension measured in a dry N2

environment (indicated by red dashed lines). These data can then be differentiated to determine the
crack growth rate versus stress intensity relationship, with an example shown in (b).

To perform this correction, a companion experiment at dK/dt = 0.5 MPa
√

m/h was
first conducted in dry N2 (a known inert environment, indicated by the red dashed line
in Figure 1a), where true crack extension does not occur. These inert environment data
represent the magnitude of the ‘false’ crack extension as a function of K (Given that
these experiments were performed at a fixed dK/dt, followed by a static K segment after
137,100 s, it is straightforward to interchange K and time for this correction. which can
then be converted to time). Since the ‘as-measured’ crack growth at −1200 mVSCE in 0.6 M
NaCl (indicated by black line in Figure 1a) represents the sum of the ‘false’ and ‘true’ crack
growth contributions, the latter (indicated by the blue line in Figure 1a) can then be isolated
by subtracting the dry N2 response from as-measured data. Once the ‘true’ crack growth
versus time response is known, it can then be differentiated to obtain the crack growth rate
as a function of the applied K. An example using the −1200 mVSCE data from Figure 1a is
shown in Figure 1b. As expected from the corrected crack extension versus time trace in
Figure 1a, the crack growth rate increases with increasing K during the rising K segment
of the experiment once the threshold stress intensity (KTH; 3 MPa

√
m in Figure 1b) is

exceeded. Upon switching to the fixed K segment at K = 20 MPa
√

m, the crack growth
rate slightly decreases from ≈4 × 10−6 mm/s to a constant value of ≈3 × 10−6 mm/s,
consistent with the generally linear crack length versus time relationship in Figure 1a.
These constant K and rising K-generated crack growth rates can then be compared to
inform the loading rate sensitivity of EAC for the tested alloy/environment combination.



Corros. Mater. Degrad. 2021, 2 365

The crack growth rates measured at K = 20 MPa
√

m in 0.6 M NaCl at applied potentials
ranging from−800 to−1200 mVSCE using the above combined fixed dK/dt (0.5 MPa

√
m/h)

and fixed K testing methodology are shown in Figure 2a. Both the constant and rising
K-based crack growth rates exhibit similar dependencies on applied potential. Specifically,
relatively elevated crack growth rates are observed at applied potentials near the open
circuit potential (OCP; −800 mVSCE), followed by decreased crack growth rates between
−900 and −1000 mVSCE, and then an increase in crack growth rates for potentials more
negative than −1000 mVSCE. While both approaches exhibit similar crack growth rates ver-
sus applied potential dependencies, the rising K-based crack growth rates are consistently
increased relative to the static K-based crack growth rates. Interestingly, the difference
in crack growth rate between the rising K and static K segments as a function of applied
potential is non-constant. As demonstrated in Figure 2b, the ratio of the rising K to static
K measured crack growth rates for AA7075-T651 in 0.6 M NaCl at K = 20 MPa

√
m varies

from approximately 1.25 to 4.25 (at−1200 and−950 mVSCE, respectively). In particular, the
larger differences generally occur at the applied potentials that encompass the ‘well’ noted
in Figure 2a (−900 to −1000 mVSCE), while the two methods exhibit closer agreement at
applied potentials outside of the ‘well’ region.
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conditions. The ratio of the measured crack growth rates for the two testing approaches as a function
of applied potential are shown in (b).
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3.2. Effect of dK/dt on EAC for AA7075-T651 at −950 mVSCE in 1.0 M NaCl

The influence of NaCl concentration (0.6 and 1.0 M NaCl) on the crack growth rates
under static K (K = 20 MPa

√
m) as a function of applied potential are shown in Figure 3.

These data were generated via a stepped potential-based approach, where the applied
potential was systematically increased from −1200 to −800 mVSCE, with each potential
step held for at least 25,000 s, while the applied K was held constant at 20 MPa

√
m. For all

evaluated applied potentials, an increased crack growth rate was observed for 1.0 M NaCl
relative to 0.6 M NaCl, consistent with expectations of more severe EAC with increased
halide concentration in Al alloys [8]. However, the lowest crack growth rates in 1.0 M NaCl
are observed between −900 and −1000 mVSCE, confirming the presence of the same ‘well’
noted in 0.6 M NaCl. Based on the results presented in Figure 2, AA7075-T651 exhibits
the largest loading rate dependence at the applied potential of −950 mVSCE in 0.6 M NaCl.
However, the total crack extension during the rising K segment at this condition was
~30 µm, which severely limits the dK/dt range that can be evaluated (since less crack
extension is expected to occur as the dK/dt is increased [55]). As such, given that this
potential resides in the well for both concentrations and that it is expected to yield the
largest loading rate dependence, the influence of dK/dt will be assessed in 1.0 M NaCl at
−950 mVSCE.
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√
m.

The effect of dK/dt on the crack growth rate versus K relationship for AA7075-T651
at an applied potential of −950 mVSCE in 1.0 M NaCl is shown in Figure 4. In general,
a minimal dK/dt influence is observed for dK/dt ranging from 0.25 to 1.0 MPa

√
m/h.

For example, KTH was effectively independent of dK/dt over the tested range, ranging
from 8 to 10 MPa

√
m, and the observed differences in crack growth rate for a given K are

consistent with expected test-to-test scatter in EAC-based experiments [73,79] (especially
for Al-based alloys [80–82]). Moreover, the relative ordering of the crack growth rates for a
given K does not exhibit a meaningful trend as a function of dK/dt.
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Collectively, these data demonstrate that EAC growth rate in AA7075-T651 immersed
in 1.0 M NaCl at an applied potential of −950 mVSCE is nominally constant at a given
K value for positive dK/dt values. This limited effect of dK/dt is further supported in
Figure 5, where the crack growth rates at K = 20 MPa

√
m for testing in 0.6 M NaCl at

−800 mVSCE (black squares) and 1.0 M NaCl at −950 mVSCE (red circles) are compared as
a function of dK/dt. Specifically, the measured crack growth rate appears to be nominally
independent of dK/dt over the test range from 0.25 to 2.0 MPa

√
m/h. However, it should

be noted that for both conditions, testing at dK/dt > 0 resulted in an increased crack growth
rate relative to that measured at dK/dt = 0 (indicated by the closed symbols in Figure 5).
This observation has important implications regarding the efficacy of different testing
methodologies for assessing EAC, which will be discussed in subsequent sections.
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4. Discussion
4.1. Influence of Material/Environment Susceptibility on the Loading Rate Dependence of EAC

The preceding results demonstrate that EAC in AA7075-T651 exhibits a modest de-
pendence on loading rate when comparing dK/dt = 0 and dK/dt > 0, but similar behavior
for positive dK/dt ranging from 0.25 to 2.0 MPa

√
m/h. Specifically, for testing in 0.6 M

NaCl at different applied potentials, the ratio of the crack growth rates at dK/dt = 0.5 and
0 MPa

√
m/h for K = 20 MPa

√
m varied from 1.25 to 4.25 (Figure 2a). Furthermore, a 2-fold

difference is observed between the rising and static K growth rates at K = 20 MPa
√

m
in 1.0 M NaCl at −950 mVSCE (Figure 5). However, the crack growth rate versus K re-
lationships for −950 mVSCE in 1.0 M NaCl (Figure 4) were observed to be nominally
dK/dt-independent for dK/dt ranging from 0.25 to 1.0 MPa

√
m/h. Similar trends were

also noted in Figure 5 for the crack growth rate versus dK/dt behavior in 0.6 M NaCl at
−800 mVSCE for dK/dt ranging from 0.5 to 2.0 MPa

√
m/h. These observations motivate

discussion of (1) the relevance and magnitude of loading rate dependence in the context of
other material systems, (2) the variation in loading rate influence with applied potential
(e.g., environmental severity), and (3) the insensitivity of the EAC behavior in AA7075-T651
at positive dK/dt.

The observed dependence (albeit modest) of EAC in AA7075-T651 on loading rate
(specifically between dK/dt = 0 and > 0 MPa

√
m/h) is consistent with prior studies in both

Al and other alloy systems. While studies on Al alloys are limited, it is notable that Dietzel
et al. observed a similar modest loading rate dependence for EAC in AA2024-T351 im-
mersed in 3.5% NaCl at open circuit potential [51] (−720 mVSCE [83]). Regarding other alloy
systems, Gangloff et al. observed a 30-fold increase in crack growth rate under rising K-
based loading (dK/dt = 1.1 MPa

√
m/h) relative to static K loading at K = 53 MPa

√
m for a

Ni-Cu superalloy (Monel K-500) immersed in 0.6 M NaCl at−800 mVSCE [73]. Experiments
by Harris et al. on a separate material lot of Monel K-500 in 0.6 M NaCl at −950 mVSCE
measured a 25-fold increase in crack growth rate for rising K-based testing when dK/dt
was increased from 0.2 to 20 MPa

√
m/h when compared at K = 75 MPa

√
m [55]. Strong

dK/dt-dependencies have also been observed for non-seawater environments. For exam-
ple, experiments on Fe and Ni-based alloys immersed in representative nuclear power
environments observed increases in crack growth rates of nearly two orders of magnitude
when the applied K increased with crack length versus testing where K was held constant
as the crack extended [84–86].

The impact of applied potential (Figures 2 and 5) on the dK/dt dependence of EAC
in AA7075-T651 is also directionally consistent with literature on Monel K-500, where the
dK/dt dependence of da/dt was strongly diminished as the environment became more
severe (i.e., as the applied potential became increasingly negative) [55,73]. An important
role of the environment severity and material EAC susceptibility on the dK/dt-dependence
was also noted for Thodla et al. in IN718. Specifically, a strong dK/dt dependence
was observed when IN718 immersed in 3.5% NaCl solution at an applied potential of
−1050 mVSCE, while a much weaker dK/dt dependence was noted for the same alloy
when immersed in 0.5 M H2SO4 solution under galvanostatic conditions (5 mA/cm2) [87].
Lastly, from the perspective of KTH, 4340 steel exposed to low pressure H2 gas was found
to have a strongly loading rate-dependent KTH, while a negligible loading rate influence
was observed when this alloy was exposed to H2S gas [88].

Taken together, the observation of non-zero crack growth rates under static K condi-
tions (Figures 2 and 3) and the generally modest influence of dK/dt (Figures 4 and 5) across
all tested conditions provide an opportunity to comment on the factors governing EAC
behavior in AA7075-T651. Since continued crack extension does not require an increasing
mechanical driving force, this implies that EAC in AA7075-T651 is a stress-controlled frac-
ture process (i.e., has a flat R curve), where crack growth occurs once a critical driving force
is applied that exceeds the intrinsic material resistance [45]. Moreover, literature indicates
that EAC in 7xxx-series Al alloys is driven by hydrogen embrittlement [49,89–91], though
it is likely that the anodic dissolution of grain boundaries (due to element segregation
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and/or the presence of grain boundary precipitates) [92–97] synergistically contributes,
as has been observed in 5xxx-series Al [98]. The Ritchie–Knott–Rice (RKR) model [99]
can therefore provide a generalized framework to understand the factors governing EAC
in AA7075-T651. This framework assumes that crack extension occurs when the tensile
opening stress is greater than the material’s fracture stress over a critical distance (xcrit)
ahead of the crack tip. In a hydrogen-induced cracking paradigm, the fracture stress
required for crack growth is a function of the local hydrogen content [100].

The presence of a constant, subcritical da/dt under static K loading (Figures 2 and 3)
suggests that EAC in AA7075-T651 is likely mediated by a time-dependent process (other-
wise, rapid fracture should have occurred given that fracture is stress-controlled). From the
perspective of the RKR model, the sustained crack growth at dK/dt = 0 (i.e., where there is
no change in driving force) indicates that this governing time-dependent process could be
associated with attaining the critical hydrogen concentration necessary for fracture at xcrit.
Prior literature suggests that the rate of crack advance during EAC under stress-controlled
conditions is related to hydrogen diffusion [55,101], which would be consistent with two
observations in the current study. First, regarding the minimal dK/dt-dependence of
EAC for dK/dt > 0 (Figures 4 and 5), such behavior would be observed if the applied
dK/dt are sufficiently slow such that hydrogen can diffuse to xcrit in sufficient quantities to
induce crack growth via lowering the intrinsic resistance [55]. However, if the dK/dt is fast
enough that hydrogen cannot sufficiently diffuse to xcrit, then a decrease in susceptibility
would be observed, as has been noted in other alloy systems [102] and by Dietzel et al. for
AA2024-T351. Second, a diffusion-based mechanism would also explain the nominally
‘slow’ da/dt (relative to other alloys [101]) observed for AA7075-T651 across all tested
environments in the current study (Figures 2–5). If hydrogen diffusion provides the time
basis for the da/dt of a given material/environment combination, then the slow diffusivity
of hydrogen in Al alloys [103] would imply that reduced crack growth rates should be
expected, even under stress-controlled fracture conditions.

4.2. Implications of Results on Current EAC Standardized Testing Approaches

The present study also provides an opportunity to comment on the efficacy of cur-
rent fracture mechanics-based standards for assessing EAC with regards to the influence
of applied loading rate. Briefly, the three primary fracture mechanics-based EAC test-
ing standards all employ different loading rates: ASTM F1624 (dK/dt = 0) [40], ASTM
E1681/ASTM G168 (most commonly used in configuration that results in dK/dt < 0) [38,39],
and ISO7539-9 (uses a fixed displacement rate to generate dK/dt > 0) [41]. As such, it is
critical to understand the influence of applied loading rate on the measured EAC behavior
to ensure conservatism (In the context of EAC testing, a conservative approach yields
increased susceptibility (e.g., a lower KTH or a faster crack growth rate for a given K)
relative to a second approach performed under identical environmental conditions.) of
generated susceptibility data and maximize testing efficiency. Regarding the former, the
results shown in Figures 2 and 5 demonstrate that dK/dt > 0 testing exhibits similar or
conservative crack growth rates relative to dK/dt = 0 methods. Specifically, faster crack
growth rates were measured for AA7075-T651 under rising K as compared to static K
loading across all tested applied potentials and solution concentrations. This observation
of rising K-based methods yielding increased crack growth rates is consistent with recent
literature examining loading rate effects on EAC in a Ni-Cu superalloy [55,73]. For ex-
ample, Harris et al. measured a 44-fold and 2-fold increase in crack growth rate during
comparative rising K and static K testing on Monel K-500 immersed in 0.6 M NaCl at
applied potential of −950 and −1200 mVSCE, respectively [55]. Similarly, Gangloff et al.
demonstrated that crack growth rates for Monel K-500 immersed in 0.6 M NaCl measured
using dK/dt > 0 methods were either faster or equivalent to those measured via ASTM
F1624 (dK/dt = 0), depending on the applied potential [73]. Such conservatism was also
noted for rising K-based testing in prior studies comparing KTH values measured using
ASTM E1681 [39] (which under typical fixed displacement conditions is akin to dK/dt < 0)
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to those measured via dK/dt > 0 experiments based on ISO 7539-9. Specifically, Nibur and
coworkers observed that hydrogen-charged pressure vessel steels tested using a dK/dt > 0
approach consistently exhibited a lower KTH compared to experiments performed per
ASTM E1681 [56,57]. Similar behavior was reported by Gangloff for hydrogen precharged
Cr-Mo steels [43] and by Dietzel for AA2024-T351 immersed in 3.5% seawater [104].

In addition to the observed conservatism of EAC metrics generated using a dK/dt > 0
testing methodology relative to the more widely used approaches codified in ASTM
E1681 [39] and ASTM F1624 [40], it is also pertinent to note the significant increase in
testing throughput associated with rising K-based methods. This is particularly important
for Al-based alloys, who have a suggested test duration of 10,000 h in ASTM E1681 when
assessing KTH [39]. As shown in Figure 5, conservative crack growth rates relative to
those measured under static K were obtained at dK/dt = 2.0 and 1.0 MPa

√
m/h for

AA7075-T651 exposed to 0.6 M NaCl at −800 mVSCE and 1.0 M NaCl at −950 mVSCE,
respectively. Such dK/dt > 0 experiments were completed in 9.5 and 19 h, respectively,
clearly demonstrating the substantial improvement in experiment efficiency that can be
achieved without compromising the quantitative usefulness of fracture mechanics-based
testing. That being said, care must be taken under conditions that result in moderate crack
extension in alloys have low fracture toughness (e.g., Al alloys) to avoid utilizing loading
rates that are so rapid, they preclude EAC. Such an effect is likely responsible for the
seemingly divergent finding of KTH approaching KIC (suggesting reduced susceptibility)
and the increase in da/dt (suggesting increasing susceptibility) as the loading rate was
increased during testing by Dietzel et al. on AA2024-T351 [51]. Specifically, it is speculated
that beyond a critical displacement rate, the rapid loading precluded the time-dependent
processes that govern EAC, resulting in fracture occurring at KIC and the measurement of
rapid crack growth rates due to ductile tearing.

It is clear from both prior literature data and the results presented herein that current
EAC testing standards should be revisited to account for the potentially significant impact
of applied loading rate on measured EAC susceptibility. Moreover, it is also necessary to
identify the factors that lead to a given alloy/environment combination to exhibit a substan-
tial or negligible loading rate dependence. For example, AA7075-T651 exhibited a generally
minimal loading rate-dependence, while a more substantial influence of loading rate has
been observed in testing conducting in other alloy systems (such as Monel K-500 [55,73]).
The causal factors governing such differences in dependence are not immediately clear
and should be the focus of continued study to enable the development of mechanistically
informed EAC testing standards.

5. Conclusions

The effect of applied loading rate on the EAC behavior of AA7075-T651 immersed
in 0.6 M and 1.0 M NaCl solution at applied potentials between −800 and −1200 mVSCE
was assessed using fixed dK/dt and static K testing methodologies. Based on the results of
these experiments, the following insights were obtained:

1. AA7075-T651 immersed in both 0.6 M and 1.0 M NaCl exhibited a minimal influence
of loading rate on the EAC behavior across all examined applied potentials.

2. The observed minimal influence of loading rate suggests that the fracture behavior of
the tested material/environment combination is stress-controlled, consistent with the
non-zero crack growth rates measured under static K conditions. The observed stress-
controlled EAC behavior was interpreted to be diffusion-limited, which was then
utilized to explain the basis for the limited dK/dt-dependence of EAC in AA7075-T651
observed for dK/dt > 0 loading.

3. Across all tested combinations of solution concentration and applied potential, the
crack growth rates measured under rising K were greater than those measured under
static K conditions. Such results demonstrate the conservativism and efficiency of the
rising K methodology relative to current standardized EAC testing approaches, even
under conditions that exhibit significant EAC susceptibility. However, caution must
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be taken to ensure that the employed loading rate does not preclude any required
time-dependent process for EAC, as currently suggested in ISO 7539-9 [41].
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