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Abstract: Molecular inhibitors added to the corrosive medium attacking metallic materials are a
well-established way of combating corrosion. The inhibitive action proceeds via adsorption of the
inhibitor on the surface to be protected. Aromatic building blocks in the inhibitor play a major role
in its protective action, and further details like substituents, heteroatoms, and molecular geometry
contribute. An overview focused on aromatic inhibitors is provided, aiming at the identification
of particularly promising inhibitors and their mode of action. Directions for further research and
development are pointed out in the conclusion.
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substituent effects

1. Introduction

Attempts and methods to meet the huge challenges posed by corrosion of all forms,
but particularly of metals, by corrosion protection are numerous and have been well devel-
oped into many different approaches as described in several monographs and extended
reviews [1–16] and as frequently highlighted in contributions in this journal. Depending
on the details of the material or system needing protection, corrosion inhibitors may be a
practically relevant or even attractive option; sometimes their use may be the only option.

For systems with large amounts of circulating water as a heat transfer medium (power
stations, air conditioners, heat exchangers, water-cooled engines [17]), dissolved inhibitors
added to the circulating medium at concentrations as small as possible can slow down the
metal dissolution (anodic protection) and/or the hydrogen evolution/dioxygen reduction
(cathodic protection). Possible inhibitors must be sufficiently soluble in the circulating
medium (water); they should be economically viable, must have sufficient chemical stability
under operating conditions (i.e., at elevated temperatures), and must be environmentally
compatible. This obviously includes a level of toxicity that is as low as possible (see
also [18]). For the latter reason, “green inhibitors” [11,19,20] obtained from natural sources
(plants) have attracted growing attention in recent years; their natural origin is assumed to
be an indicator of inherent environmental compatibility. The latter term is also applied to
inhibitors prepared following “green synthetic routines” or prepared from precursors or
raw materials claimed to be green [21]. Possibly, an “eco-addition inhibitor” prepared as a
plant extract may also be called a green inhibitor [22].

In some applications, major changes in concentration of the inhibitor must be taken
into account; e.g., in a cooling tower, some of the heat to be dissipated into the environment
is released by evaporation of water, leaving a significantly higher concentration of the
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inhibitor (which is assumed not to be volatile under the operating conditions), which
should not precipitate or cause any other undesirable effects. Similar reasons must be
considered when looking for inhibitors suitable for temporary protection by spraying
or dipping of large items during manufacturing and construction (see e.g., [23]). They
also must be kept in mind when application as a volatile inhibitor is intended [24–26]
as well as when packing paper impregnated with volatile inhibitors is considered [27].
Although corrosion in aqueous environments should generally be inhibited, there are
further applications in industry where corrosion in oil or other hydrocarbons circulating in
a refinery (see e.g., [28]) poses a challenge for inhibitors with slightly different properties
better adapted to the different solvent environment [29]. The influence of the inhibitor on
the wetting behavior is important; several metal salts of sulfo- and nitro-alkyl-aromatic
compounds were found to be most effective. In particular, aromatic compounds may pose
problems as contaminants in runoff water [30–32], in water produced in the oil industry [33],
and in the environment [34].

Inhibitors mostly act by adsorptive interaction with the surface to be protected [35–38];
some of them form coatings, i.e., passivating layers, on the surface [39]. In a review called
by the authors advanced and critical for reasons hard to find, many aspects of corrosion
inhibitors have been addressed [40].

Whether frequently invoked films are just adsorbate layers or multilayer arrangements
is left open in most cases; thus, this detail is addressed below only when the presented
evidence warrants this. The interaction needed for adsorption is supported by electron-rich
heteroatoms, functional groups, and moieties at the molecules to be adsorbed. According to
a literature survey, electron-withdrawing groups/substituents seem to decrease inhibition
efficiency [41]. Given these general observations, it is not surprising to note that Hammett
parameters have been considered in regard to any correlation between their values for a
given molecule and its inhibition efficiency [41,42]. The authors conveniently ignore that
Hammett parameters are derived from kinetic measurements and are primarily intended for
understanding of reaction kinetics in organic chemistry. Despite these inherent limitations,
Hammett and Taft substituent constants have been discussed with respect to inhibitor
performance [43].

Inhibitors containing aromatic units [44] like substituted benzenes have attracted at-
tention because of their various adsorptive interaction possibilities, as indicated in Figure 1,
where p-phenylenediamine is taken as an example.
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Figure 1. Conceivable modes of interaction of p-phenylenediamine with a surface, for details see text.

The lone electron pairs of the nitrogen atoms in the amino substituents, the double
bonds of the aromatic ring (both in (a)), and the π electrons of the aromatic ring system
(b) may interact with the surface to be protected. In case of e.g., iron, this may involve
vacant d-orbitals, but empty d-orbitals are no prerequisite for adsorption (see e.g., zinc) The
importance of aromatic electron systems as well as the presence of heteroatoms supporting
adsorptive interactions has been highlighted elsewhere [45–47]. In a typical example,
inhibition of aluminum corrosion by a linear (linalool) and an aromatic (eugenol) inhibitor
molecule were compared; the aromatic one performed significantly better [48].

Depending on the composition of the corrosive medium (the electrolyte solution), a
further option may be relevant. Anions, in particular halide ions, may be adsorbed on the
metal surface first. Now positvely charged cation species including inhibitor molecules
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may adsorb on the surface. Depending on the specific conditions, electrostatic interactions
as well as chemisorption may be active [49]. Such interactions have been studied with
numerous experimental methods, in particular with spectroelectrochemical techniques [50].
Despite the broad availability of these tools, they have rarely been used in reported cor-
rosion studies, leaving the explanation of observed effects and efficiencies on a rather
speculative level. This is particularly regrettable when particular substituents known for
adsorptive interactions (as “anchoring sites” [51]) may be inspected easily with in situ
vibrational spectroscopies. A notable exception has been reported [52]. Adsorption of
several sulfur-containing aromatic corrosion inhibitors was examined with surface en-
hanced Raman spectroscopy (SERS). Strong sulfur–iron σ bonds were observed, in addition
to evidence of interaction between π electrons of the aromatic ring systems and the iron
surface. Another application of SERS on CO2 corrosion has been reported [53]. Quasi-
complementary in situ infrared spectroscopy was used to monitor adsorption of aliphatic
and aromatic carboxylic acids suggested as corrosion inhibitors for magnesium [54]. In
both cases, the carboxylate groups acted as anchoring sites, but whereas the aliphatic acids
were oriented perpendicularly at the surface, the aromatic ones were oriented in plane
with the metal surface. This orientation provided a further interaction option for the π

electrons of the aromatic system, enhancing adsorption and thus inhibition. Further non-
electrochemical (sometimes called non-traditional) methods have been used in corrosion
inhibition studies, like the electrochemical quartz crystal microbalance [55,56]. As with
traditional methods, their results provide only a quantitative picture, not more.

More recently, tools of theoretical chemistry have been applied to investigate possible
and the most effective adsorbate geometries; for an example unfortunately lacking experi-
mental verification, see [57]. This molecular view of adsorptive interaction can be put into
a broader perspective when considering these interactions as follows:

• The attraction between charged as well as neutral molecules and metal through elec-
trostatic forces;

• The interaction of the metal with lone electron pairs in the molecule;
• Interactions of π electrons with metal;
• A combination of the first three possibilities.

Further considerations apply to corrosion inhibitors in more general terms:

• Sufficient solubility;
• Environmental compatibility;
• Nontoxicity;
• Cost and sustainability;
• Chemical stability in the particular environment.

Aromatic molecules with functional substituents supporting these various modes of
interaction have attracted attention accordingly, although in a report on molecular structural
aspects of organic corrosion inhibitors, this detail appears to be barely noteworthy [58].
The particular function of the –SH substituent has been reviewed [59]. In addition, the
substituents frequently also affect solubility. Typical examples of application have been
reported, see e.g., benzoic acid and its derivatives in [60]. An early general discussion of
inhibition mechanisms included iron, addressed among other compounds also including
aromatic ones and their electronic properties [61]; further compounds and mixtures were
studied later [62]. As a result, for a given group of amino- and thiobenzenes, relative
inhibition efficiencies were estimated. In a follow-up attempt searching for correlations
between molecular properties and inhibition efficiencies, high-resolution NMR spectra
of some amine inhibitors in a cyclohexane solution were recorded [63]. A correlation
between the chemical shift of the amine protons and inhibition efficiencies was noticed
and tentatively related to electron density at the nitrogen and subsequently adsorptive
interaction with the metal surface. On the molecular structure level, substituents and
their relative position at an aromatic ring were used to explain the observed NMR shifts.
Correlations between chemical shifts in 13C and 1H NMR spectroscopy with four aromatic
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heterocyclic copper corrosion inhibitors were studied [64]. Conclusions were diffuse;
apparently, the method may just help to distinguish effective from non-effective compounds.
A similar study focusing on 15N unfortunately yielded a similarly diffuse output [65].

In the following overview, proposed and investigated compounds are presented. Rele-
vant data and results, in particular inhibition efficiencies expressed as a percentage of the
corrosion current with/without inhibitor present and associated inhibitor concentrations,
as well as solubility and stability data are reported as far as available. Obvious statements
like increasing inhibition with increasing inhibitor concentration are not repeated; the same
applies to the practically always-communicated temperature dependency of inhibition
efficiency. In cases where the authors provide any argument for the selection of a par-
ticular molecule or its synthesis, these are specifically mentioned; quite obviously, such
considerations elsewhere called rational design are highly unusual in corrosion research.
For a typical example marred by even more flaws and riddles, see [66]. Compounds are
organized following the identity of the main building block, i.e., substituted benzenes first,
followed by six-membered heteroatom-containing compounds, and finally, five-membered
aromatic rings. The majority of reported aromatic corrosion inhibitors have been studied
with respect to their corrosion inhibition efficiency on iron and its alloys; there are also
examples for other metals like copper and aluminum. Examples not pertaining to iron and
its alloys (Designations of alloys are apparently not stated in an internationally accepted
format, sometimes they are just called by naming the majority metal. To avoid confusion
the term alloy is always inserted when required irrespective whatever in the original report
has been stated.) are collected at the end of the respective section or subsection dealing
with a specific class of aromatic compounds, when possible. An overview of corrosion
inhibitors for copper and brass is available [67].

Several literature searches executed in preparation of this review, always using the
term “aromatic”, certainly and most unfortunately must have failed to identify any reports
on such compounds wherein the term was mentioned nowhere in the title, abstract, or
keywords. In many cases, rather complicated new molecules have been synthesized
without providing any argument for this approach. Similarly disturbing is the observation
that differences in inhibition efficiency were noticed without even the slightest attempt to
understand and to explain them. The plain fact that in most studies, no reason is provided
for the synthesis of further molecules considered to be corrosion inhibitors (not always the
outcome of the experimental study) is equally surprising. Because corrosion is always the
combination of anodic metal oxidation and dissolution combined with a cathodic reaction,
either being the electroreduction of dioxygen or the reduction of protons from the corrosive
environment, the presence or absence of dioxygen in a corrosive environment may be
relevant in case an inhibitor influences these cathodic processes in distinctly different
ways. Accordingly, a statement in the experimental part of a report stating clearly whether
solutions have been saturated with air or (less frequently) plain dioxygen or with an inert
gas would be welcome. The majority of studies pertain to the latter case, but even in an
article with a title suggesting a study with aerated solution [68], this relevant detail is
nowhere mentioned in the experimental part.

Inhibition of stress corrosion cracking of stainless steel by aromatic and heterocyclic
inhibitors has been studied [69]. The use of corrosion inhibitors in self-healing protective
coatings on magnesium alloys has been addressed [70]; aromatic ones performed slightly
better, although the reasons were not specified. Organic acids as corrosion inhibitors in
engine coolant fluids have been reviewed [17].

The influence of several inhibitors including aromatic ones on current oscillations has
been studied [71]. Corrosion of aluminum by methylene chloride has been studied [72];
aromatic compounds did not show particularly high inhibition effects, possibly due to
the completely different reaction mechanism. Corrosion protection for a magnesium alloy
possibly of interest in the automotive industry was studied [73]. From the wide selection
of inhibitors including aromatic ones, a mixture of sodium phosphate and dodecylben-



Corros. Mater. Degrad. 2024, 5 517

zenesulfonate was finally identified as being best, for reasons not exactly revealed to
the reader.

In a wide-ranging study of the influence of chemisorbed organic monolayers on the
oxidation of electrode surfaces, a sequence of strength of chemisorption with aromatic
compounds featuring prominently was reported [74]. Since the studied metals were
all noble metals, the conclusions may be of limited value with respect to corrosion of
non-noble metals.

An attempt to correlate electronic structure and inhibition efficiency was reported
for mild steel in acidic solutions [75]; see also [76]. In an earlier study, these authors
noticed a correlation with the HOMO-LUMO energy difference [77]. Now, as an additional
parameter, planarity of the inhibitor molecules is taken into account. Planar molecules—
and these are frequently aromatic—protect better than saturated ones (which are frequently
twisted, i.e. non-planar). A critical reexamination of suggested correlations between many
electronic molecular parameters and corrosion inhibition efficiency was provided [78]. The
conclusion, based on a consideration of a significant number of empirical examples, was
devastating; no correlations could be verified.

The briefly reviewed considerations basically follow an approach commonly known
as quantitative structure–Activity relationships (QSARs) [79]. A similar study looking for
structure–activity correlations with aluminum as the subject was conducted [80].

1.1. Substituted Benzenes

Benzene itself is practically immiscible with aqueous solutions at all pH values. Re-
quired solubility must be afforded by suitable substituents, preferably with heteroatoms like
in amino or carboxylic groups. The anionic surfactant dodecylbenzenesulphonate showed
considerable inhibition with pure aluminum and some of its alloys, up to 95% at 10 mM con-
centration with significant agreement between the results of weight loss, impedance, and
PPM measurements [81]. Although the free enthalpy of adsorption was low, suggesting ph-
ysisorption only, the typical surfactant-like behavior may have contributed to this efficiency.
Aromatic dicationic surfactants with various chain lengths have been tested as corrosion
inhibitors for carbon steel; up to 97% inhibition at 250 ppm inhibitor concentration was
found at an intermediate chain length [82]. The quaternary ammonium sites, heteroatoms,
and the aromatic electron system certainly contributed to adsorption and inhibition, but the
authors remained silent on this. Substituted ammonium cationic surfactants were inspected
for the influence of wettability and molecular structure [83]. Somewhat confusingly, in-
hibitor coatings—in a slight deviation from the commonly established meaning of inhibitor
in corrosion science—are mentioned; the statement “the synergistic inhibition effect and
the anticorrosion efficiency” remains completely mysterious.

Benzene para-substituted with various groups and with S-CH2OCH3/ Se-CH2OCH3
showed generally higher inhibition with the selenium compounds, although reasons were
not provided [84,85]. Several substituted benzoic acids were compared as corrosion in-
hibitors for aluminum in alkaline solution [86]; m-bromo benzoic acid performed best at
500 ppm concentration, with 81% inhibition.

Nitrones with two substituted phenyl rings were tested as corrosion inhibitors for
mild steel in organic acid media at inhibitor concentrations ranging from 50 to 150 ppm [87].
Although no inhibition efficiencies were stated, it could be derived from the displayed
figures that in formic acid at 750 µM inhibitor concentration (different from the numbers
stated in the text), efficiencies reached with the best inhibitor were 93%, in acetic acid 81%.
Chalcones with further azo linkages were tested as corrosion inhibitors [88]; the highest
inhibition (87% at 400 ppm inhibitor concentration) was observed with a nitro-substituted
chalcone.

In a report on corrosion inhibition by an inclusion product of dibenzylthiourea DBT
(more precisely 1,3-dibenzylthiourea) with hydroxypropylated cyclodextrins, solubility
issues overcome by the inclusion were stated as a reason for this added complication [89].
Surprisingly, such solubility issues had not been observed by earlier authors (see e.g., [90]),
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and some of them were conveniently ignored in the report. Somewhat surprisingly, later in
the report, inhibition by plain DBT was reported (despite the claimed solubility problems)
with an efficiency of 85%, only slightly lower than with the inclusion material at 92%. There
are more inconsistencies in the report. Elsewhere, a group of 1-benzoyl-3,3-disubstituted
thiourea derivatives was studied for corrosion inhibition performance [91]. Solubility
issues were not mentioned. The highest inhibition of 97% was found at 100 ppm inhibitor
concentration for 1-benzoyl-3,3-dibenzylthiourea. The fairly diffuse explanation of both
physisorption and chemisorption being operative and an unspecified correlation with
aliphatic and aromatic substituents is not really helpful. Upon closer inspection, it appears
that benzyl instead of phenyl substituents are more flexible, enabling better adsorptive
interaction with the metal surface. This is supported by the larger absolute value of ∆Gad.

A mixture of cationic ammonium surfactants synthesized from reformate (a petroleum
fraction) provided corrosion inhibition by adsorption for carbon steel in aqueous 1 M
HCl [92].

Among several amides and amines studied for hydrogen sulfide corrosion protection,
aromatic benzylpropanediamine performed best [93]. Disubstituted aminobenzenes had
been studied earlier [94]; selected compounds are depicted in Figure 2.
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Figure 2. Disubstituted benzenes studied by Babu et al. [94].

The amino group was protonated in the acidic 1 M HCl-electrolyte solution used in
this study. According to Hackerman and Makrides [95], deprotonation happens upon
adsorption; thus, the amines are adsorbed instead of the ammonium ions. Similar ob-
servations have been reported for e.g., the adsorption of aniline on various metals from
acidic solutions [96,97]. This differed from a report on the inhibition activity of 18 aro-
matic amines on mild steel, wherein adsorption of the ammonium (i.e., anilinium) ion
via the nitrogen atom of the protonated amino group was claimed [98]. Depending on
the actual electrode potential of the studied metal and the composition of the electrolyte
solution, adsorption of e.g., chloride ions may happen. On top of this adsorbate layer,
anilinium ions were reported to be adsorbed in a rather perpendicular orientation based
on spectroelectrochemical evidence; the surface Raman spectrum showed mostly in-plane
vibrational modes [49]. Contributions from the aromatic ring system(s) were not invoked;
instead, the surface area actually covered by an adsorbed molecule was stated as the main
influence, with larger areas affording better protection. Blomgren and Bockris instead
suggested adsorption of the ammonium ions, with the interaction between π electrons of
the aromatic ring system providing the driving force [99]. Results based on Tafel evaluation
(see below and [100,101]) suggested the highest inhibition efficiency of 90% for OPD at
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12 mM concentration. This compound also performed best at the lowest studied concen-
tration of 2 mM. Unfortunately, earlier predictions [61] regarding a higher efficiency of o-
than m-toluidine could not be verified. Specific health risks associated with o-toluidine
have been discussed in detail [102]. Neither was the predicted [41,42] particularly poor
performance of nitro-compounds noticed. In subsequent studies aimed at verification of
these results via further standard techniques (linear polarization resistance and impedance
measurements), the concentration effect for PPD was verified [103], while the substituent
effects suggesting PPD as the most efficient among the para-substituted compounds was
confirmed in [104]. In both studies, results obtained with the Tafel approach did not agree
very well with those of the other methods. In a comparison of six o-substituted anilines as
corrosion inhibitors for copper, o-ethylaniline performed best [105]. This was attributed
to the higher repelling power of the ethyl group in comparison to the other substituents.
In an earlier study with iron and a slightly different selection of substituted anilines, 2-
ethoxyaniline performed best [106]. This was ascribed to the presence of oxygen in the
second substituent enhancing adsorption and thus protection. Substituted anilines were
examined as corrosion inhibitors for an Al-Mn-alloy in phosphoric acid [107]. Plain aniline
performed best; adsorptive interaction via the electrons at the amino nitrogen and the aro-
matic π electrons was suggested as the mode of action. At low pH values, some substituted
anilines performed better than aniline. Isomeric toluidines were examined as corrosion
inhibitors for aluminum alloy 3S in chloroacetic acid [108]. m-toluidine performed slightly
better than the other compounds, and this was also observed with aluminum alloy Al-57
S [109]. Several p-substituted aromatic amines were compared as inhibitors for aluminum
alloy 1060 [110]. p-amino benzoic acid performed best because of the electronic effect of
the carboxylic acid in the p position. In a comparative study of aliphatic and aromatic
amines as inhibitors for aluminum 2S alloy, it was noticed that ternary amines with an ethyl
instead of a methyl group showed higher inhibition effects [111]. Further effects of alloy
ingredients in another aluminum alloy were examined with these inhibitors; no significant
effects of the alloy ingredients were reported [112], and results were corroborated with
a further study with a wide selection of aromatic and non-aromatic inhibitors that also
included corrosive aqueous alkaline solutions [113]. Secondary aromatic amines (actually
N-substituted p-toluidines) were examined as copper corrosion inhibitors [114]; a methyl
group in the 5 position of the 2-furfuryl substituent yielded the most efficient inhibitor.
Whether type and position of the substituent had any effect of the electronic properties
of the furfuryl ring and its contribution towards adsorption on the copper surface was
not addressed. In aqueous extracts from cigarette butts containing many other ingredi-
ents, aromatic amines showed high levels of protection [115]. Results for further, more
highly substituted amines were reported in a study ignoring the state of the art [116], in
which 5-nitrobenzene-1,2,4-triamine performed best, providing 94% inhibition at 10 ppm
inhibitor concentration.

Epoxidized linseed oil modified with aniline and various substituted anilines was
tested for corrosion protection of mild steel in solution and in the gas phase [117]. Inhibition
efficiencies were as high as 86 to 95% at concentrations of 100 ppm in the gas and 50 ppm in
solution. p-anisidine-modified material performed best, and efficiency correlated with elec-
tron density on the nitrogen atom, as derived from NMR measurements. Since protection
proceeded via adsorbed molecules, this suggested a relation between electron density and
adsorption. The electronic effect is based on the conjugated electron system of the aromatic
ring. Chemically related epoxidized soybean fatty acids/p-substituted aromatic amines
have been suggested as corrosion inhibitors in UV-curable steel coatings [118].

In a study with steel QD36, p-anisidine showed the highest inhibition efficiency, greater
than that of aniline and p-toluidine [119]. For copper in nitric acid thioglycolic acid, o-
anisidine and quinoline showed very similar inhibition efficiencies [120]. Why quinoline
was called a weak inhibitor when it performed better than o-anisidine remains mysteri-
ous. Some corrosion inhibition by o-toluidine (the authors call it “ammonium iron” and
“2-amino-1-methylbenzene”) with steel C35 in aqueous 0.5 M H2SO4 was observed [121].
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Anisidines and phenylenediamines were compared as corrosion inhibitors for mild steel in
aqueous HCl [122]. p-phenylenediamine performed best among its isomers, as confirmed
in [104], and m-anisidine was most effective among its isomers; there is no straight dis-
agreement with [119] because in that report, only p-substituted compounds were compared.
Condensation products (i.e., Schiff base, discussed further below) of p-phenylenediamine
and various aromatic aldehydes were studied as corrosion inhibitors for mild steel and
oil-well steel at 105 ◦C [123]; 2,4-dicinnamyledene aminophenylene (Figure 3) performed
best at 5000 ppm inhibitor concentration, which was attributed to the conjugated double
bonds in the linker groups. Flat or linear structures in turn enabled by the aromatic building
blocks also support good adsorption.
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In a similar report by the same authors, further condensation products of thiosemicar-
bazide and aromatic aldehydes were examined, and 1-cinnamaldehyde thiosemicarbazide
was most effective [124]. No attempt was made to explain this finding.

The corrosion inhibition properties of aniline unit-containing epoxy monomers with either
an oxygen or a sulfur linkage at the aromatic ring have been examined [125]. The difference in
efficiency, already small in the Tafel evaluation and even smaller (about 1 percentage point) from
the impedance measurements, was explained with the results of the very extensive theoretical
calculations. For further details, see the companion reports [126–129], and for similar examples
by the same authors, see [130,131]. Inhibition by another epoxy polymer was studied [132].
The inhibition by the fraction of the prepared polymer soluble in the corrosive medium was
examined, and this solubility was found to be in the micro- to millimolar range. At 1 mM,
potentiodynamic polarization yielded 98% inhibition. Why a value of 96% found with the
impedance measurements was better remains mysterious.

Inhibition by four amines with two differently functionalized phenyl substituents was
reported [133], and the compound with a nitrile substituent performed best. Although
theoretical data suggest flat adsorption of the molecules on an idealized Fe(110) surface,
steric hindrances seem to limit the interaction between the two aromatic ring systems
and the substituents with the surface, given the moderate efficiency values. Aminos-
tyrene provided only moderate protection [134]. Compared with plain aniline, the vinyl
group provided some improvement, possibly due to enhanced adsorption supported
by the additional unsaturated bond. Among several substituted quinolin-6-amines, 7-
(1-vinylhex-5-en-1-yl)quinolin-6-amine performed best with 97% inhibition at 0.2 wt.%
inhibitor concentration [135]. The performance was better by about 10% compared with
that of aminonaphthalene, which was attributed to extended substituents with double
bonds supporting stronger adsorption.

Inhibition activity of several amines for zinc in aqueous HCl has been studied; beyond
general observations like a lower rate of corrosion at higher inhibitor concentration, no
conclusions have been reported [136]. Corrosion protection for brass was studied, with
a wide variety of substituted anilines supporting the applied cathodic protection [137].
Significant effects of applied cathodic potential protection on the actual efficiency of in-
hibitors were noticed, some corrosion accelerators turned into inhibitors, and vice versa;
these effects were explained with inhibitor adsorption as a function of electrode potential.
Inhibition of brass corrosion in aqueous nitric acid without externally applied potential
was compared for several aromatic amines [138]. Anthranilic acid protected best; this was
attributed to the electronic effects of the substituents that in turn influenced adsorption
on the metal surface. Protection of brass by several aromatic amines without applied
cathodic protection has been compared [139]. The protection works in a very different
way by inhibiting formation of nitrous acid which in turn attacks the alloy. o-substituted
compounds like o-chloroaniline perform best because they accelerate the diazotization rate.



Corros. Mater. Degrad. 2024, 5 521

Adsorption of the amine may play a role also. Particular effects of the aromatic moiety were
not addressed. In a further study of protection for brass with aromatic amines, o-anisidine,
o-toluidine, and o-phenetidine were compared [140]. With a longer substituent chain, the
inhibition increased.

Corrosion inhibition on nickel by several amines including three aromatic ones was
studied, although the results did not suggest specific effects of the aromatic moieties [141].

In a theoretical study of the corrosion protection provided by a few o- and p-substituted
anilines, higher protection by p-substituted ones was claimed based on calculated dif-
ferences in dipole moments that were hardly visible with the small selection of com-
pounds [142]. A further substituted aniline 3-amino-2-methylbenzylalcohol has been tested
as a corrosion inhibitor for mild steel [143]. Inhibition of 50% at 500 ppm inhibitor concen-
tration was not spectacular and deteriorated after 24 h, and addition of up to 5 mM NaI
increased this value to 80%. Although further results of theoretical considerations were pre-
sented, the reason for the beneficial effect of the iodide ions was not mentioned. Presumably,
iodide is adsorbed (like chloride in similar systems) first and provides interaction sites for
increased inhibitor adsorption. Quaternary ammonium salts with a palmic acid chain and
ethoxylated aniline and two further -CH2CH2OH-rests provided 98% inhibition at 200 ppm
inhibitor concentration, according to a hard-to-understand report [144,145]. Experimental
methods for determination of quaternary ammonium salts have been developed [146].

Protective properties of oligomers of several alkylanilines with formaldehyde have been
compared [147]. These are soluble in hydrocarbons as encountered in refineries. They per-
formed better than the respective monomers, and oligomers of 4-vinylpyridine also performed
better than similar monomers [148]. This may have been due to stronger adsorption of the
oligomer and thus, more extensive coverage of the metal surface. Oligomers with anilines
having long-chain alkyl substituents showed up to 99% inhibition at 100 ppm inhibitor
concentration. Polyaniline as well as polymers prepared from substituted anilines (see e.g.,
poly(p-toluidine) in [149] and further polyheteraromatic samples in [150]) including copoly-
mers have been examined as protective coatings; these materials are beyond the scope of this
report. In a comparison of the polymers of isomeric toluidines applied in solution with a
mild steel electrode at concentrations ranging from 100 to 1000 ppm [151], poly-p-toluidine
showed the comparatively highest protection at 69%. Possibly, given the poor solubility of
intrinsically conducting polymers, only some oligomers were dissolved. Coatings, i.e., paints,
containing these compounds (for an example, see [152], for an overview on coatings, see [39])
certainly utilize the aromatic entities within them for enhanced protection once these groups
are close enough to the metal surface to be protected. Although many of these intrinsically
conducting polymers (ICPs) can be deposited electrochemically, coating with chemically
prepared ICPs appears to be more effective because the coatings are homogeneous and are
not more or less rough or cauliflower-like [150]. A sulfonated and thus water-soluble aro-
matic polyamide has been proposed as a corrosion inhibitor for copper, because of a claimed
much better film-forming capability [153]. At 500 ppm inhibitor concentration, an inhibition
efficiency of 92% was found, not better than values reported with molecular inhibitors. In a
similar approach, two chemically different polyesters containing aromatic substituents, being
presumably water soluble (not stated in the report), was tested as a corrosion inhibitor for
steel rebars [154]. Depending on the actual chemical composition of the polyester, inhibition
efficiencies up to 64% at 1000 ppm inhibitor concentration were reported. For a very similar
further example by the same researchers, see [155]. Apparently very water-soluble polyester
derivatives were studied as carbon steel corrosion inhibitors [156], and the phthalate-based
compound was more efficient than the maleate-based one. How π electrons in the benzene
rings of the maleate-based (!) compound helped in adsorption remains a mystery; in the
case of the phthalate-based compound, they certainly contributed to the better performance.
Further polyesters based on the indazole moiety provided significantly higher protection
ranging from 86 to 97% [157].

In a study dealing with hydroquinone with various groups and hydrophobic motifs
as an inhibitor, N-[6-(4-propargyloxyphenoxy)hexyl]-N,N-dimethyl-N-dodecylammonium
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bromide provided 97% inhibition at 15 ppm concentration [158]. Alkyne, hydroquinone,
quaternary ammonium, and a hydrophobic alkyl chain on one molecule were claimed as
reasons for the performance. Three diquaternary ammonium bromide surfactants of the
general structure shown in Figure 4 provided inhibition efficiencies up to 99% at 200 ppm
concentration, showing significant decay within a few days [159].
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Plain 1,4-naphthoquinone as a corrosion inhibitor for aluminum was tested in both
aerated and de-aerated 0.5 M NaCl solutions [160]. Inhibition efficiencies or equivalent
results cannot be found in the report. Chromeno naphthyridines (see Figure 5), being rather
low in toxicity, have been suggested as corrosion inhibitors, reaching 98% inhibition at
300 mg·L−1 inhibitor concentration with R = -CH=CHC6H5 [161]. The numerous het-
eroatoms and the extended aromatic π–electro system suggest a flat orientation of the
adsorbed molecule, also concluded from molecular dynamic simulation.
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Aromatic aldehydes were compared as corrosion inhibitors for aluminum alloy In-
dal 57S in HCl solution, showing rather similar efficiencies and no particular evidence
regarding specific effects of the aromatic moiety present in all of them [162]. In a study
with an alkaline solution of 1 M NaOH, aromatic aldehydes performed better, which was
attributed to the π electrons of the aromatic groups [163]. A correlation between inhibition
and molecular dipole moment claimed elsewhere [142] was explicitly excluded. Although
the aromatic system was identified as the major cause of the much better efficiency of the
aromatic aldehydes, double bonds in substituents were obviously not helpful (as claimed
elsewhere), and this was tentatively attributed to extended conjugation reducing electron
density in the aromatic system, possibly weakening adsorption. Corrosion inhibition by
several aliphatic and aromatic aldehydes for aluminum–manganese alloys in aqueous
KOH solution was evaluated, and salicylaldehyde performed best [164]. Adsorption via
the oxygen of the aldehyde group was proposed, but the obvious beneficial effect of an
aromatic ring was not addressed. Aromatic aldehydes were compared as corrosion in-
hibitors for 70/30 brass [165]. At fairly high inhibitor concentrations of about 2 mL per
liter of electrolyte solution, benzaldehyde was slightly more efficient. In a comparison of
several aldehydes for corrosion inhibition on mild steel, formaldehyde performed better
than benzaldehyde because it formed a protective polymer film [166]. Compared with the
other non-polymerizing aliphatic aldehydes, the much better inhibition by benzaldehyde
was attributed to the presence of the aromatic system in addition to the carbonyl function
further enhancing adsorption and thus inhibition. Two aromatic aldehydes with an azo
linkage connecting a further aromatic system were compared, with a methyl instead of
a nitrile substituent providing a higher inhibition of 93% at 200 µM inhibitor concentra-
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tion [167]. This may have been due to the poorer chemical stability of the latter compound,
with the nitrile group undergoing hydrolysis, yielding a less effective carboxyl group.

Aluminum alloy 56S corrosion protection by azomethines (i.e., Schiff bases) derived
from aromatic aldehydes has been compared [168]. –OCH3-substituted compounds per-
formed better, while all compounds were highly efficient and much better than the corre-
sponding amines. Results obtained with t-cinnamaldehyde (Figure 6) and steel yielded 99%
inhibition but were only at first sight at variance regarding the detrimental effect of a double
bond in the substituent [169]. Closer examination revealed a film-forming reaction as the
mode of protection, instead of adsorption as assumed in the preceding aldehyde-related
examples. Nevertheless, adsorption played a significant role in keeping the film attached
to the steel surface.
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Benzoic acid and ω–benzoyl alcanoic acid were compared as corrosion inhibitors for
steel [170]. The presumed effects of further anions from the electrolyte solution on the
inhibition effects of carboxylic acids were studied [171], and a ranking taking into account
the stability of formed passivating films was suggested, with perchlorate affecting the
stability least and sulfate being most detrimental. The influence of iodide in the corrosive
medium on corrosion protection by various aromatic carboxylic acids has been studied
theoretically and experimentally [172]. A small improvement was observed with iodide
ions present; presumably, adsorbed halide anions enhanced inhibitor adsorption by the
aromatic ring system as well as the carboxylate group. It is noteworthy that the iodide
already provides substantial inhibition.

A much wider selection of aliphatic and aromatic carboxylic acids as inhibitors of
the corrosion of aluminum has been studied [173]. Neither a clear ranking of inhibition
efficiencies nor an explanation for the observed differences were provided. Further related
compounds, described in a somewhat unusual terminology as aromatic acid derivatives,
have been examined for the same purpose [174]. Rankings were proposed, but given the
somewhat unsystematic mix of compounds, the absence of an explanation is no surprise.

Corrosion of an aluminum–copper alloy in phosphoric acid by substituted anilines
was inhibited best by p-toluidine [175]. This was attributed to both resonance and the
inductive effects of the amino and methyl substituents. With increasing acid concentration,
the efficiency decreased as presumably, the protonated form of the inhibitor was adsorbed
less strongly. The same result has been reported elsewhere [176].

Nitro-substituted aromatic compounds hardly protective to iron and its alloys showed
high inhibition efficiency with titanium [177] (for a further example, see [178]), due to the
different mode of protection by passivation of the surface (instead of inhibition of electrode
reactions). For strange reasons, this conclusion escaped the latter authors who carefully
ignored the earlier report. A review of oxide formation on titanium and the conceivable
effects of inhibitors has been published [179]. Nevertheless, a general conclusion regarding
the lack of inhibition properties of nitro-substituted compounds in the protection of steel
is not justified, as demonstrated in the study of a selection of different aromatic nitro
compounds [180]. A protection mechanism invoking the formation of metal–inhibitor
complexes different from simple inhibition by adsorption of an inhibitor is possibly the ex-
planation. Unfortunately, this suggestion is somewhat disturbed by a concluding statement
in the report claiming plain adsorption as the operating mechanism.
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Schiff bases incorporating methoxyphenyl substituents have been tested as corrosion
inhibitors for mild steel [181] and copper (up to 99% inhibition at millimolar inhibitor con-
centrations) [182]. By comparison of the studied molecules and taking into account results
of theoretical calculations in the former case, the better performance of the inhibitor with
an additional aromatic unit was attributed to the enhanced adsorption due to this presence.
Further aromatic Schiff bases have been compared, although structure–efficiency correlations
were not reported [183–189], and while further examples of moderately [190–195] as well
as highly efficient compounds have been presented [196–203], these reports are sometimes
purely theoretical without any experimental verification. In a further study, much higher
efficiencies with mild steel were already observed at low concentrations of 40 ppm [204].
In a study with copper and copper alloys, Schiff bases prepared from salicyl aldehyde and
aliphatic or aromatic amines were compared; unfortunately, in the report, only data pertaining
to aromatic amines can be found [205]. Schiff bases with aliphatic amines accelerated corro-
sion (possible a reason for dismissing them in the report) because of their decomposition in
water, yielding effective corrosion stimulators, whereas those with aromatic amines turned
out to be stable [206]. Those with –SH moieties were more efficient, possibly because of the
capability of this moiety to interact more strongly with copper and its ions. A Schiff base
2-oxo-3-hydrazonoindoline showing structural features of hydrazones and indoline (a relative
of indole, see above) provided 92% inhibition for corrosion of mild steel at 500 µM inhibitor
concentration [207].

Triazole-based Schiff bases were particularly efficient, reaching 95% inhibition at
25 ppm concentration [208]. Attempts to correlate inhibition efficiency of Schiff bases
obtained from p-anisaldehyde and p-substituted anilines with solvatochromic param-
eters remained as inconclusive as the attempt with Hammett parameters [209]. Inhi-
bition efficiency of 90% at 90 ppm inhibitor concentration for the Schiff base (E)-N-(2-
chlorobenzylidene)-2-methylaniline on steel was attributed to the aromatic moiety and
the azomethine group [210]. There appears no rational connection between the many
calculation results of theoretical considerations and observed inhibition. Schiff bases of
the type m-substituted aniline-N-salicylidenes (see Figure 7) are very efficient in terms of
corrosion protection (99% and better at the highest concentration of inhibitor) for zinc [211].
The high efficiency was attributed to the salicylidene part. An extended study of salen as a
Schiff base dye included some considerations of its corrosion inhibition properties [212].
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Figure 7. m-substituted aniline-N-salicylidenes.

Schiff bases prepared with L-lysine and aromatic aldehydes have been recommended
as green corrosion inhibitors for mild steel [213]. To achieve 95% inhibition required
400 mg·L−1 inhibitor concentration. Also taking into account the results of theoretical
considerations, adsorption on the chloride covered metal surface with electrons at the
nitrogen atoms and the aromatic ring systems participating was suggested as the mode of
operation. These inhibitors have been claimed to be green because they are less toxic or
not toxic at all compared with many other Schiff bases. In addition, the present bases can
be prepared from green starting materials. These considerations apply to many reported
Schiff bases.

The sometimes indicated concern regarding the lower efficiency of Schiff bases due to
hydrolysis in acidic solution was addressed in a study of a particularly hydrolysis-stable
compound [214]. High efficiency for mild steel in aqueous 1 M HCl was attributed to
adsorptive interaction of the imine moiety, the other heteroatoms, and the aromatic π
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electron system, and no deterioration within 24 h was observed. Sometimes, addition of
e.g., surfactants enhanced inhibition efficiency [197].

Two more Schiff bases have been synthesized and characterized; their corrosion
inhibition performance was praised but was not even estimated, even less so experimentally
verified [215].

Corrosion inhibitors for aluminum and its alloys have been reviewed [216]. Phenol
was studied an inhibitor in an acidic solution, with a combination of experimental and
theoretical methods showing at best 71% inhibition efficiency [217], confirming earlier
observations with phenol and some substituted phenols [218]. Phenol and further aromatic
hydroxy compounds have also been compared as corrosion inhibitors for zinc, used as
a zinc pigment ingredient in corrosion-protection paint; for comparison, an aluminum
pigment was included [219] (see also [220] for more on aluminum pigment). Several alkyl
gallates (Figure 8), in particular octyl gallate, performed best; this applied also to the
aluminum pigment. The capability to form chelate complexes with zinc ions was suggested
as the relevant inhibitor property.
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For the same purpose, substituted aromatic 2-hydroxyoximes were compared [221].
p-thiocresol showed significantly higher inhibition, possibly due to additional adsorption-

enhancing interactions between the –SH moiety and the metal. The inhibition by benzene-
1,2,4,5-tetracarboxylic dianhydride was very low [222]. In a comparative study of the inhibition
efficiencies of some organic acids for aluminum in aqueous NaOH solution, it was observed
that aliphatic acids interacted, i.e., adsorbed, via the carboxylic acid group whereas aromatic
acids lay flat on the surface [223]. The former mode is less effective, resulting in poor inhibition,
whereas the latter mode is much more effective, yielding a correspondingly much higher
inhibition. Protection of aluminum alloy Al-57S in aqueous HCl by various aromatic amines
(substituted anilines) has been compared [109]. Neither the effects of the type of substituent
(methyl vs. chlorine) nor the position (o- vs. m- vs. p-) were correlated with the reported
inhibition efficiency.

It was reported that 4-phenyl-3-thiosemicarbazide (Figure 9) showed only moderate
inhibition activity with aluminum in 0.1 M HCl solution [224]. Because of the acidic
solution, the nitrogen atoms in the inhibitor were protonated, leaving only adsorptive
interaction with chloride ions already adsorbed on the metal. This interaction appears
to have been relatively weak, as also expressed in the free enthalpy of adsorption with
numerical values (depending on temperature) indicative of physisorption only.
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Figure 9. 4-phenyl-3-thiosemicarbazide.

Corrosion inhibition with aluminum by 3-(10-sodium sulfonate decyloxy)aniline and
its water-soluble polymer has been examined [225]. At 10 ppm concentration, the monomer
and polymer showed roughly the same inhibition efficiency at around 50%. Amides
obtained from aromatic amines and the fatty acid 13-docosenoic acid were examined [226].
Inhibition efficiencies reached 97% at 500 ppm inhibitor concentration, and the aromatic
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compounds performed better than aliphatic ones studied for comparison. Surprisingly, the
expected influence of the long aliphatic chain was not addressed.

Two different aromatic systems have been combined in l-(2-fluorophenyl)-2,5-dimethylpy
rrole and l-(2-fluorophenyl)-2,5-dimethylpyrrole-3-carbaldehyde (Figure 10), suggested as
inhibitors for aluminum [227]. The higher efficiency of the carbaldehyde was noticed, although
an attempt to explain it was not provided. Stronger adsorption caused by the additional
oxygen-containing substituent may possibly have been the reason. Replacing fluorine with
other halogens reduces the efficiency [228]. In one report, the higher efficiency provided by
the carbaldehyde group was attributed to additional condensation on the electrode (formation
of dimers); elsewhere, later authors claimed stronger adsorption instead [216].
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Figure 10. l-(2-fluorophenyl)-2,5-dimethylpyrrole and l-(2-fluorophenyl)-2,5-dimethylpyrrole-
3carbaldehyde.

A particularly efficient compound is 5-bromosalicylaldehyde ethanesulphonylhydra-
zone (Figure 11), yielding 100% inhibition at 10 ppm concentration [229]. Unfortunately,
further experimental data do not enable a coherent interpretation of this effect, and in
particular, of the apparently striking effect of the bromine substituent; with chlorine in-
stead, efficiencies drop to values around 92%. Attribution of this difference to the higher
molecular weight of the former compound remains unclear.
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Figure 11. 5-bromosalicylaldehyde ethanesulphonylhydrazone.

Hydrazones with a furfural moiety at one end and benzene or a substituted benzene at
the other were tested as corrosion inhibitors for C-steel [230]. At micromolar concentrations,
inhibition was poor to moderate. The claimed influence of substituent position (o- vs. p-) at the
benzene end in a fragmentary final statement remains mysterious, because no comparable data
were communicated. Further aromatic hydrazones with inhibition properties less impressive
than the examples mentioned above have been synthesized [231,232]. This also applies to three
other hydrazone derivatives, showing slightly inferior inhibition of up to 95% at 5 mM inhibitor
concentration, despite the considerable numbers of three aromatic rings and several heteroatoms
(see Figure 12) [233]. The confusion between hydrazides and hydrazones prevailing in that
report can easily be resolved by consulting a handbook of chemistry.
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The aromatic hydrazide derivative 2-(3,4,5-trimethoxybenzylidene)hydrazinecarbothio
amide tested as a corrosion inhibitor for mild steel provided 90% inhibition at 0.8 mM
inhibitor concentration [234]. Given the number of heteroatoms in the molecule and
the presence of an aromatic system, the speculation of the authors about adsorptive in-
teractions involving these contributions appears to be reasonable. Further hydrazides
with aromatic moieties have been compared [235], with the highest inhibition of 94% at
500 ppm inhibitor concentration of cinnamic acid hydrazide. A further 2-hydroxy-N′-
((thiophene-2-yl)methylene)benzohydrazide with even better 98% inhibition at 400 µM
inhibitor concentration has been reported [236]. Slightly lower inhibition was observed
with another benzohydrazide derivative [237], and much lower inhibition of 71% at 1 mM
inhibitor concentration was provided by 4-hydroxyl-N’-[(3-hydroxy-4-methoxyphenyl)
methylidene] benzohydrazide] [238]. In the absence of any explanation in the report, it
may be assumed that the additional double bond in this compound provided a major boost
to adsorption and inhibition, better than the amino group in the much poorer performing
anthranilic acid hydrazide. Further benzohydrazide derivatives have been evaluated,
yielding in the best case 92% inhibition at 150 µM inhibitor concentration in the presence
of 10−2 M added KI [239]. According to the authors, added iodide adsorbed on the metal
surface enhances cationic species adsorption, although which cationic species are meant
remains open; possibly, the inhibitor molecules can be protonated, yielding cationic species.
Corrosion inhibition by two sulfonohydrazide derivatives has been studied; unfortunately,
the benefit of the added sulfonyl group was not discussed and neither was the claimed
strong correlation between theoretical and experimental data evident [240]. That report
contained an overview of hydrazides as corrosion inhibitors. An extended theoretical study
of many hydrazides, including a comparison with some Schiff bases, provided long lists of
numerical values and calculated inhibition efficiencies but unfortunately, no experimental
support [241]. The same limitations apply to theoretical considerations of “new possible
biobased gemini corrosion inhibitors derived from fatty hydrazides” [242].

Phenylcarbamodithioate suggested as an inhibitor provided 86% inhibition at
500 ppm concentration [243].

In a comparison of corrosion inhibition on steel by several sulfoxides, several aromatic
ones (see Figure 13) were included [244].
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These compounds act as secondary inhibitors, i.e., the sulfides formed by their chem-
ical conversion are the actual inhibitors. Because of conjugation effects of aromatic sub-
stituents the electron density on the sulfur is slightly lowered and adsorption thus weaker,
but possibly electronic interaction between one of the two aromatic ring systems with the
metal surface may contribute to stronger adsorption [244]. Nevertheless, alkyl-substituted
sulfoxides are more efficient.

In aluminum–air batteries, inhibition of corrosion and hydrogen evolution are of
considerable interest. Benzoic acid, isophthalic acid, and trimesic acid were compared [245].
Why benzoic acid performed best was not revealed.

Self-assembled monolayers (SAMs) have been suggested as possible corrosion protec-
tion [246–252]. Because of the high affinity of the frequently sulfur-containing molecules
forming SAMs on copper, studies have focused on protection of this metal [253]. A compara-
tive study of SAMs formed from benzenethiol, 2-naphthalenethiol, or 4-acetamidothiophenol
(see Figure 14) copper reported some inhibition [254–256]. In another hard-to-follow re-
port with numerous internal contradictions, inhibition of copper corrosion by SAMs of
2-naphthalenethiol, p-chlorothiophenol, and p-toluenethiol was compared [257]. Somewhere
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in the report, all inhibition efficiencies were >99%, while elsewhere, much lower values were
listed. The thiols were present in the electrolyte solution during the corrosion studies, although
with an SAM, there is no need for this. A comparison with plain thiophenol was missing.
Although SAM formation is hardly a simple reversible adsorption, the authors applied a
“Langmuir thermodynamic kinetic model”.
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Figure 14. SAM-forming molecules studied for copper corrosion protection.

SAMs of aromatic aldehyde Schiff bases on carbon steel have been proposed as
corrosion protection [258]. Inhibition around 93% was found. Even higher inhibition
of 99% was provided by an SAM of the Schiff base 2-{[(2-sulfanelphenyl)imino]methyl}
phenol [259]. In cases of Schiff bases proposed for corrosion protection of copper, some
theoretical considerations have been reported [260]. The concept of SAMs has been ex-
panded to ionic copolymers [261]. Aromatic moieties play basically the same role as
with molecular SAMs regarding intermolecular interaction when organizing the SAM and
thus, corrosion protection is not affected by them directly. Different from the molecules
depicted in Figure 14, the 2-benzylthiopyrimidine BTP (see Figure 15) and its parent com-
pound 2-mercaptopyrimidine that were used for the preparation apparently did not form
SAMs [262]. Instead, both molecules presented a perpendicular adsorbate orientation with
nitrogen and sulfur interacting with the iron surface. At 200 µM concentration of BTP,
99.8% inhibition was reported. Taking into account the value of free enthalpy of adsorption
(∆Gad = −50.9 kJ·mol−1) a flat adsorption yielding better surface coverage and participation
of one aromatic electron system and the N and S atom(s) appears to be more likely.
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Tetraphenylphosphonium bromide was identified as a highly efficient inhibitor for
zinc in aqueous 1 M HCl [263]. A highly complex mechanism of protection was suggested,
while further experiments appear to be necessary to specify the role of the aromatic sub-
stituents. Similar high protection effects were reported for aluminum [264]. Overviews
on corrosion inhibition by phosphoroorganic compounds are available [265,266]. Consid-
erations of theoretical chemistry highlighting the influence of the electron density on the
phosphorus atom and the contribution of aromatic electron systems are available [267].
Further phosphonium compounds of the type Ph3PY+X- with Ph = phenyl, X = Br- or
Cl-, and Y = propyl, propargyl, cyclopropyl, allyl, 1,3-dioxolanyl, or cinnamyl have been
tested as corrosion inhibitors for mild steel in aerated acidic solutions [68]. Allyltriph-
enylphosphonium bromide was found to be the most effective, but the difference to the
other compounds was rather small except for tetrabutylphosphonium bromide—which
was actually an accelerator. Improved protection after replacing a methyl substituent with
an aryl substituent in dimethyl-aryl-telluronium cation was attributed to the increased
number of adsorption centers and effective charge density on the heteroatom [268].
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1.2. Substituted Heteroatom-Containing Six-Membered Rings

Heteroatoms like N, S, or P in an aromatic ring system have been frequently identified
as adsorption-enhancing and thus inhibiting promoting options in aromatic six- and five-
membered rings [269]. Numerous substituted pyridines have been examined as corrosion
inhibitors for various types of steel; for examples, see [270]. Apparently, no correlation
between molecular structure, type of substituent, or any other inhibitor property and actual
inhibition efficiency could be found. Generally, it seems that whatever enhances adsorptive
interaction will increase inhibition. DFT studies of several pyridine derivatives as corrosion
inhibitors for aluminum yielded a perpendicular orientation of the adsorbed molecules
via the nitrogen atom; for iron, a flat orientation involving the aromatic electron system
is also conceivable [271]. A linear correlation between chemical (or electronic chemical?)
potential and inhibition efficiency was found, and the same was noticed for the extent
of charge transfer to the metal. In a comparison of inhibition efficiencies of pyridine,
quinoline, and 1,10-phenanthroline (see Figure 16) with mild steel, the latter compound
performed best with 80% at 10 mM inhibitor concentration [272]. This was attributed to
the heteroatoms and the aromatic rings. Presumably, the more extended aromatic system
of the latter inhibitor helped too. Corrosion protection by quinoline-based coatings has
been studied [273]. A further comparison of these N-heterocycles and their N-hexadecyl
derivatives as inhibitors for iron and steel was reported [274]. Better inhibition was found
with a growing number of aromatic ring systems. The derivatives showed even higher
inhibition, attributed to a blocking effect of the hydrocarbon chain hindering access of
corroding species to the metal surface and to an increased electron density on the nitrogen
atom enhancing adsorption. Optical measurements suggested a more dense structure of
the protective layer on steel than on iron, possibly explaining the slightly higher corrosion
resistance at the steel electrode.
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Substituted N-decylpyridinium derivatives have been compared as corrosion in-
hibitors for iron [275]. Chemical identity of the substituent in position 3 influences ef-
ficiency; at room temperature, the hydroxyl group was best, and at 70 ◦C, the carboxyl
substituent was most beneficial. Adsorptive interaction by the oxygen-containing sub-
stituents was suggested as the reason. A wide comparison of quaternary ammonium ions
including substituted pyridines and quinolines as corrosion inhibitors for pure iron has
been reported [276]. Inhibition increases with the number of aromatic substituents. Ad-
sorption of 2-((3-methylpyridine-2-imino)methyl)phenol as a potential corrosion inhibitor
for mild steel has been extensively described, although inhibition efficiencies have not
been reported [277]. A large set of 2-amino-4-aryl-6-substituted pyridine-3,5-dicarbonitrile
derivatives attractive because of their simple chemical synthesis was tested for corrosion
inhibition, with only poor to moderate results [278].

In a comparison of corrosion inhibition on steel by several pyridine and pyran deriva-
tives based on experimental as well as theoretical studies, 2-amino-6-(4-methoxyphenyl)-4-
phenyl-pyridin-3-carbonitrile performed best [279]. The smallest HOMO-LUMO energy
difference corresponds to the highest efficiency. In a comparative study of corrosion inhibi-
tion by several substituted pyridines, a beneficial effect of a vinyl substituent was noticed,
as already seen for the respective substituted anilines [134].

In a theoretical study of three aminopyrimidine derivatives (presumably pirimidine
in the report means pyrimidine) [280], better protection by fewer aromatic compounds
was concluded without any experimental evidence. A further pyrimidine derivative, 5-(4-
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hydroxy-3-methoxyphenyl)-2,7-dithioxo-2,3,5,6,7,8-hexahydropyrimido [4,5-d]pyrimidin-
4(1H)-one, provided 90% inhibition of CO2 corrosion at 20 ppm inhibitor concentra-
tion [281]. Given the aromatic system and the many heteroatoms, the result surprises
slightly. Furthermore, 6-phenylpyridazine-3(2H)-thione provided 96% inhibition for carbon
steel in 3 M H3PO4 at 0.1 mM inhibitor concentration; this was presumably the optimum
concentration, which the authors forgot to specify [282].

In a comparative study of quaternary amines with various aromatic moieties, naphthyl
methyl quinolinium chloride performed best on carbon steel under H2S exposure (sour
corrosion) [283]. This was attributed to the two large (bicyclic) aromatic ring systems with
associated higher electron density. Quinoxaline-based inhibitors with different substituents
for a zinc–aluminum alloy [284] and for bronze [285] were prepared and compared. No
significant differences between the four inhibitors were found in the former case; in the
latter case, small differences apparently did not suggest speculations about structure–
efficiency relationships. The status of quinoxaline derivatives as corrosion inhibitors has
been reviewed [45].

In a comparative study of substituent effects on the corrosion protection capabilities of
substituted pyridines, those with acceptor substituents were recommended as being most
likely to be more efficient [286]. Three oxaldehydes (i.e., pyridoin, benzoin, and benzyl)
were compared as corrosion inhibitors for mild steel [287]. Beyond the bland statement
that these molecules are good inhibitors, the claimed advantages of the theoretical ap-
proach followed is noteworthy because it actually convolutes most of the experimental
results with some calculated molecular properties, leaving common perceptions about
the possibilities of theoretical methods rather disfigured. Several quinazoline derivatives
have been synthesized, starting with benzoxazinone, and have been evaluated as corrosion
inhibitors [288]. Protection was claimed; unfortunately, communication of any numerical re-
sult was overlooked. Several 1,3-benzoxazines have been compared as corrosion inhibitors
and biocides [289]; the best inhibition reached 97% at 100 mg·L−1 inhibitor concentration.

In a comparative study of N-heterocyclic aromatic amines, simple piperidine and piper-
azine were found to be more effective inhibitors than their substituted derivatives [290].
The better inhibition by piperazine (88% instead of 82% at the same inhibitor concentration)
was attributed to the presence of two nitrogen atoms in the ring instead of only one. Het-
eroatom(s) always play a major role in adsorption and thus, inhibition. More moderately
efficient piperazin-based inhibitors have been reported [291].

Several pyrazolopyrimidine derivatives (see Figure 17) have been studied as corro-
sion inhibitors for copper, with the mercapto compound yielding highest inhibition [292].
According to theoretical calculations, the smallest HOMO-LUMO energy difference corre-
sponds to the highest efficiency.
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Figure 17. Pyrazolopyrimidine derivatives.

Further substituted pyrazolones have been prepared and characterized but not tested
as corrosion inhibitors [293].

Schiff bases incorporating pyridine (see Figure 18) have been studied as corrosion
inhibitors for mild steel [294]. At 10 mM inhibitor concentration, inhibition efficiencies
were practically the same at around 99%, only at the lowest studied concentration was the
chlorine-substituted compound slightly better, presumably because of somewhat stronger
adsorption due to the chlorine substituent.
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No reasons for different inhibition efficiencies were provided, and the theoretical 
tools employed sometimes yielded suggestions like “adsorption proceeds by a chemical 
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Schiff bases has been studied [305]. 

In other research, 8-hydroxyquinoline further substituted in position 5 was tested as 
a corrosion inhibitor [306]. Since the plain 8-hydroxyquinoline was not included as a ref-
erence, any substituent effect could not be concluded beyond the observation that chlorine 
at the end of the substituent chain caused a slightly better performance than bromine. 

Research compared 1,3,5-oxadiazinium salts with aliphatic and aromatic substituents 
as corrosion inhibitors for copper [307]. Aromatic substituents caused better inhibitor per-
formance, attributed to their stronger adsorption. 

Quaternary ammonium salts with a wide variety of aromatic moieties have been 
compared as corrosion inhibitors for pure iron and mild steel using impedance measure-
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tion efficiencies well below 90% “excellent” is only one of the mysteries in this report. 

N N

N N
CH3

N N
Cl

Schiff base: R1N=CR2R3

N

OH

N

H

OH

N

OH

N

H

OH Cl

Cl

Figure 18. Benzylidene-pyridine-2-yl-amine and substituted derivatives; the structural motif of a
Schiff base is highlighted.

Schiff bases (for examples as studied in [295], see Figure 19, for further examples,
see [296–304]) have been studied as corrosion inhibitors for aluminum and its alloys in
acidic solutions.
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Figure 19. Representative Schiff bases as studied in [295].

No reasons for different inhibition efficiencies were provided, and the theoretical
tools employed sometimes yielded suggestions like “adsorption proceeds by a chemical
mechanism” again, without even indicating a cause–effect relationship. Biodegradation of
Schiff bases has been studied [305].

In other research, 8-hydroxyquinoline further substituted in position 5 was tested
as a corrosion inhibitor [306]. Since the plain 8-hydroxyquinoline was not included as
a reference, any substituent effect could not be concluded beyond the observation that
chlorine at the end of the substituent chain caused a slightly better performance than
bromine.

Research compared 1,3,5-oxadiazinium salts with aliphatic and aromatic substituents
as corrosion inhibitors for copper [307]. Aromatic substituents caused better inhibitor
performance, attributed to their stronger adsorption.

Quaternary ammonium salts with a wide variety of aromatic moieties have been
compared as corrosion inhibitors for pure iron and mild steel using impedance measure-
ments [276]. Most inhibitors were more effective on pure iron than on the alloy. According
to reports, l-naphthylmethylquinolinium chloride performed best because it had the largest
number of aromatic units in the inhibitor molecule and favorable dielectric properties in the
inhibitor adsorbate layer. In a comparative study of the inhibition efficiency of N-propargyl
derivates of aromatic amines on steel 10, the amine with a p-toluidine group performed
best [308]. This was attributed to an increased electron density on the nitrogen atom caused
by the influence of the methyl group on the toluidine.

Some azine and thiazine dyes (for examples, see Figure 20) have been examined ex-
perimentally and theoretically as corrosion inhibitors [309]. Why the authors call inhibition
efficiencies well below 90% “excellent” is only one of the mysteries in this report.
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Figure 21. 4- and 2-mercaptopyridine. 

1.3. Substituted Five-Membered Hetero-Atom Containing Rings 
Corrosion of stainless steel 304 can be inhibited by thiophene derivatives (see Figure 

22) [314]. Both cathodic and anodic reactions were slowed down but only to a rather mod-
erate extent. [315]. 

 

Figure 22. Some substituted thiophene corrosion inhibitors. 
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Figure 20. Some azine and thiazine dyes.

The QSAR-approach employed also only confirmed the experimental observation that
sulfur-containing dyes performed slightly better. A theoretical investigation of several
substituted triazines was reported [310]. The active sites for adsorptive interaction with the
surface to be protected were the nitrogen atoms and the aromatic rings of the substituents.
Hexahydro-1,3,5-p-aminophenyl-s-triazine was proposed as the most efficient, based in
particular on the DFT-based relatively strongest adsorption; this has been verified exper-
imentally elsewhere [311]. In another study, 1,4-diazines (pyrazines) were reviewed as
potential corrosion inhibitors [312].

Studies of corrosion inhibition by SAMs built from aromatic molecules 4- and 2-
mercaptopyridine (see Figure 21) on iron alloy C-60 have been reported [313]. The stronger
adsorption and higher corrosion inhibition of 2-mercaptopyridine was attributed to forma-
tion of a chelate-like adsorbate structure.
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1.3. Substituted Five-Membered Hetero-Atom Containing Rings

Corrosion of stainless steel 304 can be inhibited by thiophene derivatives (see
Figure 22) [314]. Both cathodic and anodic reactions were slowed down but only to a
rather moderate extent. [315].
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Highly fluorinated quaternary bisammonium surfactants with a furan building block
showed high inhibition up to 98% at 2 mM inhibitor concentration [316]. Why these highly
fluor-containing compounds are claimed to be green and sustainable remains mysterious.

In a study reporting the antibacterial effects of a new pyrrole derivative, its corro-
sion inhibition was examined [317]. At 600 ppm inhibitor concentration in sulfuric acid,
82% inhibition was found, with 84% in hydrochloric acid. The difference was not even
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addressed; possibly, it was due to enhanced adsorption of the inhibitor on top of adsorbed
chloride anions.

Azole-based corrosion inhibitors, i.e., compounds with two or three nitrogen atoms
in a five-membered ring, were reviewed, and some were synthesized to support the
conclusions finally drawn [318]. Triazoles are relative simply to prepare and were able to
reach inhibition >90% at concentrations around 850 µM, imidazoles performed only slightly
worse at 85%. The contributions of the aromatic electron systems and the nitrogen atoms
to adsorptive and thus inhibitive interaction were stressed, and the same observation was
reported for further substituted imidazolines with only moderate inhibition efficiency [319].
Further studied substituted triazoles showed inhibition of up to 99% at 500 ppm inhibitor
concentration [320]. Synergistic effects of two inhibitors 2-amino-4-methylthiazole and
2-(methylthio)imidazole for the protection of galvanized steel were observed [321]; the
effect was attributed to a favorable combination of the two different protection mechanisms
of both inhibitors.

In a comparison of five azoles ranging from indole to 2,1,3-benzothiadiazole, all com-
pounds except for the latter one, which acted as a stimulator (or accelerator), showed inhi-
bition efficiencies around 90% at millimolar inhibitor concentration [322]. Three carbazole
derivatives were compared as corrosion inhibitors, and 6-methyl-2,3,4,9-tetrahydro-1H-
carbazole (Figure 23) performed best [323]. The accompanying theoretical calculations
suggested participation of heteroatoms and aromatic ring systems in adsorptive interac-
tions, providing corrosion protection.
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In a comparison of two corrosion inhibitors for gas and gas condensate environments,
an imidazole-based inhibitor was superior to an amine salt-based inhibitor at concentrations
below 100 ppm [324]. This was attributed to a stabilizing effect of the aromatic imidazole struc-
ture. Substituted imidazoles are frequently encountered as cations in ionic liquids [325,326].
Some of them have also been examined as corrosion inhibitors for various metals with fre-
quently very high inhibition efficiencies; for examples, see [327–333]. The influence of the
chain length of aliphatic substituents at the imidazole moiety on corrosion inhibition has
been studied theoretically [334]. Results suggest a major contribution of the aromatic electron
system in the imidazolium ring on adsorption; the electron density is influenced by the length
of the alkyl chain. At n = 18, an optimum was found, and this has been confirmed experimen-
tally [335,336]. The beneficial effect of a benzyl substituent in 1-benzylimidazole compared
with only alkyl substituents in 2-ethyl-3-methylimidazole was noticed [337]. Supporting
results from theoretical considerations in terms of lower band gap energy and lower global
hardness were stated, while the actual difference in terms of inhibition was small. It remains
unclear whether the claimed enhanced adsorption was provided by the aromatic substituent,
given that the free enthalpies of adsorption listed in a table entitled “2-I-Imz and 2-Cl-Imz” (?)
were practical identical. An application-related detail of imidazole as a corrosion inhibitor was
revealed with a combination of electrochemical impedance measurements and XPS [338,339].
Adsorption from an aqueous solution, e.g., the corrosive environment, yielded an adsorbate
with the imidazole nitrogen behaving like a “pyrrole nitrogen” with the aromatic ring more
parallel to the metal surface. Adsorption of imidazole before exposure to the corrosive envi-
ronment left the nitrogen in a “pyridine type” state with the aromatic ring more perpendicular
to the surface. The better protection in the former case was obvious in a polarization resistance
(i.e., the charge transfer resistance of the corrosion electrode reaction) that was larger by an
order of magnitude. Effects of further substituents on corrosion inhibition via imidazole
2,4,5-trisubstituted with aromatic phenyl units were compared [340]. At 1 mM inhibitor
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concentration, inhibitions varied between 92 and 96%, suggesting only minor effects, although
no attempt was made to interpret this. A further comparison of the effects of much simpler
substituents for imidazole was reported, yielding a wide range of effects and with an aromatic
substituent in 4-(1H-imidazol-1-yl)benzaldehyde showing 92% inhibition at an unspecified
inhibitor concentration [341]. A water-soluble zeolithic imidazole framework, ZIF-8 has been
suggested for copper corrosion inhibition [342]. At 60 mg·L−1 inhibitor concentration, 75%
inhibition was achieved, and the adsorption of the inhibitor on the copper was attributed to
the aromatic electron systems in the imidazole units.

Based on results of a theoretical study of several benzimidazole derivates, 2-(2-bromophen
yl-1-methyl-1H-benzimidazole) was suggested as the most promising inhibitor [343]. In a
comparison of three substituted benzimidazoles, 2-aminobenzimidazole (see Figure 24) was
identified as being most effective, in agreement with results of theoretical considerations [344].
The beneficial effects of both nitrogen heteroatom(s) and aromatic electron systems in substi-
tuted benzimidazole inhibitors have been highlighted [345]. In a mostly incomprehensible
theoretical comparison of five substituted imidazolines, the one with an aromatic substituent
was claimed to be most effective without even a trace of experimental evidence [346].
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In other work, 2-aminobenzimidazole (see Figure 24) was studied as a corrosion in-
hibitor for copper in chloride-containing solution via several electrochemical methods [347]
and compared with further imidazole-based inhibitor molecules.

Moreover, 2-mercapto-5-methoxybenzimidazole has been studied as corrosion in-
hibitor for copper and has been compared with 5-amino-2-mercaptobenzimidazole [348].
Using microscopic methods, formation of self-assembled monolayers (see above) was
observed, and these results were in agreement with further spectroscopic evidence.

The iron corrosion inhibitive properties of a wide selection of heterocyclic diazoles
have been compared [349]. Inhibition efficiencies at millimolar inhibitor concentrations in
aqueous 1 M HCl were around 80 to 90%, except for a nitro-substituted compound showing
actually corrosion acceleration at increasing concentrations. Theoretical calculations did
not yield conclusive results supporting the experimental observations. Three aromatic
oxadiazoles were compared as corrosion inhibitors [350]. Inhibition efficiencies at 500 ppm
inhibitor concentration reaching 98% for 2-cinnamyl-5-mercapto-1-oxa-3,4-diazole were
larger in sulfuric than in hydrochloric acid as corrosive medium. Inhibition proceeded via
adsorption via the aromatic electron system and the heteroatoms, and the lower efficiencies
in HCl were tentatively attributed to “higher aggressiveness”.

Copper corrosion inhibition by tautomeric forms of 2-aminino-5-mercapto-1,3,4-thia
dizole added in very small concentrations to rolling oils yielded 92% inhibition at 50 ppm
inhibitor concentration [351]. (Presumably, mercato and mercatpo mean mercapto; further
mysteries remain in the report.)

Corrosion inhibition for aluminum by alkylimidazolium-based ionic liquids with
alkyl-substituents of different lengths in the 4-position was examined [352]. The longer
octyl chain corresponded to slightly higher inhibition efficiency than the hexyl chain, and
the butyl-substituted performed weakest. The slight decrease of the capacity (part of the
constant phase element used in impedance data evaluation) with growing chain length
suggested a more or less perpendicular adsorbate orientation, perhaps in line with the
slight growth of inhibition efficiency. Plain imidazole and methylimidazole were tested
as corrosion inhibitors for aluminum [353]. The methyl substituent barely increased the
moderate inhibition efficiency.
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Pitting corrosion protection for aluminum in neutral salt solution afforded by indole
and some of its derivatives (tryptophane and tryptamine) was examined [354]. The highest
efficiency of tryptophane was attributed to enhanced adsorptive interactions by both nitro-
gens. Some oxindoles showed inhibition of copper corrosion [355]. The structurally related
molecule isatin has attracted attention as a corrosion inhibitor; some of its derivatives have
been examined. For an overview, see [356].

Pyrazole-4-sulfonate (see Figure 25) as a ligand forms layered solids on copper surfaces,
inhibiting corrosion [357,358]. At pH = 2, no corrosion inhibition was observed; at pH = 3
and even more so at 4, the corrosion rate decreased depending on the cation. In comparison
with simple pyrazole, the increased efficiency was attributed to interaction of the nitrogen
atoms enhanced by the sulfonate group. The protective coating on the copper surface was
identified as a salt of the ligand containing both copper ions and ions of the metal cations
of the used ligand salt.
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Figure 25. Pyrazole-4-sulfonate.

Aluminum corrosion inhibition by imidazole and some substituted imidazole in 1 M
HCl acidic solution was attributed to film formation at higher (presumably 5 mM) inhibitor
concentration [359]. Three thiazole-containing inhibitors for zinc were tested [360], and
the best one provided 85% inhibition at 21 µM concentration. The roles of the numerous
heteroatoms and aromatic entities in the molecule were not addressed.

Corrosion inhibition on mild steel by 3,5-bis(n-methoxyphenyl)-4-amino-1,2,4-triazole
(It should be noted that some triazoles are not aromatic.) (n-MAT) has been studied [361].
After invoking the general importance of aromatic rings and heteroatoms for adsorption as
a step towards protection, the better performance of 4-MAT than of 3-MAT was attributed
to a mesmeric effect. Protection of mild steel by 1(benzyl)1-H-4,5-dibenzoyl-1,2,3-triazole
was studied, 95% at 50 ppm concentration of inhibitor was reported [362]. The number
of electrons on the nitrogen atoms in the triazole ring was invoked as a reason for the
good performance. In a comparative study of four substituted 1,3,4-thiadiazoles as cor-
rosion inhibitors for silver, it was concluded that adsorptive interaction mostly involved
the aromatic ring system and heteroatoms in polar substituent groups; thus, 5-methyl-2-
amino1,3,4-thiadiazole performed best [363]. Phenyl and diphenyl substitution were much
less effective and were even detrimental because of steric hindrance and lack of contri-
bution towards adsorption. Structure–efficiency relationships were investigated for three
substituted triazoles and the parent compound 1(benzyl)1-H-4,5-dibenzoyl-1,2,3-triazole
on mild steel [364]. The unsubstituted parent compound performed best, and further
conclusions remained tentative. Further triazoles and isoxazoles have been studied as
corrosion inhibitors for copper-nickel alloys and galvanized steel [365]. Inhibition efficiency
was similar to that of already available commercial products. The low efficiency with
copper–nickel alloys was attributed (not surprisingly) to weak adsorption on copper. In
rather general terms, free electron pairs at the heteroatoms, chain length(presumably of
some substituents), and the aromatic electron systems were invoked as possible reasons for
corrosion protection on galvanized steel.

The biodegradability of triazole-based corrosion inhibitors for yellow metal has been ex-
amined [366]; for further details, see [367]. Transformation and the fate of organic compounds
including corrosion inhibitors in groundwater have been discussed more generally [368].
Some aspects of microbial inhibitor degradation have previously been discussed with par-
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ticular attention to degradation of aromatic constituents and moieties [369–371]. Corrosion
inhibition on copper and copper alloys by aromatic triazoles has been studied [372]. Even
concentrations of e.g., benzotriazole BTA as low as 2 ppm afforded corrosion protection for
copper and brass fittings in household applications. The vapor pressures of some compounds
are high enough to enable gas phase protection, and in addition, low toxicity and biodegrad-
ability are further advantages. With mild steel, BTA was also best compared with other
nitrogeneous aromatic inhibitors [373]. In the presence of chloride ions, the other inhibitors
performed slightly better, while BTA did not show any change. This was explained by the
assumption that the other inhibitors were adsorbed as cations better on the surface charged
negatively by adsorbed chloride, whereas BTA was not adsorbed as a cation. For details of
exemplary conceivable bioactivities of BTA, see [374]. The aqueous phototransformation of
1H-benzotriazole has been studied [375].

Inhibition of copper corrosion by BTA and several 5-substituted BTAs was com-
pared [376]. Some of them worked simply via surface blocking by adsorption, and some
participated in more complex surface reactions involving Co(I)-ions. Corrosion inhibition
on 410 Martensitic stainless steel by 1,3-benzothiazole (Figure 26) was found to provide
inhibition up to 98% at a very low concentration [377]. This was attributed to chemisorption
resulting in electrostatic attraction and covalent bonding.
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Corrosion inhibition by three mono- and disubstituted furans for mild steel in aqueous
HCl was studied experimentally and theoretically [378]. The 2-(p-toluidinylmethyl)-5-
methyl furan performed best with 94% inhibition at 20 mM concentration. Apparently
although not reported, the nitro and bromo substituents interfered with adsorption and
inhibition via the less efficient molecules, corresponding to the slightly lower adsorption
energies of these molecules. Benzylidene, actually benzylidene-5-phenyl1,3,4-thiadiazol-2-
amine (Figure 27), was prepared and studied as a corrosion inhibitor for mild steel [379]. In
a report that is also elsewhere hard to comprehend, an inhibition efficiency of 92% is stated
as a characteristic of this compound, apparently derived from weight loss measurements at
0.5 mM inhibitor concentration.
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Figure 27. Benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine.

A comparison of several five-membered heterocycles based on theoretical considera-
tions was reported [380]. The claimed good correlation between some calculated data and
experimental evidence reported elsewhere [381] apparently pertains only to data obtained
with one particular DFT dataset. A repetition of an earlier study [380] with a CO2-saturated
NaCl solution yielded 2-aminobenzotriazole as the best inhibitor, with 93% inhibition at
20 mM inhibitor concentration [382].

DFT-based theoretical considerations regarding interactions between five-membered
heterocycles and a Fe(110) surface suggesting flat adsorption have been reported [383].

1.4. Natural Compounds, Pharmaceuticals, Drugs, Dyestuffs, and Mixtures

The growing interest in biobased corrosion inhibitors has been highlighted [45,384–389].
Vanillin (Figure 28) was used as a remarkably efficient corrosion inhibitor (96% at 200 ppm
inhibitor concentration) for aluminum in 5 M HCl solution [390].
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Figure 28. Vanillin.

The remarkable efficiency was attributed to strong, presumably flat, adsorption. This
matches the reported observation that adsorption can be described best with a Langmuir
adsorption isotherm, based on the absence of intermolecular interaction—indeed, most
likely when flat adsorption prevails. Schiff bases prepared from vanillin and thus claimed
to be green have been shown to exert high inhibition [391]. Corrosion inhibition by ten
anthocyanins, major dyes in plants, was compared [392]. Delphinidin (Figure 29) was found
to be most efficient, and this was explained by its having the lowest electron accepting
power according to theoretical computations. A more simple explanation would be the
relatively largest number of OH substituents supporting adsorptive interaction with the
metal surface.
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Figure 29. Delphinidin.

Tyrosine has been tested as an inhibitor with steel in hot sulfuric acid [393]. Results
suggest formation of a protective layer beyond inhibitor adsorption. Adenin has been
examined as a corrosion inhibitor for use in chemical mechanical polishing processes [394].
Inhibition by three amino acids reached 60% at millimolar concentration [395]; the amino
acid derivate l-alpha-aminoisocaproate reached 85% inhibition at 5.63% inhibitor concentra-
tion [396]. Significantly higher inhibition up to 99% was achieved with phenylalanine and
tryptophan after 240 h exposure in an environment simulating carbonated pore solution
in concrete [397]. The former amino acid was assumed to be adsorbed via the carboxy-
late moiety with the benzene ring pointing towards the solution, resulting in a shielding
effect keeping water away from the metal surface, whereas with the latter amino acid,
the nitrogen of the indole system interacted with iron ions. In both cases, a passivating
layer was formed, not the typical inhibition mode assumed elsewhere in this report. Cor-
rosion inhibition by cystein and some of its derivatives on mild steel has been studied
experimentally and with computational methods [398]. The substituted compounds per-
formed better, and the best was N-acetyl-S-benzylL-cysteine (Figure 30) with an aromatic
benzyl unit. Theoretical considerations confirmed the participation of free electrons at
the heteroatom and of π electrons of aromatic ring system, thus explaining the ranking
of efficiencies. In a comparison of experimental and theoretical corrosion inhibition on
mild steel by amino acids, the highest inhibition was predicted for those with an aromatic
moiety (tryptophane>tyrosine>phenylalanine) [399]. This matched the experimental re-
sults, but despite the impressive long tables, it remains unclear how the predicted rating
was actually derived from these numbers. The effects of side chains on α-amino acids
on aluminum corrosion inhibition were studied in a comparison of glycine, alanine, and
phenylalanine [400]. Somewhat surprisingly, the authors claimed in the conclusion that
alanine was the most effective, apparently based on LPR measurements, whereas weight
loss measurements suggested phenylalanine to be most effective. The actual differences
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between the respective results of each method were bigger than between the amino acids,
leaving the conclusion somewhat uncertain.
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Figure 30. N-acetyl-S-benzyl-L-cysteine.

Additionally, 3-(toluyl)-N-(l, l-dimethyl-2-hydroxyethyl)-alanine (Figure 31) has been
suggested as a particularly effective temporary inhibitor [23,401].
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Figure 31. 3-(Toluyl)-N-(l, l-dimethyl-2-hydroxyethyl)-alanine.

The substance 6-benzylaminopurine (Figure 32) is a derivative of another naturally
occurring compound, and its inhibiting properties reaching 96% have been reported [402].

Corros. Mater. Degrad. 2024, 5, FOR PEER REVIEW  28 
 

 

 

Figure 31. 3-(Toluyl)-N-(l, l-dimethyl-2-hydroxyethyl)-alanine. 

The substance 6-benzylaminopurine (Figure 32) is a derivative of another naturally 
occurring compound, and its inhibiting properties reaching 96% have been reported [402]. 

 

Figure 32. 6-Benzylaminopurine. 

In a report on X60 carbon steel corrosion inhibition by dopamine-functionalized gra-
phene oxide, the authors extensively discuss silver nanoparticle sensors [403]. The results 
of the corrosion measurements reported suggested 85% inhibition at 5 ppm inhibitor con-
centration. 

Chitosan fragments of various sizes were treated computationally with DFT to “cal-
culate the anticorrosion activity” [404]. Calculations suggested an optimum with the pen-
tamer, while shorter and longer chains were theoretically less efficient. Unfortunately, the 
agreement with published experimental results claimed in the abstract was not supported 
in the remaining report. Corrosion inhibition by chitosan and further carbohydrates has 
been reviewed [405]. Chitosan and chemically modified derivatives have been studied 
theoretically and experimentally as corrosion inhibitors [406]. Inhibition of up to 93% at 
inhibitor concentrations around 250 ppm was found for the thio derivative. 

Previously mentioned theoretical tools [404] were applied in a similar approach by 
the same author(s) to typical constituents of chamomile extract [407]. The strong inhibition 
claimed in the introduction was nowhere supported in the report. Whether quercetin is 
the most effective constituent in the extract as claimed in the report remains a question for 
further research. Actually, high inhibition by quercetin on mild steel has been reported 
elsewhere (97% at 1000 ppm inhibitor concentration) [408]. More theoretical considerations 
on quercetin and six derivates can be found [409]; somewhat surprisingly, amino nitrogens 
present only in two derivatives can increase the electron donating power and thus enhance 
adsorption. The mostly planar structure of the studied derivatives helps in stronger adsorp-
tion, according to theoretical considerations [410]. Similar considerations have been applied 
to carbohydrates as corrosion inhibitors for copper [411]. The claimed best inhibition by lac-
tose waits for experimental verification. The high corrosion inhibition by red onion peel ex-
tract (see below) was most likely due to its main ingredient: quercetin [412]. 

Fennel seed extracts demonstrated corrosion inhibition activity (IE = 85.8% at 150 
ppm concentration) on stainless steel 304 [413]. Activity was attributed to the fenchone 
and aromatic anethol (1-methoxy-4-(1-propenyl)benzene) in the main constituent. A cin-
namon extract was protective (80% at 250 ppm) to steel in sulfide-containing salt water 
[414]. An extract from Rosmarinus officinalis with added 5-bromovanillin provided corro-
sion protection for 1018 carbon steel in hydrochloric acid, and much less in sulfuric acid 
[415]. In a highly similar report, the author reported highly similar observations with 
added ZnO [416]. The author report highly similar results elsewher [417], nothing was 

CH3

O
NH

CO2H

CH3
CH3

OH

N

N
H

C
H2

N

N

N
H

Figure 32. 6-Benzylaminopurine.

In a report on X60 carbon steel corrosion inhibition by dopamine-functionalized
graphene oxide, the authors extensively discuss silver nanoparticle sensors [403]. The
results of the corrosion measurements reported suggested 85% inhibition at 5 ppm inhibitor
concentration.

Chitosan fragments of various sizes were treated computationally with DFT to “cal-
culate the anticorrosion activity” [404]. Calculations suggested an optimum with the
pentamer, while shorter and longer chains were theoretically less efficient. Unfortunately,
the agreement with published experimental results claimed in the abstract was not sup-
ported in the remaining report. Corrosion inhibition by chitosan and further carbohydrates
has been reviewed [405]. Chitosan and chemically modified derivatives have been studied
theoretically and experimentally as corrosion inhibitors [406]. Inhibition of up to 93% at
inhibitor concentrations around 250 ppm was found for the thio derivative.

Previously mentioned theoretical tools [404] were applied in a similar approach by
the same author(s) to typical constituents of chamomile extract [407]. The strong inhibition
claimed in the introduction was nowhere supported in the report. Whether quercetin is
the most effective constituent in the extract as claimed in the report remains a question for
further research. Actually, high inhibition by quercetin on mild steel has been reported
elsewhere (97% at 1000 ppm inhibitor concentration) [408]. More theoretical considerations
on quercetin and six derivates can be found [409]; somewhat surprisingly, amino nitrogens
present only in two derivatives can increase the electron donating power and thus enhance
adsorption. The mostly planar structure of the studied derivatives helps in stronger adsorp-
tion, according to theoretical considerations [410]. Similar considerations have been applied
to carbohydrates as corrosion inhibitors for copper [411]. The claimed best inhibition by
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lactose waits for experimental verification. The high corrosion inhibition by red onion peel
extract (see below) was most likely due to its main ingredient: quercetin [412].

Fennel seed extracts demonstrated corrosion inhibition activity (IE = 85.8% at 150 ppm
concentration) on stainless steel 304 [413]. Activity was attributed to the fenchone and
aromatic anethol (1-methoxy-4-(1-propenyl)benzene) in the main constituent. A cinnamon
extract was protective (80% at 250 ppm) to steel in sulfide-containing salt water [414]. An ex-
tract from Rosmarinus officinalis with added 5-bromovanillin provided corrosion protection
for 1018 carbon steel in hydrochloric acid, and much less in sulfuric acid [415]. In a highly
similar report, the author reported highly similar observations with added ZnO [416]. The
author report highly similar results elsewher [417], nothing was said about solubility or
mixing issues in particular when inhibitor concentrations up to 2.5% were reached. The
author used said the same extract again in a study of pitting corrosion on ferritic stainless
steel [418]. Further extracts from natural raw materials have been reported [22,412,419–465].
The frequently employed theoretical tools—actually, the conclusions are frequently fairly
trivial when stating that adsorption is probably operating—appear to be of limited value
when studying complex mixtures of numerous compounds contained in plant extracts,
as in e.g., [466], because they are either generic or non-specific or both. Additional aro-
matic plant extracts have been compared as corrosion inhibitors [467]. The residue of
cashew nutshell liquid distillation combined with propargylic alcohol, propyl alcohol, and
butylglycol provided 99% inhibition on P110 carbon steel in acidified oil well fluids [468].
Polycondensed aromatic ring systems in the residue were suggested as a main reason for
efficient adsorption and high inhibition.

Although no inhibition efficiency was reported, the tannin-containing extract from
Rhizophora mucronata was claimed to offer efficient corrosion protection [465]. Treated
extract from the plant showed elsewhere only moderate protection, as reported by the same
authors [469]. Corrosion protection by tannin extracted from mimosa, which is actually a
mix of at least four flavonoids, has been studied theoretically [470]. Given the extended
size of the molecule, the claimed perpendicular orientation is slightly surprising. Weight
loss measurements described in the experimental section did not yield inhibition data, but
only adsorption data. Actual inhibition by this extract remains unknown.

An aqueous plant extract from Doum (Hyphaenethebaica L.) containing a rich variety of
organic compounds including several aromatic ones tested as a corrosion inhibitor for car-
bon steel showed significant inhibition efficiencies already at around 25 ppm concentration,
but numbers differed substantially depending on the employed experimental method [471].
Inhibition of corrosion of ASTM/A36 steel by an extract from zoffa plants has been stud-
ied extensively [387]. At 1500 ppm concentration, 94% inhibition was found. Given the
complex composition of the extract, it appears mysterious how a zoffa molecule can be
responsible for the inhibition; most probably, aromatic constituents played a significant role.
Inhibition of α-brass corrosion by an extract from Chelidonium majus plants reaching 97%
inhibition efficiency at 150 ppm concentration was reported [472]. The main constituents of
the extract had aromatic building blocks and many heteroatoms in five- und six-membered
rings supporting adsorption on the metal surface. How fractions of transferred electrons in
the gas phase can support stronger adsorption remains a question not yet answered. An
extract from leaves of Cymbopogon citratus inhibited corrosion [473]. At a concentration
of 5 g·L−1, a pomelo peel extract provided 93% inhibition [474]. Presumably, aromatic
units in the numerous constituents in the extract supported adsorption in addition to the
heteroatom-containing functional groups invoked by the authors. In any case, a “geometric
coverage” effect was claimed as the operating inhibition mechanism. An extract from
sunflower seed hulls provided 98% inhibition at 400 ppm inhibitor concentration [475].
Given the wide variation of compounds identified in the extract, it is most likely that the
numerous heteroatoms and aromatic compounds contributed to adsorption and inhibition.
Lignin polymers extracted from Elaeis guineensis agricultural waste yielded a more efficient
and better soluble corrosion inhibitor after chemical modification with insertion of aromatic
moieties [476]. Possibly, the added aromatic units supported adsorption. Plant extracts
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have also been suggested as protective corrosion inhibitors in coatings; for example, henna
from Lawsonia inermis (see [477]). Arguments for their protective capabilities (presence
of double bonds and aromatic systems) are the same as already discussed for inhibitors
in the preceding text. The plant extract glucomannan with hydroxyl and epoxide groups
supporting adsorption provided only 85% inhibition; after introduction of thiazole and
Schiff base moieties, 99% inhibition at 500 µM inhibitor concentration was obtained [478].
The improved performance was attributed to the additional heteroatoms and aromatic as
well as double-bond systems.

A limited overview of corrosion inhibition by plant extracts is available [479], and more
extensive ones have been provided [480,481]. Options for simplified extraction procedures
for bio-based inhibitors have been reported [388].

Several extracts from biodiesel fuel have been tested for corrosion inhibition and have
been touted as green inhibitors [482]. Somewhat surprisingly, no inhibition data have been
reported.

The dye new fuchsine provided 88% corrosion inhibition for stainless steel at 1 mM in-
hibitor concentration (Figure 33) [483]. Further dyestuffs considered as corrosion inhibitors
have been reviewed [484]. A chitosan coating was impregnated with cresol red for corro-
sion protection of zinc [485]. When the dye was used alone as an inhibitor, its efficiency
was higher because of the blocking of some functional groups during incorporation into
the chitosan coating.
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The use of common drugs with aromatic building blocks in their chemical structure as
corrosion inhibitor has been suggested frequently, (see e.g., [486–496]) sometimes supported
by QSAR considerations [497]. Missing experimental details of experimental handling of
insoluble materials do not help [498]. Theoretical considerations regarding such materials are
available [487,499,500]. Whether growing concerns regarding unnecessary exposure of humans
to e.g., ampicillin or penicillin qualify such inhibitors as environmentally friendly seems to
need closer inspection. To even use expired drugs as suggested [501,502] may be considered as
a particularly strange method of waste disposal. Similar concerns may be applicable for e.g.,
azo dyes showing moderate efficiencies anyway [503,504]. Some imidazoline and isoxazoline
compounds claimed to be “bioinspired” for reasons not obvious in the report have been
synthesized and tested as corrosion inhibitors [505]. The former performed better than the latter
because “imidazoline contains less electron-withdrawing nitrogen atoms in the(ir) molecular
structure”, which provide superior metal–inhibitor interaction. This claim fundamentally
contradicts the statement made elsewhere in this report that adsorption is fundamental for
inhibition of corrosion. The arguments suggested elsewhere [326] for the designation of ionic
liquids and substituted imidazoles therein as being “green” are strange at best.

1.5. The State of Things

This brief overview, which most probably misses many aromatic inhibitor molecules
simply because the authors did not mention this essential property of an organic molecule
in their reports, does not yield a simple recipe for a perfect inhibitor, not even for a good one.
Starting points, requirements, conditions of application, and further variables differ too
wildly for a general conclusion. Trial and error as well as cases of “also tested” molecules
are frequently observed although not clearly stated by the authors. Only infrequently do
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the authors provide some reasoning about the selection of a particular molecule or the
synthesis of a new one. Frequently mentioned parameters, in particular the Gibbs energy
(or free enthalpy) of adsorption for an inhibitor, provide only some support when looking
for a reason for more efficient inhibition by a particular molecule in a direct comparison.
The numbers are rarely available; their determination may be more tedious than running
the standard corrosion studies. Thus, the obvious conclusion that a more strongly adsorbed
molecule is presumably also a better inhibitor is a rather helpless one. The use of non-
traditional, in particular spectroscopic and surface-analytical, tools has turned out to be
less helpful than possibly expected. Microscopic methods provide only post-mortem and
ex situ observations, making any correlation in terms of a “cause-and-effect” connection
difficult or at least very general. Applications of in situ spectroscopies possibly providing
evidence of inhibitor–surface interaction on a molecular level and thus providing support
for further rational inhibitor development based on a molecular-level understanding are
rarely found.

In the apparent absence of a “rational design approach” for planning new inhibitors,
even the much-touted use of theoretical tools has turned out to be less than spectacularly
successful; for examples, see [506–508]. Lists of calculated data having impressive length
frequently do not contribute to a better understanding of the effects of a given inhibitor,
even when in comparative studies, such a correlation is to be expected. As pointed out in a
report on aromatic inhibitors [77], correlations between values of the HOMO-LUMO-gap
(band gaps [509]) and inhibition efficiency may indicate high efficiency at a particular band
gap value (illustrations in the report hardly support this), but scarcely more. At least the
authors state that aromatic inhibitors are efficient inhibitors. Using a limited subgroup
(substituted pyridines) with rather limited inhibition efficiencies, correlations between
electronic parameters obtained by extended Hückel molecular orbital calculations and
observed inhibition were reported [510]. In most cases, almost all output data were collected
from DFT packages, but a correlation with experimental data—if available at all—is claimed
but hard to find. Certainly no “cause-and-effect” connection is indicated, but the studies
are a help when selecting or designing further inhibitor molecules. Theoretical data for just
one molecule could not be demonstrated as particularly helpful in the studies reviewed
above. Within a group of structurally related molecules, trends may be deduced from
such calculations that would be helpful in e.g., selecting alternate substituents. Whether
calculations based on examination of complexes between an inhibitor molecule and just one
metal atom are helpful remains at least unclear, given the less than convincing correlations
claimed [511]. The convincingly simple conclusions and suggestions related azoles and
imidazoles [318] at least recommend an approach towards simple but effective inhibitors
quite different from the numerous different examples of inhibitors that are extremely
complex and sometimes even difficult to prepare but no more efficient at all.

Examination of inhibitors from plant extracts has repeatedly yielded quite impressive
inhibition values. In some cases, an analysis of the extract and a search for both the major
ingredients and the most efficient ones (for an impressive example, see [420]) have been
carried out and reported, and their use may be a promising “green” approach for combating
corrosion. The actual inhibitor concentrations needed even for modest inhibition range
widely. Sometimes, when e.g., more than 1 g·L−1 is needed, the practical applicability
appears to be at least doubtful.

2. Concluding Remarks and Perspectives

An overview of aromatic corrosion inhibitors ranging from small but nevertheless
highly protective molecules to complex mixtures obtained as plant extracts from natural
and thus renewable resources is provided. They act by adsorption on the surface to be
protected. Depending on metal surface properties and molecular architecture, formation of
self-assembled monolayers occurs; sometimes, presumably as an extension of molecular
adsorption, film formation is claimed. Attention is paid to the actually observed inhibition
efficiencies (which are frequently claimed, but not always reported). These are correlated
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with structural features of the inhibitor molecule, which always contain heteroatoms in
addition to one or more aromatic ring system. No simple reasoning, i.e., a straightforward
rational approach towards the perfect inhibitor, could be derived. However, some guide-
lines could be identified. The sometimes apparent trend away from synthetic inhibitors
with their implicit drawbacks (price, availability, toxicity, stability) towards natural in-
hibitors mostly obtained as plant extracts or as compounds otherwise occurring in nature
(e.g., amino acids) is superimposed on the more chemical considerations. Selection of
a “natural” or synthetic inhibitor should nevertheless always be based on the particular
application situation.
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