Controlling Lateral Size and Thickness of Layered Double Hydroxide (LDH) Used as Conversion Layer for Corrosion Protection of AZ31 Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Surface Treatments
2.2. Characterization Techniques
3. Results
3.1. Physical and Chemical Characteristics of LDHs
3.2. H2 Evolution Experiment
3.3. Electrochemical Test of LDH Samples
3.4. Salt Spray Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Magnesium Alloys Market Size, Share & Trends Analysis Report by Application (Automotive & Transportation, Aerospace & Defense, Electronics), by Region (MEA, North America, APAC), and Segment Forecasts. 2020–2027. 2016–2018. Available online: https://www.grandviewresearch.com/industry-analysis/magnesium-alloys-market#. (accessed on 14 November 2022).
- Zaffora, A.; Di Franco, F.; Virtù, D.; Carfì Pavia, F.; Ghersi, G.; Virtanen, S.; Santamaria, M. Tuning of the Mg alloy AZ31 anodizing process for biodegradable implants. ACS Appl. Mater. Interfaces 2021, 13, 12866–12876. [Google Scholar] [CrossRef] [PubMed]
- Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.; Coy, A.E.; Arrabal, R.; Viejo, F.; Matykina, E. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros. Sci. 2008, 50, 823–834. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, Y.; Wu, P.; Lin, X.; Liu, Y.; Zhou, Y.; Feng, P.; Liu, X.; Peng, S. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy. J. Alloys Compd. 2017, 691, 961–969. [Google Scholar] [CrossRef]
- Song, G.-L. “Electroless” deposition of a pre-film of electrophoresis coating and its corrosion resistance on a Mg alloy. Electrochim. Acta 2010, 55, 2258–2268. [Google Scholar] [CrossRef]
- Toorani, M.; Aliofkhazraei, M.; Mahdavian, M.; Naderi, R. Effective PEO/Silane pretreatment of epoxy coating applied on AZ31B Mg alloy for corrosion protection. Corros. Sci. 2020, 169, 108608. [Google Scholar] [CrossRef]
- Lu, X.; Zuo, Y.; Zhao, X.; Tang, Y. The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment. Corros. Sci. 2012, 60, 165–172. [Google Scholar] [CrossRef]
- Conceicao, T.F.; Scharnagl, N.; Blawert, C.; Dietzel, W.; Kainer, K.U. Corrosion protection of magnesium alloy AZ31 sheets by spin coating process with poly(ether imide) [PEI]. Corros. Sci. 2010, 52, 2066–2079. [Google Scholar] [CrossRef] [Green Version]
- Pereda, M.D.; Alonso, C.; Gamero, M.; Del Valle, J.; De Mele, M.F.L. Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level. Mater. Sci. Eng. C 2011, 31, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B.; Nisbet, D.R.; Li, R.W.; Smith, P.; Abbott, T.B.; Easton, M.A.; Zhang, D.-H.; Birbilis, N. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater. 2014, 10, 1463–1474. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Cheng, Y. Optimisation of anodising electrolyte for magnesium alloy AZ31 and characteristics of anodic film. Surf. Eng. 2010, 26, 334–339. [Google Scholar] [CrossRef]
- Wu, L.; Pan, F.; Liu, Y.; Zhang, G.; Tang, A.; Atrens, A. Influence of pH on the growth behaviour of Mg–Al LDH films. Surf. Eng. 2018, 34, 674–681. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, Z.; Pan, F.; Tang, A.; Zhang, G.; Liu, L. Influence of reaction temperature on the controlled growth of Mg-Al LDH film. Int. J. Electrochem. Sci. 2017, 12, 6352–6364. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Zhang, S.; Yuan, B.; Zheng, Z.; Pan, F. A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg-Al alloy. Adv. Mater. Interfaces 2017, 4, 1700163. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhao, L.; Zhang, S.; Zhang, F.; Dong, M.; Xu, S. Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 2010, 3, 5220–5235. [Google Scholar] [CrossRef]
- Kaseem, M.; Ramachandraiah, K.; Hossain, S.; Dikici, B. A Review on LDH-Smart Functionalization of Anodic Films of Mg Alloys. Nanomaterials 2021, 11, 536. [Google Scholar] [CrossRef]
- Shulha, T.N.; Serdechnova, M.; Lamaka, S.V.; Wieland, D.C.F.; Lapko, K.N.; Zheludkevich, M.L. Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy. Sci. Rep. 2018, 8, 16409. [Google Scholar] [CrossRef]
- Wu, L.; Yang, D.; Zhang, G.; Zhang, Z.; Zhang, S.; Tang, A.; Pan, F. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31. Appl. Surf. Sci. 2018, 431, 177–186. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, T.D.; Nguyen, A.S.; Gonon, M.; To, T.X.H.; Olivier, M.-G. A comparative study of the structure and corrosion resistance of ZnAl hydrotalcite conversion layers at different Al3+/Zn2+ ratios on electrogalvanized steel. Surf. Coat. Technol. 2022, 429, 127948. [Google Scholar] [CrossRef]
- Asl, V.Z.; Zhao, J.; Anjum, M.J.; Wei, S.; Wang, W.; Zhao, Z. The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy. J. Alloys Compd. 2020, 821, 153248. [Google Scholar] [CrossRef]
- Yao, Q.-S.; Li, Z.-C.; Qiu, Z.-M.; Zhang, F.; Chen, X.-B.; Chen, D.-C.; Guan, S.-K.; Zeng, R.-C. Corrosion resistance of Mg(OH)2/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: Influence of hydrolysis degree of silane. Rare Met. 2019, 38, 629–641. [Google Scholar] [CrossRef]
- Rojas, R. Effect of particle size on copper removal by layered double hydroxides. Chem. Eng. J. 2016, 303, 331–337. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, T.; Zhang, T.C.; Ouyang, L.; Yuan, S. Superhydrophobic double layered MgAl-LDH/epoxy composite coatings for enhanced anticorrosion performance of magnesium alloys. Prog. Org. Coat. 2023, 174, 107300. [Google Scholar] [CrossRef]
- Prince, L.; Rousseau, M.; Noirfalise, X.; Dangreau, L.; Coelho, L.; Olivier, M.-G. Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution. Corros. Sci. 2021, 179, 109131. [Google Scholar] [CrossRef]
- Han, X.; Hu, J.; Xiao, T.-B.; Xia, W.; Chen, Y.-N.; Wu, L. Facile fabrication and properties of super-hydrophobic MgAl-LDH films with excellent corrosion resistance on AZ31 magnesium alloy. Front. Mater. 2021, 8, 545. [Google Scholar] [CrossRef]
- Song, G. and Atrens, A. Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; StJohn, D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In Essential Readings in Magnesium Technology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 565–572. [Google Scholar] [CrossRef]
- Lin, J.-K.; Jeng, K.-L.; Uan, J.-Y. Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid. Corros. Sci. 2011, 53, 3832–3839. [Google Scholar] [CrossRef]
- Dai, X.; Wu, L.; Xia, Y.; Chen, Y.; Zhang, Y.; Jiang, B.; Xie, Z.; Ci, W.; Zhang, G.; Pan, F. Intercalation of Y in Mg-Al layered double hydroxide films on anodized AZ31 and Mg-Y alloys to influence corrosion protective performance. Appl. Surf. Sci. 2021, 551, 149432. [Google Scholar] [CrossRef]
- Pálinkó, I.; Sipos, P.; Berkesi, O.; Varga, G. Distinguishing Anionic Species That Are Intercalated in Layered Double Hydroxides from Those Bound to Their Surface: A Comparative IR Study. J. Phys. Chem. C 2022, 126, 15254–15262. [Google Scholar] [CrossRef]
- Shulha, T.; Serdechnova, M.; Iuzviuk, M.H.; Zobkalo, I.A.; Karlova, P.; Scharnagl, N.; Wieland, D.C.F.; Lamaka, S.V.; Yaremchenko, A.A.; Blawert, C.; et al. In situ formation of LDH-based nanocontainers on the surface of AZ91 magnesium alloy and detailed investigation of their crystal structure. J. Magnes. Alloys 2022, 10, 1268–1285. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Wang, M.; Chuang, Y.; Chiang, P. Arsenate adsorption by Mg/Al–NO3 layered double hydroxides with varying the Mg/Al ratio. Appl. Clay Sci. 2009, 43, 79–85. [Google Scholar] [CrossRef]
- Chen, J.; Fang, L.; Wu, F.; Xie, J.; Hu, J.; Jiang, B.; Luo, H. Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy. Prog. Org. Coat. 2019, 136, 105234. [Google Scholar] [CrossRef]
- Song, Y.; Tang, Y.; Fang, L.; Wu, F.; Zeng, X.; Hu, J.; Zhang, S.F.; Jiang, B.; Luo, H. Enhancement of corrosion resistance of AZ31 Mg alloys by one-step in situ synthesis of ZnAl-LDH films intercalated with organic anions (ASP, La). J. Magnes. Alloys 2021, 9, 658–667. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Chen, Y.; Zhong, Z.; Ci, W.; Wu, J.; Xie, Z.; Yuan, Y.; Pan, F. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating. Corros. Sci. 2022, 194, 109941. [Google Scholar] [CrossRef]
- Wu, F.; Liang, J.; Peng, Z.; Liu, B. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy. Appl. Surf. Sci. 2014, 313, 834–840. [Google Scholar] [CrossRef]
- Gomes, D.; Borges, C.; Pinto, J.C. Effects of reaction variables on the reproducibility of the syntheses of poly-1,3,4-oxadiazole. Polymer 2004, 45, 4997–5004. [Google Scholar] [CrossRef]
- Chen, J.; Lin, W.; Liang, S.; Zou, L.; Wang, C.; Wang, B.; Yan, M.; Cui, X. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy. Appl. Surf. Sci. 2019, 463, 535–544. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; St John, D.; Wu, X.; Nairn, J. The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 1997, 39, 1981–2004. [Google Scholar] [CrossRef]
- King, A.D.; Birbilis, N.; Scully, J.R. Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochim. Acta 2014, 121, 394–406. [Google Scholar] [CrossRef]
- Prince, L.; Noirfalise, X.; Paint, Y.; Olivier, M. Corrosion mechanisms of AZ31 magnesium alloy: Importance of starting pH and its evolution. Mater. Corros. 2022, 73, 1615–1630. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Sergienko, V.I. Electrochemical impedance simulation of a metal oxide heterostructure/electrolyte interface: A review. Russ. J. Electrochem. 2006, 42, 197–211. [Google Scholar] [CrossRef]
- Chang, B.-Y. Conversion of a constant phase element to an equivalent capacitor. J. Electrochem. Sci. Technol. 2020, 11, 318–321. [Google Scholar] [CrossRef]
- Zoltowski, P. On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 1998, 443, 149–154. [Google Scholar] [CrossRef]
- Curioni, M.; Salamone, L.; Scenini, F.; Santamaria, M.; Di Natale, M. A mathematical description accounting for the superfluous hydrogen evolution and the inductive behaviour observed during electrochemical measurements on magnesium. Electrochim. Acta 2018, 274, 343–352. [Google Scholar] [CrossRef]
- Asl, V.Z.; Chini, S.F.; Zhao, J.; Palizdar, Y.; Shaker, M.; Sadeghi, A. Corrosion properties and surface free energy of the ZnAl LDH/rGO coating on MAO pretreated AZ31 magnesium alloy. Surf. Coat. Technol. 2021, 426, 127764. [Google Scholar] [CrossRef]
- Deflorian, F.; Fedrizzi, L.; Rossi, S.; Bonora, P. Organic coating capacitance measurement by EIS: Ideal and actual trends. Electrochim. Acta 1999, 44, 4243–4249. [Google Scholar] [CrossRef]
- Galicia, G.; Pébère, N.; Tribollet, B.; Vivier, V. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy. Corros. Sci. 2009, 51, 1789–1794. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Hsia, C.; Uan, J. Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl− and CO32- anion-exchangeability of the film in a corrosive environment. Scr. Mater. 2007, 56, 927–930. [Google Scholar] [CrossRef]
- Zeng, R.-C.; Li, X.-T.; Liu, Z.-G.; Zhang, F.; Li, S.-Q.; Cui, H.-Z. Corrosion resistance of Zn–Al layered double hydroxide/poly (lactic acid) composite coating on magnesium alloy AZ31. Front. Mater. Sci. 2015, 9, 355–365. [Google Scholar] [CrossRef]
- Hu, T.; Ouyang, Y.; Xie, Z.-H.; Wu, L. One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions. J. Mater. Sci. Technol. 2021, 92, 225–235. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E.-H. Study of the in situ growth mechanism of Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy. Corros. Sci. 2012, 63, 148–158. [Google Scholar] [CrossRef]
- Paikaray, S.; Gomez, M.A.; Hendry, M.J.; Essilfie-Dughan, J. Formation mechanism of layered double hydroxides in Mg2+-, Al3+-, and Fe3+-rich aqueous media: Implications for neutralization in acid leach ore milling. Appl. Clay Sci. 2014, 101, 579–590. [Google Scholar] [CrossRef]
- Ropp, R.C. Encyclopedia of the alkaline earth compounds, Group 16 (O, S, Se, Te) Alkaline Earth Compounds; Elsevier: Newnes, UK, 2012; p. 118. [Google Scholar] [CrossRef]
- Olfs, H.W.; Torres-Dorante, L.O.; Eckelt, R.; Kosslick, H. Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties. Appl. Clay Sci. 2009, 43, 459–464. [Google Scholar] [CrossRef]
- Vekilov, P.G. Nucleation. Cryst. Growth Des. 2010, 10, 5007–5019. [Google Scholar] [CrossRef]
Surface Treatment | pH | Code |
---|---|---|
Etched Substrate | 10 | E1024 |
11 | E1124 | |
Anodized Substrate | 10 | A1024 |
11 | A1124 |
Surface Treatment | Code of Samples with Epoxy Coating |
---|---|
Etched | E/Epoxy |
Anodized | A/Epoxy |
LDH (coded according to Table 1) | A1124/Epoxy |
Sample Code | E1024 | E1124 | A1024 | A1124 |
---|---|---|---|---|
Approximate LDH lateral size (µm) | 1.5 ± 0.2 | 0.18 ± 0.06 | 1.3 ± 0.4 | 0.16 ± 0.03 |
Thickness of porous outer layer (µm) | 2.8 ± 0.2 | 0.7 ± 0.1 | 3.2 ± 0.2 | 0.4 ± 0.03 |
Thickness of compact inner layer (µm) | 15.3 ± 0.5 | 18.8 ± 0.2 | 2.7 ± 0.2 | 7.7 ± 0.2 |
Thickness of anodic layer (µm) | - | - | 11 ± 0.5 | 11.1 ± 0.4 |
Sample Code | Before Immersion | After Immersion | ||||||
---|---|---|---|---|---|---|---|---|
E1024 | E1124 | A1024 | A1124 | E1024 | E1124 | A1024 | A1124 | |
d(003) (Å) | 8.029 | – | 8.117 | 7.669 | 7.934 | – | 7.661 | 7.715 |
Sample Code | Weight Loss Rate/ Corrosion Rate (µg·h−1·cm−2) | Equation [H (mL/cm2), t (h)] | R2 |
---|---|---|---|
Etched | 6.7 ± 0.1 | H = 0.0061 t + 0.1564 | 0.93 |
Anodized | 3.5 ± 0.1 | H = 0.0034 t + 0.0624 | 0.97 |
E1024 | 5.7 ± 0.1 | H = 0.0054 t + 0.1591 | 0.9 |
E1124 | 3.3 ± 0.2 | H = 0.0027 t − 0.0246 | 0.82 |
A1024 | 6.3 ± 0.1 | H = 0.006 t + 0.1234 | 0.94 |
A1124 | 0.9 ± 0.08 | H = 0.0011 t − 0.008 | 0.97 |
Sample | R1 (Ω⋅cm2) | L1 (Henry) | Rout (Ω⋅cm2) | CPEout (Ω−1⋅sn⋅cm−2) | n | Rin (Ω⋅cm2) | CPEin (Ω−1⋅sn⋅cm−2) | n | Rct (Ω⋅cm2) | CPE/C (Ω−1⋅sn⋅cm−2) | n |
---|---|---|---|---|---|---|---|---|---|---|---|
AZ31–1 h | 1861 | 1736 | – | – | – | – | – | – | 3247 | 1.12 × 10−5 | 0.93 |
AZ31–6 h | 3743 | 2227 | – | – | – | – | – | – | 2832 | 1.64 × 10−5 | 0.93 |
AZ31–24 h | – | – | – | – | – | – | – | – | 5670 | 4.43 × 10−5 | 0.71 |
– | – | – | – | – | – | ||||||
Anodized−1 h | 4.89 × 10−5 | 4287 | – | – | – | – | – | – | 4217 | 1.10 × 10−5 | 0.89 |
Anodized−6 h | 4941 | 9503 | – | – | – | – | – | – | 5289 | 1.03 × 10−5 | 0.92 |
Anodized−24 h | 8793 | 10,254 | – | – | – | – | – | – | 8052 | 1.20 × 10−5 | 0.92 |
– | – | – | – | – | – | ||||||
E1024–1 h | 24,700 | 7285 | – | – | – | – | – | – | 4848 | 1.01 × 10−5 | 0.85 |
E1024–6 h | 11,969 | 2888 | – | – | – | – | – | – | 2724 | 2.01 × 10−5 | 0.80 |
E1024–24 h | 5428 | 2208 | – | – | – | – | – | – | 2097 | 2.50 × 10−5 | 0.78 |
E1124–1 h | – | – | 11,705 | 2.19 × 10−7 | 0.64 | 27,218 | 1.69 × 10−5 | 0.70 | 12187 | 1.26 × 10−8 | – |
E1124–6 h | – | – | 5434 | 5.75 × 10−7 | 0.59 | 13,412 | 8.71 × 10−6 | 0.94 | 6442 | 3.81 × 10−8 | – |
E1124–24 h | – | – | 1482 | 2.99 × 10−7 | 0.68 | 13,436 | 1.00 × 10−5 | 0.93 | 4056 | 5.83 × 10−8 | 0.84 |
A1024–1 h | 11,824 | 3677 | – | – | – | – | – | – | 3194 | 1.38 × 10−5 | 0.79 |
A1024–6 h | 6763 | 2026 | – | – | – | – | – | – | 1959 | 2.39 × 10−5 | 0.79 |
A1024–24 h | 6990 | 5741 | – | – | – | – | – | – | 2140 | 2.77 × 10−5 | 0.77 |
A1124–1 h | – | – | 3381 | 1.19 × 10−8 | 0.84 | 4.2 × 109 | 8.7 × 10−6 | 0.74 | 92,037 | 5.2 × 10−7 | 0.48 |
A1124–6 h | – | – | 2933 | 3.3 × 10−8 | 0.78 | 72,304 | 2.0 × 10−5 | 0.42 | 15,867 | 9.4 × 10−8 | 0.87 |
A1124–24 | – | – | 2219 | 2.67 × 10−7 | 0.65 | 21,183 | 2.48 × 10−7 | 0.80 | 7342 | 3.06 × 10−7 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malekkhouyan, R.; Paint, Y.; Prince, L.; Gonon, M.; Olivier, M.-G. Controlling Lateral Size and Thickness of Layered Double Hydroxide (LDH) Used as Conversion Layer for Corrosion Protection of AZ31 Mg Alloy. Corros. Mater. Degrad. 2023, 4, 174-195. https://doi.org/10.3390/cmd4010011
Malekkhouyan R, Paint Y, Prince L, Gonon M, Olivier M-G. Controlling Lateral Size and Thickness of Layered Double Hydroxide (LDH) Used as Conversion Layer for Corrosion Protection of AZ31 Mg Alloy. Corrosion and Materials Degradation. 2023; 4(1):174-195. https://doi.org/10.3390/cmd4010011
Chicago/Turabian StyleMalekkhouyan, Roya, Yoann Paint, Loïc Prince, Maurice Gonon, and Marie-Georges Olivier. 2023. "Controlling Lateral Size and Thickness of Layered Double Hydroxide (LDH) Used as Conversion Layer for Corrosion Protection of AZ31 Mg Alloy" Corrosion and Materials Degradation 4, no. 1: 174-195. https://doi.org/10.3390/cmd4010011
APA StyleMalekkhouyan, R., Paint, Y., Prince, L., Gonon, M., & Olivier, M. -G. (2023). Controlling Lateral Size and Thickness of Layered Double Hydroxide (LDH) Used as Conversion Layer for Corrosion Protection of AZ31 Mg Alloy. Corrosion and Materials Degradation, 4(1), 174-195. https://doi.org/10.3390/cmd4010011