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Abstract: The growing field of gut–brain axis research offers significant potential to revolutionize
medical practices and improve human well-being. Neutrophils have emerged as key players in
gut–brain inflammation, contributing to the relocation of inflammatory cells from the gut to the
brain and exacerbating neuroinflammation in conditions, such as inflammatory bowel disease and
neurodegenerative diseases. The intricate network of molecular and functional connections that
interlinks the brain with the gastrointestinal system is characterized by complex signaling pathways.
Understanding the complex interplay among the microbiota, gut, and brain offers unparalleled
opportunities to develop novel therapeutic interventions for neurological disorders and improve
overall health outcomes. The aim of this review was to comprehensively summarize current knowl-
edge and future perspectives regarding the multifaceted role of neutrophils and their impact on the
neuroimmune dynamics in the context of the gut–brain axis.
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1. Introduction

Neutrophils are vital to the human immune system as they are the first responders
to infection or injury sites, playing a key role in defending the body against bacterial and
fungal infections [1]. When pathogens invade the body, neutrophils are recruited to the
site of infection where they surround and destroy the invading microorganisms through
phagocytosis. Additionally, they release inflammatory molecules and enzymes to help
contain and eliminate the infection. Recent research has unveiled a fascinating dimension
of neutrophil functions—their role in neuroinflammation, inflammatory processes within
the central nervous system (CNS) [2–4].

Given the brain’s pivotal role as the central controller of all physiological processes, its
engagement in and bidirectional communication with the gastrointestinal tract is essential.
The bidirectional complex network between the gastrointestinal tract and the CNS is known
as the gut–brain axis [5,6].

The intricate network of molecular and functional connections that interlinks the brain
with the gastrointestinal system is characterized by complex signaling pathways. Among
the well-documented features of this network are the signaling links among the CNS, the
enteric nervous system (ENS), and the hypothalamic–pituitary—adrenal axis (HPA) [7].
The axis is anatomically structured with a complex network involving neural, hormonal,
and immune pathways, as well as neurons, neurotransmitters, and hormones that play a
significant role in the regulation of various physiological functions and facilitate communi-
cation between the brain and the gut. Neurons extend from the brain throughout the body,
forming a complex neural network. The ENS situated in the intestinal wall, communicates
with the CNS through neuroimmune and neuroendocrine signaling pathways mediated by
the vagus nerve (VN) [8]. However, the CNS also must maintain tissue homeostasis and
nutrient exchange while protecting itself from infectious agents, toxins, and inflammation,
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necessitating rapid detection of changes in the bloodstream milieu. This challenges the tra-
ditional view of the CNS as an “immune-privileged” site, as emerging evidence emphasizes
the dynamic interplay between immune sentinels within the CNS and the periphery [9].
This communication transpires via a cascade of chemical messengers, and in recent years,
research has increasingly focused on understanding the complex interactions between the
gut and the brain and their impact on health and disease [10].

The gut–brain axis encompasses a multitude of factors, including the gut microbiota,
as presented on Figure 1. Neutrophils are crucial elements of innate immunity, defending
against pathogens through phagocytosis, the release of antimicrobial peptides (AMPs) and
reactive oxygen species (ROS), the secretion of inflammatory cytokines, and the forma-
tion of neutrophil extracellular traps (NETs). This arsenal effectively eliminates invading
pathogens but can also cause tissue damage in inflammatory diseases. Microbial compo-
nents are also known to modulate the intensity of inflammatory responses. The interaction
between neutrophils and the microbiota fine-tunes the extent of neutrophil-mediated
inflammation [11].
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Figure 1. The bidirectional complex network of the gut–brain axis.

Understanding the mechanisms of gut–brain communication, particularly in the con-
text of immune cell functions, is essential for developing targeted interventions that can
alleviate neuroinflammation and improve patient outcomes. By unraveling the complexities
of the gut–brain axis and the role of neutrophils within this framework, researchers and clin-
icians can explore innovative therapeutic strategies for addressing gut–brain inflammatory
diseases and neurodegenerative disorders [11–15].

2. Role of Neutrophils in Gut–Brain Inflammation

Neutrophils play a crucial role in gut–brain inflammation, as they are involved in
the immune response and can migrate from the gut to the brain [16]. Their migration
is facilitated by the dysregulation of pathways during dysbiosis, leading to altered per-
meability of the blood–brain barrier (BBB). This migration of neutrophils contributes to
the neuroinflammation observed in conditions, such as inflammatory bowel disease and
neurodegenerative diseases. Therefore, understanding the role of neutrophils in gut–brain
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inflammation is essential for developing effective interventions and treatments to alleviate
neuroinflammation and its associated neurological symptoms [17].

Furthermore, targeting neutrophils as a therapeutic strategy may help mitigate the
detrimental effects of neuroinflammation and improve patient outcomes in gut–brain in-
flammatory diseases and neurodegenerative disorders [18]. By targeting and modulating
the activity of neutrophils, it may be possible to reduce their migration to the brain and
the release of inflammatory mediators, thus attenuating neuroinflammation and poten-
tially preventing or slowing the progression of related neurological conditions [19]. This
understanding also opens up new avenues for research into potential interventions that
specifically target neutrophil-mediated inflammation in the gut–brain axis, potentially lead-
ing to novel treatment approaches and therapies for gut–brain inflammatory diseases and
neurodegenerative disorders [20]. Therefore, studying the role of neutrophils in gut-brain
inflammation is crucial for a comprehensive understanding of the underlying mechanisms
and for developing effective strategies to alleviate neuroinflammation and improve patient
outcomes in these conditions [21].

Neutrophils have emerged as key players in gut–brain inflammation, contributing to
the migration of inflammatory cells from the gut to the brain and exacerbating neuroin-
flammation in conditions, such as inflammatory bowel disease and neurodegenerative
diseases [22]. Their activation and the release of inflammatory mediators not only contribute
to the development and progression of neuroinflammatory diseases and neurodegenerative
diseases but also play a role in exacerbating neurological symptoms [21,23]. Therefore,
targeting neutrophils and their inflammatory pathways could offer promising therapeutic
strategies for mitigating neuroinflammation, improving patient outcomes, and potentially
slowing the progression of gut–brain inflammatory diseases and neurodegenerative disor-
ders [24–26].

2.1. Exploring Reactive Oxygen Species (ROS): Cellular Dynamics and Neurological Health
2.1.1. Localization of ROS Generation in Neutrophils

Neutrophils harbor antimicrobial elements organized within subcellular organelles
or granules. Although a portion of neutrophil cytb558 resides in the plasma membrane,
the bulk is ensconced in granule membranes, particularly specific granules [27]. The
active NADPH oxidase, engendering superoxide, may operate either extracellularly via
plasma membrane activation or intracellularly within membrane-enclosed compartments,
potentially prompted by specific granule-associated NADPH oxidase. Intracellular ROS
generation typically occurs at the phagolysosome, formed post-particle engulfment and
granule–phagosomal membrane fusion. Neutrophils unleash copious ROS amounts dur-
ing microorganism phagocytosis, inaccessible to large ROS scavengers, like superoxide
dismutase, hence suggesting intracellular ROS formation.

Historically, intracellular ROS generation was presumed to be linked solely to phago-
cytosis. Yet, evidence shows that ROS can emerge without phagosome formation, as seen
with stimuli like the phorbol ester PMA or lectins (e.g., galectins or wheat germ agglu-
tinin) [28]. The precise organelle for such ROS remains obscure, although a fused granule
structure has been proposed [29,30]. NADPH oxidase activation in intracellular membranes
relies on distinct signaling pathways compared to plasma membrane activation, suggesting
diverse regulatory cues [31]. Given the vital role of phagocyte ROS production, localization
likely dictates functionality, notably influencing cell signaling and function.

2.1.2. Exploring ROS Production Triggers in Different Cellular Locations

Various stimuli can activate neutrophil NADPH oxidase, yielding ROS at different lo-
cales. Neutrophil chemoattractants, like formylated peptides, are known to activate plasma
membrane NADPH oxidase, resulting in extracellular ROS release [32]. Soluble stimuli,
including PMA, activate protein kinase C, inducing both extracellular and intracellular ROS
generation [28]. Galectins, a group of endogenous lectins, stimulate intracellular NADPH
oxidase activation, contingent upon prior cell priming, such as in vivo transmigration.
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Intracellular ROS during phagocytosis likely emanate predominantly from the phagolyso-
somal compartment, though other ROS-producing compartments exist in response to partic-
ulate stimuli [31]. Methodological limitations hinder a precise analysis of ROS production
localization during phagocytosis, indicating further inquiry is needed.

Human cells host over 50 ROS-generating enzymes, including NOX (NADPH oxi-
dase) family members, NOX1-5, and DUOX1-2, which reduce oxygen to superoxide or
synthesize hydrogen peroxide (H2O2) [32,33]. NOX enzymes, notably NOX2, generate
superoxide as a defense mechanism against pathogens, while DUOX1-2 produce H2O2, a
key second messenger in cellular signaling pathways [33–35]. H2O2 participates in various
cellular processes, modulating insulin signaling, MAP kinase activation, and ion channel
regulation [36,37].

In neuronal contexts, ROS, prominently NOX enzymes, influence neuronal develop-
ment and function [38]. ROS exhibit dual roles in neurons, depending on their concentra-
tion, site of action, and organismal age. These intricate dynamics of ROS underscore their
nuanced impact on neuronal physiology and pathophysiology.

Exposure to environmental stressors, like pathogens, chemicals, UV radiation, and
heavy metals, can stimulate ROS production, potentially leading to cellular damage and
death, which is related to numerous pathologies [39–43]. To counteract oxidative damage,
cells deploy antioxidant mechanisms, encompassing enzymatic and non-enzymatic (e.g.,
flavonoids, ascorbic acid, tocopherols) agents. Despite their damaging potential, ROS
also serve as vital signaling molecules at controlled physiological levels. Evolutionarily
conserved enzymes, such as phagocytic NADPH oxidase (Phox), are dedicated to ROS
synthesis [37].

2.1.3. ROS: Unveiling the Darker Side of Oxidative Biology

The accumulation of ROS in the aging nervous system can yield harmful effects,
with ROS management contingent upon factors, such as the timing of production, cellular
localization, and concentration [36]. Despite comprising only 2% of the body weight,
the brain demands over 20% of total metabolic energy expenditure, primarily to sustain
processes like maintaining ionic balance, neurotransmission, and protein trafficking [37,44].
Intriguingly, while mitochondrial ROS are often implicated in neuronal aging, recent
research suggests that neuronal mitochondria are also subject to ROS generated by NADPH
oxidase (NOX), particularly NOX4. This in vitro study revealed NOX4 expression in
neuronal mitochondria, yielding superoxide and inhibiting ETC complex 1, potentially
amplifying ROS production during ATP synthesis [45].

A further exploration of the ROS-concentration-dependent effects and mechanisms
regulating cellular ROS levels is crucial [36]. This includes investigating molecular regu-
lators balancing ROS, pathways maintaining ROS thresholds, and mechanisms dictating
ROS actions across physiological contexts. Insights into neuronal redox biology may foster
targeted therapies via cell signaling modulation. For instance, dietary coenzyme Q reduced
brain protein carbonyl levels in an Alzheimer’s mouse model [46]. Biomolecular screens for
neuroprotective strategies against ROS have shown promise, like Baicalin’s neuroprotective
effects in a traumatic brain injury model [47].

Recent single-cell transcriptomics studies revealed genetic factors contributing to cellu-
lar susceptibility to oxidative damage [48–51]. Endogenous contrast MRI detects brain ROS
levels pre- and post-therapeutic interventions targeting oxidative damage [52]. Biosensors
detecting neuronal glutamate and gamma-aminobutyric acid (GABA) release offer the
real-time monitoring of brain neurotransmitters [53]. Advancements in biotechnology and
nanomedicine may soon enable the effective delivery of ROS scavengers for oxidative
damage alleviation in the human brain [54].
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3. Cellular Guidance via Chemotaxis and Transendothelial Migration

As the number of neutrophils rise, so do their patterns of movement, as shown by sev-
eral mobility-related metrics. When compared to the control group, the LPS-treated group’s
migratory neutrophils in the brain parenchyma showed much longer track lengths and
greater velocities, indicating that they were responding more forcefully to LPS stimulation.
Furthermore, the steady movement of infiltrating neutrophils within a 20 µm radius during
a 30 min period suggested significant motility during neuroinflammation. Furthermore,
mice given an LPS injection had a reduced meandering score, suggesting more directed
locomotion in comparison to the control group [55].

Prior studies have indicated that neutrophils interact actively with adjacent cells,
including astrocytes, microglia, and adaptive immune cells, during episodes of neuroin-
flammation [56,57]. Imaging evidence from our investigation, which shows contact between
infiltrating neutrophils and native brain microglia, supports this idea. Microglia seemed
to devour the neutrophils upon contact, suggesting that these cell types may be commu-
nicating molecularly. Furthermore, over the course of neutrophil–microglial interactions,
adjacent microglial processes expanded in the direction of the site of contact. This suggests
that communication occurs in both directions and affects both the participating cells and
the surrounding milieu [55].

3.1. Unraveling the Mystery of Neutrophil Reverse Migration

The reverse transendothelial migration (rTEM) of neutrophils is another fascinating
occurrence that has been previously documented in the literature. In this scenario, neu-
trophils extravasate from blood vessels and then re-enter the circulation [58–60]. Although
rTEM has been shown in a variety of tissues, imaging findings by Kim et al. are the first
to show that it occurs in brain blood arteries. When neutrophils participate in rTEM, they
first approach the blood artery, move through the perivascular area, and then return to the
circulation [55].

The movement of neutrophils has garnered significant attention, particularly during
inflammation. Chemokines released at the injury site recruit neutrophils via a chemotactic
gradient, while departing neutrophils may follow an inverse gradient. Some suggest that
neutrophil desensitization to chemotactic signals, rather than signal rejection, drives reverse
migration [61,62]. In vitro studies using a U-shaped microfluidic model provide direct
evidence, showing that neutrophils move away from chemoattractants, with over 90%
exhibiting retrograde movement [63].

Neutrophil drifting and diffusion have been observed in various injury models, in-
cluding zebrafish fin injury and mouse ischemia–reperfusion injury [64]. Reverse migration
may also be influenced by distant chemotactic signals due to increased vascular permeabil-
ity during inflammation [65]. Neutrophils display diverse patterns of reverse migration,
such as reverse transendothelial migration, metastasis from adjacent tissues, or lymphatic
dissemination [66,67].

Post-reverse migration, neutrophils exhibit distinct phenotypes, with increased ICAM-
1 levels and decreased CXCR1 expression. Increased ICAM-1 mRNA expression in septic
mouse lungs and thymus suggests reverse-migrating neutrophils’ presence in these tissues.
While research on neutrophil reverse migration has proliferated, more evidence is needed
to fully understand this phenomenon, along with insights into its mechanisms, influencing
factors, and potential drug targets [68].

3.1.1. Potential Mechanisms for Neutrophil Reverse Migration

The intricate process of neutrophil reverse migration remains an area of active investi-
gation, with various mechanisms proposed to elucidate this phenomenon [69–71]. Here,
we delve into several potential pathways and factors involved.

One such mechanism revolves around junctional adhesion molecule C (JAM-C) at
endothelial cell junctions. Real-time imaging in transgenic zebrafish models has revealed
neutrophils breaking through the endothelium, facilitated by reduced JAM-C expression
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post-injury, suggesting a pivotal role for JAM-C in regulating reverse migration [69]. More-
over, the leukotriene B4–neutrophil elastase (LTB4–NE) axis has emerged as a key player in
promoting reverse transendothelial migration. LTB4 induces neutrophil elastase (NE) pro-
duction, leading to JAM-C protein hydrolysis and subsequent loss, facilitating neutrophil
reverse migration [72].

Additionally, extracellular cold-inducible RNA-binding protein (CIRP) has been impli-
cated in septic neutrophil reverse migration. CIRP induces NE upregulation and JAM-C
downregulation in mouse lungs, suggesting a potential therapeutic target for acute lung
injury in sepsis [73].

The hypoxia-inducible factor (HIF) signaling pathway has also been linked to neu-
trophil reverse migration. HIF-1α activation inhibits neutrophil apoptosis and reduces
reverse migration in zebrafish experiments, underscoring its role in inflammation resolu-
tion [68].

Lipid mediators, such as prostaglandin E2 (PGE2), have been implicated in promoting
neutrophil reverse migration. PGE2 signaling through the EP4 receptor increases lipoxin A4
(LXA4) production, aiding in inflammation resolution [70]. The CXCL12/CXCR4 signaling
axis and macrophages also play roles in modulating neutrophil reverse migration. The
inhibition of CXCL12/CXCR4 signaling accelerates inflammation resolution [62], while
macrophages promote reverse migration through redox and Src family kinase signals,
either via direct contact or indirectly through secreted substances [55,74]. While these
mechanisms shed light on neutrophil reverse migration, further research is needed to
fully elucidate this complex phenomenon, including its precise molecular mechanisms and
potential therapeutic implications.

3.1.2. Impact of Pharmaceuticals on Neutrophil Reverse Migration

The impact of certain anti-inflammatory medications on regulating neutrophil reverse
migration holds promise for improving patient outcomes. Here, we highlight several
drugs associated with this process, offering a novel avenue for inflammation treatment.
Tanshinone IIA, a Chinese herbal medicine known for its anti-inflammatory properties, has
been implicated in modulating neutrophil behavior. Research indicates that tanshinone
IIA can induce apoptosis in human neutrophils. Moreover, tanshinone IIA has been
shown to inhibit HIF-1α activity and enhance tissue repair, further contributing to its
anti-inflammatory effects [75]. In a cystic fibrosis (CF) zebrafish model, tanshinone IIA
reversed neutrophil accumulation at inflammatory sites, reducing inflammatory injury [76].

Kuding tea, abundant in chlorogenic acid, has gained attention for its anti-inflammatory
and anticancer properties. Scientific studies indicate that chlorogenic acid-enriched kuding
tea extract promotes neutrophil reverse migration [68,77]. Lipid mediators also play a role
in inflammation resolution and may influence neutrophil reverse migration. The transition
from pro-inflammatory lipid mediators, like LTB4, to pro-regressive mediators can impede
new neutrophil influx and promote the resolution of existing inflammation. Notably, LXA4
has been shown to enhance human neutrophil reverse migration in vitro, suggesting its
potential as a mediator in inflammation resolution [68].

4. Insights into Gut Immunology: Understanding Immune System Dynamics

From an immunological perspective, the intestinal tract harbors a rich population of
immune cells, constituting more than 70–80% of the entire body’s immune system, which
includes macrophages, neutrophils, dendritic cells (DCs), natural killer (NK) cells, and
different subsets of innate lymphoid cells (ILCs), such as types 1 through 3, as the first
line of defense in the gastrointestinal tract [78,79]. Researchers have been intrigued by
the multifaceted roles of gut microbes, including their involvement in brain development
regulation, immune modulation, antagonistic activities, anticancer properties, and nutri-
tional functions [80,81]. In the context of the gut–brain axis, investigations have delved
into various mechanisms, encompassing the immune system, gut microbiota metabolism
pathways, intestinal mucosal barrier and BBB integrity, neuroanatomical pathways, and the
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HPA axis neuroendocrine pathway [82]. Importantly, these pathways exhibit interconnect-
edness and often operate through an immunological lens. According to some older sources,
some T and B cells can go to the brain via DC-mediated antigen presentation, even though
adaptive immune cells rely on this route for their repertoire. When an ischemic stroke
occurs, cerebral inflammatory signals are what trigger these immune cells’ activation and
functionality. The gut microbiota significantly influences the development of gut-associated
lymphoid tissue and innate lymphoid cells. This interaction is crucial for the immunological
maturation of the intestinal mucosal immune system [83].

Neutrophil Activity during the Acute Phase of Inflammation

Neutrophils play a pivotal role in the initial defense, employing enzymatic and chem-
ical weapons to combat invaders and aid in tissue repair by secreting inflammatory cy-
tokines [84–86]. They also produce ROS, activate the complement system, and cause direct
or indirect damage to neural structures [87]. This entire process is intricately intertwined
with the influence of the gut microbiome. Firstly, they alter circulating cytokines, inciting
brain inflammatory responses. Numerous studies indicate that both intestinal micro-
biota and mucosal cells can modulate the activation of immune molecules that impact the
CNS [88–90]. Additionally, they influence the development and balance of microglia, which
are vital for regulating CNS development processes, like myelination and neurogenesis,
in mature brains. Moreover, microglia play a role in maintaining CNS health by acting as
immune sentinels, aiding in information transmission, and removing cellular waste [91].
When microglia functions are impaired, their ability to phagocytose accumulated amyloid
and tau proteins post-ischemia is compromised [92]. Thirdly, as a significant component of
Gram-negative microbes, lipopolysaccharide (LPS) binds with Toll-like receptors (TLRs),
one of the pattern recognition receptors in the intestinal mucosa, or other microbial-related
molecules. This process activates immune cells, such as dendritic cells (DCs), neutrophils,
and macrophages, resulting in the production of proinflammatory cytokines, such as IL-1b,
TNF-a, and IL-6, which traverse the BBB to influence brain function [93,94].

These conditions can further impact brain outcomes following an ischemic attack.
Researchers have discovered that the gut–brain axis plays a critical role in linking cerebral
ischemia to the gut [95,96]. Previous studies have demonstrated that the brain, which
is composed of neuronal circuits, neurotransmitters, and receptors, has the ability to
regulate the digestive tract’s motility, secretion, and immunological response. Moreover,
there is frequently a marked dysbiosis of the gut microbiota in individuals with stroke or
temporary cerebral ischemia. Remarkably, gastrointestinal issues following a stroke, such
as constipation, gastrointestinal bleeding, fecal incontinence, and dysphagia, affect up to
50% of patients and are strongly linked to a poor prognosis for stroke survivors [97].

Furthermore, due to the impact of the gut microbiota, specific immune cells originally
located in the intestinal tract migrate towards the brain, showcasing contrasting functions
that worsen inflammatory consequences [98].

5. Insights into the Complexities of the Human Microbiota

The gut microbiota is a broad category of microorganisms, comprising trillions of
microorganisms, mainly bacteria, that are mainly found in the intestines and on the oral
mucosa. The host organism and this microbiome continue to coexist symbiotically, which
is essential for regulating a number of physiological and pathological processes [99,100].
Remarkably, the total genome size of these microorganisms is thought to be larger than
that of humans [101]. According to recent studies, the human body is thought to contain
about 3.8 × 1012 bacterial cells, with the digestive tract housing a large proportion of
these cells [102]. But the microbiota is not only made up of bacteria—it also consists of
more than 250 different species of viruses, fungi, archaea, and protozoa. The microbiome
influences blood pressure control, immunological dynamics, brain development, and
metabolic processes via the microbiome–gut–brain axis [103]. Bacteria predominate among
these species, outnumbering fungi and archaea by many orders of magnitude [104].
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The potential health advantages of the microbiota have come to light more and more
recently [105]. In contrast to 3.0 × 1013 human cells in a 70 kg individual, Sender et al. found
an astounding amount of 3.8 × 1013 bacterial cells in the gut microbiome (GMB) [102]. Even
while healthy people have a diverse range of bacteria in them, the microbial community
tends to be dominated by particular bacterial phyla, including Firmicutes, Actinobacteria,
Proteobacteria, and Bacteroidetes [106], and one archaeal phylum (Euryarchaeota), which
is essential for the digestion of polysaccharides, the synthesis of short-chain fatty acids,
the synthesis of vitamins and amino acids, preservation of the intestinal barrier, immune
system maturation, and the metabolism of xenobiotics [107,108] Nevertheless, from infancy
until old age, the makeup of these bacteria differs greatly throughout people due to vari-
ables, such as body habitats, lifestyle, and illness states. There are several common kinds
of bacteria that have been discovered, including Bifidobacterium, Streptococcus mutans,
Lactobacillus bulgaricus, Helicobacter pylori, Cladosporium spp., and Lactococcus lactis
subspp. Cremoris [109]. Numerous variables, including genetics, immunological inter-
actions throughout early development, lifestyle, nutrition, and antibiotic administration,
affect the diversity and specific makeup of the microbiome [110].

The gut microbiota also has emerged as a key regulator of host pathophysiology. Its
involvement has been linked to the development of numerous disorders, such as cancer,
celiac disease, various neurological conditions, inflammatory bowel disease, and major
depressive disorder [111–116]. Furthermore, the immune system can be modulated by the
microbiome, which might lead to the pathophysiology of autoimmune disorders [117–120].

Evidence across various animal taxa highlights the role of the gut microbiota in shaping
host behavior, including in humans. Research has revealed behavioral changes associated
with gut bacteria, often manifesting as food preferences or orientations. For instance, stud-
ies on the nematode worm Caenorhabditis elegans have demonstrated that while infection
leads to aversive behavior, the consumption of nutritive bacteria can induce attraction and
exploitation of the bacterial food supply [121]. Additionally, restoring the gut microbiota in
antibiotic-treated mice can reverse the overconsumption of high-sucrose pellets. Gut dys-
biosis has been observed in mouse models and patients with anorexia nervosa, suggesting
a link between the gut microbiota and the disorder’s development [122–126]. Nonetheless,
the mechanisms through which the gut microbiota affects neuronal changes and behavioral
adjustments remain incompletely understood.

5.1. Microbial Influence on Neutrophil Generation

The microbiota has a significant influence over neutrophil production, impacting both
the generation of neutrophil progenitors in the bone marrow (BM) and the supportive
niche for hematopoiesis. Antibiotic use and germ-free conditions have long been associated
with diminished myelopoiesis in the BM, resulting in reduced neutrophil numbers and
increased susceptibility to infections [127–129]. Components derived from the microbiota,
such as heat-killed E. coli or LPS, can rescue neutrophil reductions in microbiota-depleted
models, indicating their pivotal role in this process [129].

Microbial molecules, including LPS and peptidoglycan, trigger interleukin-17 (IL-17)
production and subsequently granulocyte colony-stimulating factor (G-CSF) secretion via
the TLR4/Myd88 pathway [130,131]. This orchestrated response regulates neutrophil dif-
ferentiation according to microbial cues. Additionally, microbiota-mediated signals, such as
NOD1 ligands, influence stromal cells in the BM, prompting the expression of hematopoi-
etic cytokines that are crucial for hematopoiesis. For instance, the administration of NOD1
ligands in germ-free mice restores cytokine expression and promotes hematopoiesis [132].

Moreover, dietary factors, like high-fat diets, can perturb the BM niche, favoring a
myeloid bias and altering the expression of hematopoietic cytokines [133]. Interestingly,
high-fat-diet-induced changes in the microbiome mirror niche deregulation and myeloid
bias, underscoring the microbiota’s role in this process [133,134]. Microbiota-derived
signals also impact macrophages, key components of the BM niche, particularly during
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viral infections [135]. A further exploration of the microbiota-mediated regulation of niche
constituents promises deeper insights into hematopoiesis and neutrophil production.

5.2. Neutrophil Priming: Impact of the Microbiome

Microbial components derived from the microbiota wield considerable influence over
neutrophil functions, shaping inflammatory responses and impacting both local and distal
organs. For instance, contact between segmented filamentous bacteria (SFB) and the gut
epithelium prompts the release of serum amyloid A, driving Th17 differentiation in the
intestine and activating NF-κB signaling in circulating neutrophils, thereby enhancing their
migration and the inflammatory response [129,136]. Neutrophils from germ-free mice ex-
hibit diminished activity and impaired chemotaxis, particularly via Myd88-mediated path-
ways, underscoring the role of microbiota signaling in neutrophil functions. Furthermore,
microbial depletion reduces the phagocytic killing capacity of BM-derived neutrophils,
predominantly mediated by NOD1 signaling [129,130].

5.3. Impact of Microbial Metabolites on Neutrophil Activities

The microbiota generates a diverse array of metabolites from fermenting dietary com-
pounds or converting host-secreted endogenous compounds. These metabolites, primarily
short-chain fatty acids (SCFAs), secondary bile acids, tryptophan metabolites, and amines,
significantly influence host physiology and disease processes [137,138]. While microbial
products, like formyl peptides, can activate neutrophils, they may also signal through
specific receptors to induce anti-inflammatory effects, as evidenced in certain infection
models [129]. SCFAs, for instance, inhibit NF-κB signaling and promote the apoptosis of
neutrophils, contributing to the resolution of inflammation [129,136–138].

5.4. Neutrophil Behavior in Response to the Microbiota

In homeostasis, signals from commensals foster a regulatory environment that damp-
ens immune activation and leukocyte recruitment, safeguarding against unnecessary re-
sponses to harmless microbes [139]. However, when encountering unfamiliar microorgan-
isms, both innate and adaptive immune mechanisms swiftly mobilize to eliminate potential
threats. Within this dynamic interplay, neutrophils emerge as pivotal effector cells tasked
with eliminating unwanted microbial species.

Neutrophils act as guardians of microbiota containment, ensuring that their activa-
tion does not inadvertently harm commensals or healthy host tissues. In the intestine,
mononuclear phagocytes produce precursor proteins of the proinflammatory cytokine
IL-1β, which remain inert unless activated by pathogenic species, like Salmonella or Pseu-
domonas, through the NLRC4 inflammasome. This activation triggers robust neutrophil
recruitment to the epithelium, where they form protective “luminal casts”, limiting mi-
crobial translocation and overgrowth during infection [140,141]. Neutrophil recruitment
relies on chemotaxis receptor CXCR2 and cytokine IL-17, with recruited neutrophils con-
tributing to IL-22 production, a cytokine crucial for antimicrobial peptide (AMP) and IgA
production [131,142,143]. Ultimately, this orchestrated response serves to precisely regulate
commensal species and prevent overgrowth.

Furthermore, neutrophil-derived AMPs play a crucial role in fine-tuning the micro-
biota. By releasing these small molecules upon encountering pathogens, neutrophils
contribute to the maintenance of a healthy microbial community. The microbiota, in turn,
evolves strategies to resist AMPs, fostering stability and resilience within the microbial
ecosystem [144]. Notably, a deficiency in neutrophil-derived cathelicidins leads to dysbiosis
and increased susceptibility to colitis, highlighting the importance of these molecules in pre-
serving mucosal integrity [145]. Neutrophils, through the secretion of AMPs, thus actively
participate in shaping the composition of the microbiota, underscoring their indispensable
role in host–microbe interactions [144].



Gastrointest. Disord. 2024, 6 566

5.5. Neutrophil-Microbiota Dynamics in Chronic Conditions

Neutrophils play dual roles in immunity, combating pathogens while also contributing
to chronic inflammatory diseases and cancer [129]. The microbiota significantly influences
these processes [139].

Inflammatory diseases affecting barrier sites, like IBDs and airway disorders, arise
from a complex interplay of genetic factors, the immune system, and the microbiota [129].
Dysbiosis triggers robust neutrophil responses, exacerbating inflammation [129,146]. Sim-
ilarly, in cystic fibrosis and other airway disorders, dysbiosis fuels neutrophil-driven
inflammation, worsening disease severity [147,148].

Beyond barrier sites, neutrophils contribute to autoimmune and vascular diseases.
The microbiota influences these diseases by regulating systemic neutrophil activity. In
cancer, neutrophils modulate tumor progression, influenced by the microbiota [129,144].
The microbiota also impacts cancer therapy responses, affecting neutrophil activation [129].

6. Brain–Gut–Microbiota (BGM) Axis

The common sensations of a “gut feeling” or “butterflies” in the stomach illustrate
how signals from the brain are perceived in the gut. However, the interactions within the
microbiota–gut–brain axis are much more complex, as evidenced by extensive research
efforts aiming to uncover connections with brain development, physiology, function, and
health [149]. The brain–gut–microbiota axis is the key player in shaping brain development
and maintaining its health. Research efforts have shown the strong link between the
gut and the brain [150–152]. Recently, attention has shifted towards investigating the
role of the gut microbiota [151,153–155], with discoveries suggesting that specific gut
microorganisms may impact memory [156], learning [156], stress [157], mood [155,158,159],
and neurodevelopmental [160,161] and neurodegenerative disorders [151].

6.1. Neural Pathway: Vagus Nerve and the Brain–Gut Connection

The VN regulates internal organ functions, like digestion, heart rate, and respiratory
rate. Consisting of efferent and afferent neurons, it transmits motor signals between the
brain and organs, including intestinal cells, influenced by the gut microbiota. This allows
the brain to perceive the gut environment [162]. Most of these communication-mediated
metabolites, peptides, hormones, and endotoxins are locally detected by receptors on the
afferent VN [163]. Activation of VN receptors by signaling molecules, such as serotonin,
gut hormones, and cytokines, initiates signal transmission to the brainstem [164,165].
Additionally, a portion of these bioactive molecules may traverse the intestinal barrier and
enter the bloodstream, potentially reaching the brain and crossing the blood–brain barrier
(BBB) [166].

The VN acts as a vital communication highway in brain–gut interactions [166,167]. Mi-
crobiota metabolites, such as long-chain fatty acids, trigger VN receptors via CCK-mediated
pathways, while short-chain fatty acids (SCFAs) directly influence VN terminals [168]. Fur-
thermore, VN receptors interact with secretions from metabolite-activated gut sensory
cells, such as enteroendocrine cells (EECs), further facilitating communication between the
gastrointestinal tract (GIT) and CNS [166,169].

EECs, comprising <1% of resident mucosal cells, are dispersed throughout the GIT mu-
cosa and serve as a significant population of endocrine cells [170–172]. These cells sense lu-
minal contents, including metabolites and endotoxins, and produce over twenty hormones
that regulate food consumption, GI motility, and secretion via the enteric ENS [165,173,174].
Microbial metabolites stimulate the release of EEC hormones, initiating signals that act
on afferent vagal fiber receptors, transmitting stimuli to the brainstem, showing their
important roles in different pathologies [173,175–177].
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6.2. Immune System Anchored in the Gut: Unveiling the Link

From a perspective focused on brain health, the interactions between the microbiota
and the immune system are intriguing because of the systemic low-grade inflammation
commonly observed in different pathological conditions [177–179]. Furthermore, the
gut microbiome engages in intricate interactions with mucosal immune cells, shaping
immune–neural interactions from an early stage of life [180]. This interaction educates
the host defense system, promoting a balanced function between tolerance and immunity
for host homeostasis [165,181]. Approximately 70% of the immune system, known as
the gut-associated lymphoid tissue (GALT), is located in the gut, where around 80% of
immunoglobulin A (IgA) plasma cells reside. These cells play a significant role in maintain-
ing the immune system balance and physiological functions by interacting with the gut
microbiome [181–183].

6.3. Short-Chain Fatty Acids (SCFAs): Building Blocks of Gut Health

Moreover, the gut microbiome’s contact with innate and adaptive immune cells across
the intestinal mucosa impacts immune-related homeostasis, including GALT and CNS-
immune cells [180,184]. As the gut microbiota undergoes manipulation, gut microbiota
metabolize indigestible fiber-rich carbohydrates and primary bile acids to produce SCFAs
and secondary bile acids (2BAs), respectively, which significantly impacts the neuroimmune
system, particularly influencing microglia development and maturation [180,185–189].

This intricate relationship is underscored by the role of short-chain fatty acids (SCFAs),
such as propionate, butyrate, and acetate [187]. SCFAs, acting on receptors of enterochro-
maffin cells (ECCs), regulate the secretion of hormones, such as glucagon-like peptide (GLP-
1) and peptide YY (PYY), influencing food intake and blood sugar homeostasis [190–193].
Additionally, SCFAs increase the biosynthesis of serotonin in colon ECCs, further impacting
gut–brain communication [191,194].

In GF mouse studies, microglial immaturity and malformation were observed, which
could be restored by short-chain fatty acids (SCFAs) [195–197]. Conversely, moderate levels
of short-chain fatty acids (SCFAs), particularly those abundant in butyrate, enhance the
protection and repair of a compromised intestinal barrier when exposed to inflammatory
factors, like LPS or tumor necrosis factor-α (TNF-α) [198]. SCFAs induce regulatory T cell
(Treg) differentiation and increase interleukin-10 (IL-10) production by Tregs, influencing
inflammation and immune regulation [199–201].

6.4. Role of Toll-Like Receptors, Lipopolysaccharide, and Gut Peptides

The bacterial outer membrane contains LPS, which has pro-inflammatory character-
istics and is known to play a crucial role in the development and course of low-grade
systemic inflammation. While commensal bacteria live on many body surfaces, most of
them—mainly Gram-negative bacteria with LPS in their cell walls—are found in the gut.
Increased LPS levels frequently signify the movement of gut-dwelling Gram-negative
bacteria into the blood and internal body cavities.

Through the stimulation of intestinal inflammation and the disruption of tight junction
(TJ) organization via certain signaling pathways, LPS directly impairs gut function. These
mechanisms cause oxidative stress, mitochondrial malfunction, and mitophagy in epithelial
cells, and they cause enterocyte loss without compensatory TJ release [202].

TLRs contribute to maintaining balance in the intestines by detecting microbial signals
and are present in the ENS [203,204]. Pathways are dependent on the Toll-like receptor
4 (TLR4) and the cluster of differentiation 14 (CD14), and when TLR4 recognizes sub-
stances, like LPS, it indirectly induces a pro-inflammatory response through the NF-κB
pathway [203]. The pattern recognition receptor (PRR) TLR4 is expressed in hepatocytes,
adipocytes, endothelial cells, and different immune cells. LPS-binding protein (LBP) and
CD14 aid in TLR4’s recognition of LPS, with MD-2 protein being essential. Two signaling
pathways are triggered by TLR4 activation: one involves the adaptor proteins TIRAP
and MyD88 at the plasma membrane, while the other depends on TRAM and TRIF after
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CD14-mediated receptor endocytosis. The degree of systemic inflammation caused by
LPS is determined by the pace at which TLR4 is endocytosed and trafficked through the
endo-lysosomal compartment. The inflammatory response usually ends with the lyso-
somal degradation of LPS-activated TLR4 and the subsequent activation of MyD88- and
TRIF-dependent signaling pathways [205,206]. Moreover, TLR2 plays a role in preserving
ENS integrity by regulating inflammation within the intestines [207]. Often likened to a
“second brain”, the ENS interacts with enteroendocrine cells (EECs) and the gut micro-
biome, possibly via sensory nerves, like the VN [175,180]. When Toll-like receptor (TLR)
signaling is altered, it results in the promotion of regulatory T (Treg) cells and T helper 17
(TH17) cell proliferation, while also dampening the responses of intestinal epithelial cells
(IECs) [208–210]. The microbiome’s proposed role in regulating inflammatory cytokine
levels highlights its importance in shaping the immune response dynamics.

A high-fat diet may also contribute to systemic inflammation because it has been
shown that SFA may activate Toll-like receptor 4 (TLR4). Lipid A from LPS and dietary SFA
shares structural similarities that might be the cause of this activation. Chain lengths affect
the pro-inflammatory efficacy of SFA; lauric acid has the highest activity, while myristic
and stearic acids have the lowest [206].

The endocannabinoid system (EC) plays a crucial role in regulating food intake and is
implicated in glucose and energy metabolism regulation in mammals. Research indicates
that specific gut microbes, such as Akkermansia muciniphila, can modulate the EC system,
altering its activity levels. Dysbiosis, particularly associated with obesity or high-fat
diets, can elevate EC activity, leading to increased gut permeability and the subsequent
translocation of LPS. Muccioli et al. demonstrated that inhibiting cannabinoid receptor-1
(CB1) with CB1 antagonists in obese mice reduced gut permeability and adipogenesis by
normalizing the expression of Occludin and ZO-1, whereas CB1 stimulation increased
permeability markers both in vivo and in vitro [211].

6.5. The Neuroendocrine Pathway: Gut Hormones and the Path to Well-Being

As previously discussed, the gut microbiota plays a significant role in regulating the
activity of the host immune system, affecting the production of pro-inflammatory cytokines
and subsequently influencing and activating the release of corresponding hormones by the
HPA axis, involved in regulating many different psychological segments, including mood
and emotions and furthermore the immune system [212–222].

Additionally, the interaction among stress, the gut microbiome, and inflammatory
factors can compromise the integrity of two crucial barriers within the BGM axis: the
intestinal barrier and the BBB [166,182]. Under normal circumstances, the gut epithelial
layer acts as a protective barrier, preventing the unregulated movement of gut microbiota
into the gut lamina propria [223,224]. However, various environmental factors can impact
the intestinal barrier and compromise its integrity [182].

6.6. Microbiota–Serotonin Axis: An Important Link in Brain-Gut Communication

Numerous studies have established a strong connection between the microbiota and
serotonin regulation within the gut, emphasizing its pivotal role in brain–gut communi-
cation [191,225]. Serotonin, a vital neurotransmitter, originates from the metabolism of
tryptophan, further highlighting its significance in facilitating communication between
the brain and the gut [224]. Serotonin is involved in mood, cognition, sleep, and appetite
control [225–229].

Inflammation in the gut and disruptions in the brain–gut-microbiota (BGM) axis, such
as gut dysbiosis, have been linked to various metabolic and neurological disorders [230].
Thus, targeting essential elements of the GMB network, including short-chain fatty acids
(SCFAs), serotonergic pathways, the VN, and CNS macrophages, holds significant thera-
peutic and investigative promise for alleviating the repercussions of gut dysbiosis.
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7. Regulating Inflammation through the Microbiome
7.1. Navigating Inflammation: Striking the Balance between Protection and Overreaction

Distinguishing between protective and uncontrolled inflammation is crucial in under-
standing the dynamics of immune responses. The acute inflammatory response, essential
for defense against pathogens, is typically self-limiting. Neutrophils, the predominant
leukocytes in the blood, play a pivotal role in the initial defense, employing enzymatic and
chemical weapons to combat invaders and aid in tissue repair [150–152,231]. However, dys-
regulated neutrophil recruitment and activation can exacerbate tissue damage, perpetuating
inflammation and potentially leading to chronic conditions [152,154,158,232–234].

Evidence suggests that the impaired removal of neutrophils from inflamed tissues
exacerbates inflammation [154]. This persistent inflammation is implicated in various
diseases, spanning cardiovascular, respiratory, neurodegenerative, metabolic, and autoim-
mune disorders, along with conditions like rheumatoid arthritis (RA), multiple sclerosis,
inflammatory bowel disease, periodontitis, and sepsis [156,233]. The resolution of inflam-
mation is an intricate process, orchestrated by specialized lipid mediators, proteins, and
gaseous molecules that promote tissue restoration. These mediators, such as lipoxins,
resolvins, protectins, and maresins, facilitate repair by acting on immune cells, particularly
phagocytes [189,235,236]. However, ongoing low-grade inflammation can impede the acti-
vation of resolution mechanisms [154,202], contributing to acute exacerbations of chronic
inflammatory conditions [205,206,237,238].

Furthermore, evolving evidence suggests that neutrophils contribute to wound heal-
ing and tissue repair [221,226,231]. Their involvement in providing extracellular matrix
components and facilitating the clearance of apoptotic cells underscores their role beyond
the initial inflammatory response [187,221,224,226,229,231]. However, defects in phagocy-
tosis or neutrophil-induced genomic instability may impede resolution and hinder wound
healing [161].

7.2. Microbiome and Inflammation: Deciphering the Interactions

According to the updated definition, the microbiome includes not only microorgan-
isms but also their activities, collectively forming unique ecological niches.

The human microbiome is increasingly acknowledged as the “final organ”, highlight-
ing its crucial significance [239–241]. There are considerable variations in its composition
across individuals and bodily sites [109,242–244]. Different factors impact interaction
outcomes and disease emergence, including inflammatory bowel disease [245–254], can-
cer [251,252], and major depressive disorder. Additionally, the microbiome composition
undergoes alterations with aging and may vary significantly [253,254]. Understanding
their precise roles in the pathogenesis of these disorders can lead to innovative clinical in-
terventions, ranging from diagnostic biomarkers to therapeutic approaches with enhanced
specificity and efficacy.

The latest finding showed the microbiome’s ability to modulate the immune system,
leading to alternative states. Strong correlations have been observed between microbiome
alterations and various autoimmune and inflammatory conditions. In certain scenarios,
antibodies produced against microbiome-associated antigens may act as autoantibodies,
mistakenly targeting “self” tissues and causing damage. This phenomenon has propelled
autoimmune disease pathology into the realm of microbiome research, with conditions like
RA being a prominent example [255–257]. Studies in rat models have demonstrated that
the presence or absence of microbes can influence disease progression [258]. Additionally,
recent investigations in transgenic mice have revealed differences in microbial compositions
correlating with disease susceptibility, alongside variations in mucosal permeability and
the transcriptomic profile of T helper 17 (TH17) cells, which regulate the host response to
microbes and inflammation [259]. These findings provide a foundation for further human
clinical exploration and investigation.
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Another proposed mechanism connecting gut microbes and autoimmunity, particu-
larly concerning RA, suggests that joint inflammation might stem from harmful metabolites
resulting from imbalances in the gut microbiota. This theory is based on the observed
association between the prevalence of specific microbial species and strains and an elevated
susceptibility to particular diseases. For example, gut Prevotella, a specific Gram-negative
intestinal commensal anaerobic bacteria, has been associated with various inflammatory
and autoimmune disorders [260]. An increase in Prevotella is reported to correlate with
enhanced susceptibility to arthritis, and a reduction of Prevotella via dietary modulation
leads to reduced pro-IL-1β secretion in distal neutrophils [261,262]. While comprehensive
“pan-microbiome” investigations are crucial to gaining deeper insights into the role of
the human microbiome in RA pathogenesis, it is apparent that microbial participation
significantly influences the autoimmune process.

7.3. Neuroinflammation: Bridging the Gap between the Immune Response and Disease

A wide range of biologically active mediators influence the inflammatory response
within the nervous system and associated tissues. These inflammatory agents are generated
by resident glial cells in the CNS (including microglia and astrocytes), endothelial cells, and
immune cells originating from peripheral sources [263]. While neuroinflammation is com-
monly linked to the development of various neurological disorders, its primary function is
to act as a protective mechanism, demonstrating beneficial and adaptive effects [264].

Neuroinflammation serves as a mode of communication between the CNS and the im-
mune system [265], enabling a coordinated response by producing cytokines and secondary
signals that trigger appropriate behavioral and physiological adjustments, such as fever,
lethargy, reduced activity, and diminished social interaction [266]. These adaptations help
redirect the host’s resources to combat infections [267] and contribute to brain development,
plasticity [268,269], and processes like long-term potentiation (LTP), which are crucial for
learning and memory [270]. Essential elements of neuroinflammation, including IL-1β,
IL-6, and TNFα, are involved in maintaining synapses [271,272], with IL-1β supporting the
learning process, while IL-6 inhibits it [273]. Additionally, neuroinflammation aids in the
healing process following spinal cord or traumatic brain injury by regulating the activation
states of microglia [274].

Microglia, together with perivascular macrophages (pvMFs) and meningeal macrophages
(mMFs), represent the surviving macrophages of early primitive hematopoiesis within the
CNS [101–103]. Microglia, often referred to as the “policemen of the brain” for their role
in coordinating signals between the immune system and the brain, serve as the principal
resident macrophages in the brain, constituting the frontline defense against CNS injury
and infection and participating in numerous crucial processes for brain function, develop-
ment, and immune responses [104,275–277]. Throughout their lifespan, microglia exhibit
remarkable plasticity, swiftly transitioning between context-dependent activation states
characterized by distinct transcriptomic profiles, each associated with varying physiological
functions during development and adulthood, ranging from an active to a homeostatic
state [105].

Although essential for CNS protection, the chronic or excessive activation of microglia
may lead to pathological outcomes, like neuronal injury, death, and neurocognitive dis-
orders [204]. Additionally, due to their close proximity to other CNS cells, microglia
play crucial roles in the development and modulation of various neuroinflammatory and
neurodegenerative conditions [106,109]. With aging, microglia undergo a transition from
quiescence to activation, triggering processes, such as branching, surveillance, and IL-1β
release via the two-pore domain K+ channel THIK-1, thereby contributing to the onset of
neurodegenerative diseases [110,111]. Additionally, chronic or traumatic stress can lead to
a significant neuroinflammatory response, with animal studies suggesting the release of
diverse inflammatory signals by macrophages in response to stressors [278–280].
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Even subtle imbalances or prolonged inflammatory events may cause behavioral
abnormalities and damage to neurons, especially to developing neurons that are crucial for
brain function and mood control [162].

Moreover, oxidative stress resulting from inflammation and injury, along with the
production of ROS, can exacerbate neurodegeneration [281–283]. Importantly, anomalies
in the immune system, combined with genetic and environmental factors, can trigger
neuroinflammation, which, in turn, stimulates inflammatory pathways, leading to a positive
feedback loop and ongoing neuronal loss [284].

As microglia undergo aging, disruptions in immune communication within the brain
arise, accompanied by an imbalance in immune mediators [285]. Aged microglia display
distinct morphological characteristics and maintain a pro-inflammatory profile long after
injury, contributing to adverse outcomes [286]. Aging-related conditions and the overall
health status serve as significant predictors of neuroinflammation, directly influencing
the risk and development of brain and nervous system disorders [287]. Inflammation
has been implicated in resistance to conventional antidepressant therapies [288], with
its mechanisms in depression encompassing oxidative stress, cytokine imbalances, and
hyperglutamatergia [289,290]. Furthermore, inflammatory triggers may act as precursors to
various neurodegenerative disorders, underscoring the pivotal role of neuroinflammation
in disease onset and progression [291].

While neuroinflammation represents a crucial physiological process, prolonged and
uncontrolled inflammation can contribute to the onset of nervous system disorders, such
as anxiety, depression, memory impairment, and cognitive decline. A comprehensive
understanding of neuroinflammation pathways holds promise for deciphering disease
mechanisms and developing novel therapeutic agents with enhanced specificity and im-
proved prognostic outcomes for these conditions.

The Gut–Brain Connection: Understanding the Microbial Influence on Neuroinflammation

The human microbiome exerts effects over the immune response, notably shaping
inflammatory reactions and playing a pivotal role in regulating neuroinflammation within
the brain, thus emerging as a crucial factor in brain physiology, behavior, and cognition
regulation [292]. Patients with irritable bowel syndrome (IBS) have shown improvements
in both IBS symptoms and associated depression through administration of the probiotic
Bifidobacterium longum NCC3001 (BL) [293]. The observed positive effects of the probiotic
are linked to alterations in brain activation patterns and reduced limbic activity.

The concept of the “gut-brain axis” has emerged as a significant area of study, fo-
cusing on the bidirectional influence between the gut and the brain on their respective
functions. This relationship is particularly evident in Alzheimer’s disease (AD). Reports
have highlighted a potential link between fungal infections and AD-affected brains [294].
Additionally, investigations using the APP/PS1 mouse model of AD have suggested a
connection between alterations in the gut flora and disease phenotype [295]. Studies have
shown that the exposure of human primary brain cells to LPS can induce neuroinflamma-
tory consequences by activating the NFκB (p50/p65) complex [296]. Moreover, gut bacteria
have been implicated in triggering neuroinflammation by producing amyloids. Compelling
evidence from various studies has associated the reinforcement of normal or beneficial flora
with changes in disease susceptibility or progression. Dietary modifications impacting the
microbiome have been shown to influence neuroinflammation, but further investigations
are needed [297,298].

Similar observations have been made in conditions like Gulf War Illness (GWI), char-
acterized by neurological abnormalities and gastrointestinal disturbances. Rodent models
of GWI have shown that chemical exposure can alter gut bacteria, leading to a leaky gut,
which activates TLR4 and induces neuroinflammation [299]. In the context of hepatic
encephalopathy (HE), an altered gut–liver–brain axis may serve as a risk factor, and fe-
cal microbial transplant (FMT) following antibiotic administration has shown promise
in improving outcomes by restoring the normal microbiota and normalizing gut–brain
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communication in inflammation [300]. Strategies aimed at restoring the microbiota balance
through butyrate consumption and dietary soluble fiber have demonstrated improvements
in neuroinflammation parameters associated with aging [301,302].

The relationship between microbial dysbiosis in the gut and the neuroinflammatory
response following stroke is bidirectional [303]. In synucleinopathies like Parkinson’s
disease (PD), gut microbiota alterations have been linked to motor deficits and αSyn
pathology, suggesting a role for postnatal gut–brain signaling in disease modulation [304].
Additionally, neurological symptoms following COVID-19 infections may be related to
disruptions in the gut microbiome [305].

7.4. Understanding the Versatile Nature of Neutrophil Extracellular Traps (NETs)

Neutrophil extracellular traps (NETs) are a unique type of inflammatory response that
were first identified in 2004 [306]. Extracellular DNA traps were released to characterize
NETs. It was discovered that these DNA traps were made of decondensed DNA fibers,
histones, and neutrophil granule proteins. While initially the release of NETs was associated
with neutrophil death, termed NETosis, recent findings reveal that neutrophils also undergo
a process of vital and mitochondrial NET production [307].

Over the last 20 years, there has been a growing body of research on the physio-
logical properties of neural epithelial cells (NETs) and their impact on a wide range of
disorders [308–312]. NET formation involves the uncoiling of DNA strands in response to
stimuli, facilitated by proteases, such as peptidyl arginine deiminase 4 (PAD4) and neu-
trophil elastase (NE) [313–318]. Neutrophils extrude their contents through blebbing from
the cell membrane while remaining alive and retaining their functional capabilities [307].
The orchestrated activation of various signaling pathways leads to the blebbing process
from and extracellular release of NETs from the neutrophil cell membrane aided by gasder-
min D, while neutrophils remain alive and retain their functional capabilities [307,319,320].
Interestingly, different stimuli and disease contexts can trigger distinct forms of production
and NET release, including suicidal or lytic NETosis, where neutrophils undergo cell death
concurrent with NET expulsion triggered by infections, cytokines, and platelet activation.
Vital NETosis, which occurs without cell death, is predominantly induced by infections
and involves the vesicular trafficking of DNA to facilitate NET release, without mem-
brane rupture, thereby preserving cell integrity [307,321]. Additionally, both infections and
autoimmune diseases are associated with mitochondrial NETs [307].

Various signaling pathways regulate NET formation, including JNK, ERK1/2, Akt,
and Scr. The PKC activator phorbol 12-myristate-13-acetate (PMA) is commonly used as a
NET inducer [322–325]. Interactions between NETs and other immune-related mechanisms,
such as the inflammasome and autophagy, are gaining attention [326]. These findings
underscore the complexity of NET formation and its role in immune responses, suggesting
avenues for further research and potential therapeutic applications.

7.4.1. NETs and Inflammatory Crosstalk: Insights into Immune Regulation

The inflammasome of innate immunity, which is triggered by inflammatory and
immunological stimuli, is made up of a number of different proteins that, through their
detection of PAMPs or DAMPs, facilitate inflammatory and immune responses. Numerous
inflammasomes, such as NLRP1, NLRP2, NLRP3, NLRC4, and AIM2, have been linked to
autoimmune, CNS, and cardiovascular illnesses. It has been observed that inflammasomes
and NETs interact, for example, in atherosclerosis, where NETs activate macrophages to
produce IL-1β. Recent research indicates that NETs may activate the NLRP3 inflammasome
in peripheral neuropathy caused by oxaliplatin, notwithstanding the paucity of data.
Further research to examine this interaction is needed [309,327].

Autophagy is essential for maintaining cellular homeostasis and has been identified
as a major factor in a number of diseases that affect immunity and inflammation. The rela-
tionship between NETs and autophagy is becoming more widely understood. Neutrophil
autophagy is linked to NET-mediated cell death, and in sepsis, autophagy-driven NET pro-
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duction leads to inflammatory responses and immunological failure. Even though studies
have linked autophagy to NETs in CNS disorders and aging-related spontaneous NET de-
velopment, further investigation is required to fully understand this association [328–331].

The fate of NETs is controlled by mechanisms of degradation primarily executed by
macrophages and dendritic cells, involving enzymes like DNase 1 and TREX1 [332,333].
Notably, the protein LL-37 aids in NET uptake by macrophages while shielding NETs from
degradation by bacterial nucleases [333]. Furthermore, recent findings suggest that certain
resolvins enhance the uptake of NETs by macrophages, though the exact receptor remains
unidentified [334].

Despite their beneficial role in combating infections, microbial capture, and direct
antimicrobial activity, their uncontrolled formation can lead to tissue damage and perpet-
uate inflammation, contributing to various pathological conditions [321]. Cell-free DNA,
histones, MMP-9, and LL-37 contribute to this damage through mechanisms, such as cy-
totoxicity, thrombosis, and inflammation [335–337]. For instance, NET components, like
histones and granular proteins, can induce thrombin generation and endothelial injury, ex-
acerbating inflammatory responses [321]. Moreover, dysregulated NET formation has been
implicated in the severity of diseases, such as sepsis and COVID-19-associated acute respira-
tory distress syndrome [338–341]. In COVID-19, NETs infiltrate pulmonary tissues, causing
damage and microthrombi formation, further exacerbating the disease [339,341–343].

7.4.2. Neutrophil Extracellular Traps: Disrupting the Blood–Brain Barrier Dynamics

Brain microvascular endothelial cells (BMECs) contribute to formation of the highly
selective BBB. Consequently, neutrophils face barriers in crossing the BBB and are seldom
encountered in a healthy brain. Activated astrocytes and microglia cells release pro-
inflammatory cytokines, leading to the upregulation of adhesion molecules on BMECs,
which aids in neutrophil adhesion [344]. Consequently, interactions between neutrophils
and endothelial cells without transmigration contribute to increased BBB permeability [345].

Various mechanisms underlie neutrophil adhesion-dependent disruption of the BBB.
Initially, neutrophil adhesion induces blood flow stagnation, resulting in vascular obstruc-
tion; the depletion of neutrophils enhances CNS perfusion and reduces brain damage
post-stroke [346]. Neutrophil adhesion to BMECs via β2 integrins LFA-1 and MAC-1
triggers neutrophil activation, escalating oxidative stress and NETosis [347]. Activated neu-
trophils release neutrophil elastase (NE), potentially within NETs, which disrupts adherens
junction proteins, like VE-cadherin and β-catenin, elevating BBB permeability [348–351].

7.4.3. Therapeutic Potential of Neutrophil Extracellular Traps in Central Nervous System
Treatment: Exploring Opportunities

As discussed previously, NETs play a crucial role in various CNS diseases, includ-
ing cerebral stroke, Alzheimer’s disease, multiple sclerosis, ALS, and neurological can-
cers. Several therapeutic approaches targeting NETs have been explored for these con-
ditions [352–360]. Following cerebral ischemia, neutrophils infiltrate the CNS and are
positively correlated with neuronal loss, the infarct size, and cognitive impairment. Neu-
trophils from ischemic stroke patients display heightened NET formation compared to
healthy controls [344,361]. Additionally, CNS-infiltrating neutrophils in ischemic stroke
patients generate NETs [362]. Elevated serum levels of cell-free DNA in acute ischemic
stroke patients are associated with worse clinical outcomes based on the modified Rankin
scale, while lower serum DNase levels are observed in patients with stroke-associated
infections [363]. High-mobility group box-1 (HMGB1), primarily derived from platelets,
serves as a major inducer of NET production in ischemic stroke, and its depletion attenuates
NET formation post-stroke and improves neurological outcomes [362–366].

The same theory was reached in 2022, when interventions aimed at suppressing
NETs have shown promise. Dhanesha et al. (2022) demonstrated that inhibitors of nu-
clear pyruvate kinase muscle 2 (PKM2), a modulator of systemic inflammation, could
mitigate neutrophil hyperactivation and NET release, thereby improving functional out-
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comes post-stroke [367]. Similarly, the combination therapy Edaravone Dexborneol, com-
prising Edaravone and (+)-Borneol, was found to ameliorate acute ischemic stroke by
mitigating NET-induced blood–brain barrier damage and implicating its therapeutical
potential [368,369].

In multiple sclerosis (MS), elevated neutrophil levels and NET formation are associated
with relapsing-remitting MS (RRMS), suggesting a potential role in its pathogenesis [344].
In glioma, neutrophil-associated inflammation, including NETosis, promotes tumor growth
and resistance to therapy, suggesting a complex interplay with tumor progression [370–372].
Similarly, in Alzheimer’s disease (AD), neutrophils and NETs contribute to neuroinflamma-
tion and disease progression, with potential implications for therapy [373–375]. Intermittent
hypoxia–hyperoxia training was shown, by Serebrovska et al., to improve cognitive func-
tion and slow disease progression by suppressing NET-mediated blood–brain barrier
damage and parenchymal destruction [376]. Additionally, dimethylfumarate, a common
food additive, was found to alleviate neutrophil-mediated chronic inflammatory diseases,
like multiple sclerosis, by inhibiting neutrophil activation and NET formation [377]. The col-
lective results indicate a significant rise in neutrophil mobility in the cerebral parenchyma
during neuroinflammatory reactions, which is indicative of changes in their molecular and
metabolic profiles. These studies highlight NETs as potential therapeutic targets for CNS
diseases. These findings highlight the importance of understanding neutrophil dynamics
in CNS disorders and their potential as therapeutic targets [378].

In traumatic brain damage (TBI), neuroinflammation is frequently observed [379]. In
TBI models in mice, neutrophils cling to cerebral arteries, invade hypoxic brain tissue, and
produce neural epithelial cells or NETs. These cells are linked to adverse TBI outcomes
such cerebral edema, cognitive deficits, and paroxysmal sympathetic hyperactivity [380].
Neutrophil stimulation of the Toll-like receptor-4 (TLR4) causes NET development after
traumatic brain injury (TBI), which raises the intracranial pressure (ICP). This suggests that
neutrophils have a role in cerebral edema by producing NETs. Reducing NET development
in the brain after traumatic brain injury (TBI) and improving neurological and behavioral
outcomes have been demonstrated by techniques, such TLR4-knockout, the NET formation
inhibitor Cl-amidine, and DNase-1 [381]. According to these results, treatments that
target neural edema and hypoxia may be able to reduce these symptoms after traumatic
brain injury.

Interestingly, NETs exhibit a dual role in cancer, demonstrating both anti-tumor and
pro-tumor activities [382]. While they can inhibit cancer cell proliferation and exert cytotoxic
effects on certain tumor types, they may also promote tumor progression by facilitating
metastasis, awakening dormant cancer cells, and shielding tumor cells from immune
surveillance [382–386]. These diverse functions highlight the complex interplay between
NETs and cancer progression, warranting further investigation into their precise role in
tumorigenesis.

7.4.4. Modulating Neutrophil Behavior: Implications for Degranulation, NET Release,
and Clearance

The excessive or abnormal formation of neutrophil extracellular traps (NETs) has been
linked to the development of various diseases, suggesting that inhibiting NET release or
enhancing NET clearance could be promising therapeutic strategies. Compounds like
ROS scavengers, myeloperoxidase inhibitors, and PAD4 inhibitors have shown efficacy in
inhibiting NET release and reducing tissue damage in experimental models [321]. Moreover,
reversible PAD4 inhibitors, such as GSK484, have demonstrated the ability to inhibit
suicidal NETosis and prevent neutrophil-mediated kidney injury associated with cancer in
mice [387]. Certain lipid specialized pro-resolving mediators (SPMs), such as resolvin D4
and T-series resolvins, also exhibit the capacity to restrict NET formation [388–390].

Enhancing the degradation of neutrophil extracellular traps (NETs) through treat-
ment with DNase I reduced tissue damage and improved survival rates in mouse models
of severe bacterial pneumonia, transplantation-associated lung injury, tumors, and lu-
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pus [338,391]. Ongoing clinical trials are investigating the effectiveness of inhaled dornase-
α in reducing ARDS incidence in severe trauma patients [392]. Additionally, metformin
enhances NET clearance and efferocytosis, providing a potential therapeutic avenue [321].

7.5. Navigating the Interplay between Neutrophils and Pathogens

The interaction between neutrophils and various types of pathogens, including bacte-
ria, fungi, parasites, and viruses, is critical for host defense. Bacterial pathogens, through
surface molecules and toxins, delay neutrophil apoptosis, prolonging their lifespan for
ample pathogen clearance [393]. Phagocyte recognition of bacteria is mediated by specific
receptors, facilitating efficient phagocytosis. However, some bacterial pathogens alter the
neutrophil fate post-phagocytosis, promoting rapid lysis or prolonging apoptosis, impact-
ing inflammation and pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a
role in trapping and killing bacteria, but their excessive release can cause tissue damage.

Similarly, fungal pathogens pose unique challenges to neutrophils due to their diverse
structures. While neutrophils efficiently kill certain fungi, primary fungal pathogens
exhibit resistance [394]. Parasitic protozoans and helminths modulate neutrophil responses,
exploiting the neutrophil lifespan to facilitate disease progression [395]. They can also
trigger neutrophil extracellular traps (NETs), contributing to host defense or tissue damage.

Viruses, although diverse, can manipulate neutrophil survival pathways, impacting
host defense. Neutrophils can transport viruses to other tissues, contributing to dissemina-
tion [396]. Moreover, viruses may trigger neutrophil lysis and NET formation, which can
either aid in viral clearance or exacerbate tissue damage.

Despite the complexity, neutrophils play a crucial role in host defense against pathogens.
Their interactions with various pathogens highlight the intricate balance between pathogen
elimination and host tissue damage, emphasizing the importance of further research in
understanding these mechanisms.

Certain microbial species have devised cunning strategies to exploit neutrophil-
mediated inflammation for their own benefit, often at the expense of the commensal
microbiota, such as Salmonella [397]. Similarly, pathogenic strains of Escherichia coli
can capitalize on intestinal inflammation for their own growth advantage. Inflammation
prompts the upregulation of inducible nitric oxide synthetase by recruited leukocytes
and the epithelium, leading to the production of nitrate. While the majority of gut mi-
crobiota species cannot utilize nitrate, pathogenic E. coli possess mechanisms to employ
it as an electron acceptor for energy generation. This ability grants them a competitive
edge over other gut microbes, facilitating their proliferation during episodes of intestinal
inflammation [398].

7.6. The Complex Relationship between Gut Dysbiosis and Disease

“Leaky gut” or intestinal permeability syndrome are terms used to describe the dis-
order of the intestinal barrier. This problem leads to the development of several clinical
illnesses and is mostly caused by bacterial infections, oxidative stress, alcohol intake,
extended exposure to allergens, and an imbalance in the gut flora. These comprise obe-
sity, liver cirrhosis, non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease
(NAFLD), inflammatory bowel disease, celiac disease, irritable bowel syndrome, type 1
diabetes mellitus (T1D), and various autoimmune conditions [108,399].

There are three main types of gut dysbiosis that can lead to an imbalance in the gut
flora. The first type occurs when there is an insufficient presence of beneficial bacteria in
your gut flora. In this case, you may have lost an excessive amount of “good” bacteria. The
second type involves an overabundance of harmful bacteria. These hazardous bacteria
overgrow in your intestines, leading to an imbalance in your gut microbiota. The third
type entails a significant reduction in the diversity of your gut flora. Both beneficial and
harmful bacteria are lost, resulting in a decreased variety of bacterial species in your
gut [400]. The goal of microbiota research is to define “Eubiosis”, or a condition of a
healthy microbiota that is marked by a stable functional core, a diversity of taxa, and high
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microbial gene richness. On the other hand, disease promotion results from dysbiosis,
which is characterized by altered phylum ratios, decreased microbial diversity, and an
overabundance of Gram-negative bacteria, like Proteobacteria [401].

Increased intestinal permeability frequently coexists with dysbiosis, which makes
it easier for bacterial products to translocate and trigger immunological reactions that
may result in chronic inflammation. While dysbiosis is associated with a number of
inflammatory illnesses, it also has the ability to cause inflammation and disturb intestinal
homeostasis [402]. Numerous illnesses, such as autoimmune disorders, neurological issues,
obesity, metabolic diseases, inflammatory bowel diseases, and particular pathologies,
including necrotizing enterocolitis and diarrhea connected to Clostridium difficile, have
been linked to dysbiosis [401].

Using high-throughput DNA sequencing methods, like 16S rRNA gene sequencing or
whole-metagenome shotgun sequencing, it is possible to determine the pathogenicity of
individual gut bacteria, in opposition to the infectious disease microbiology hypothesis of
Koch. Because much of the gut microbiota cannot be grown in isolation, these techniques
enable the detection of altered bacterial populations or the replication of illnesses [403].

Therapeutic Insights

The integrity of the intestinal barrier and bacterial-derived products play crucial
roles in various chronic diseases, though a standard for assessing barrier function and
establishing cause–effect relationships remains elusive. Diet, probiotics, and prebiotics
emerge as key factors in managing metabolic endotoxemia and compromised intestinal
barriers. Certain dietary habits, such as alcohol abuse and high saturated fat intake,
contribute to inflammation, while oils rich in n-3 polyunsaturated fatty acids offer protective
effects [404]. Probiotics like Lactobacillus plantarum MB452 or Lactobacillus rhamnosus GG
enhance intestinal survival, while prebiotics like Enteromorpha prolifera polysaccharides
combat gut dysbiosis induced by high-fat diets [405,406].

Supplementation with vitamins D and A, along with zinc, shows promise in preserving
intestinal barrier function [407]. Combining prebiotics and probiotics yields better outcomes
in improving intestinal function than individual components [408].

Therapeutic strategies focus on preserving intestinal barrier integrity and neutraliz-
ing LPS pathways [409,410]. Microbial modulation through fecal microbiota transplan-
tation (FMT) offers significant contributions to managing NAFLD/NASH and hepatic
encephalopathy [411,412]. Clinical trials examining FMT’s effect on inflammatory bowel
disease (IBD) show promising results, though further investigation is needed due to incon-
sistent donor selection and administration methods [413].

8. The Bidirectional Relationship between the Hypothalamic–Pituitary–Adrenal Axis
and the Gut Microbiota

The HPA axis serves as the main response system during periods of stress [414]. The
critical role of the gut microbiota in the postnatal maturation of the HPA axis, essential for
stress response regulation, is significantly modulated by various factors. These encompass
the specific bacterial strains present, the availability of metabolized substrates, and host
attributes, like age and gender [415–418]. Considering the direct impact of alterations in the
HPA axis on the inflammatory response, the microbiome forms a tripartite stress response
system alongside neuroendocrine and neuroinflammatory components [419,420]. The vul-
nerability of the STAT5 signaling pathway to shifts in the microbiome composition [421,422]
indicates that changes in the microbiome can impact the neuroinflammatory process and
related disorders.

The quality and quantity of the gut microbiota, along with Toll-like receptor (TLR)
expression, may impact neuroendocrine secretion, playing a pivotal role in stress responses.
Studies on mice deficient in the stress response have revealed reduced expression of
2A isoforms of brain-derived neurotrophic factor and N-methyl-D-aspartate (NMDA)
receptors [423]. NMDA receptors influence the release and expression of corticotropin-
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releasing hormone (CRH) in the hypothalamus, leading to alterations in HPA axis functions.
The de novo synthesis of corticosteroids in the intestine is directly influenced by the
intestinal microbiota [424,425]. Glucocorticoids have been found to modulate the expression
of inflammatory mediators, exerting anti-inflammatory effects [426].

Simultaneously, the stress–HPA axis interplay influences the gut microbiota composi-
tion. The HPA axis and intestinal microorganisms mutually influence each other, jointly
participating in the pathophysiological processes following ischemic stroke (IS). Dysregula-
tion of the gut microbiota post-IS results in the over-release of substances like cytokines (e.g.,
IL-1β, IL-6, and TNF-α), which penetrate the brain via the BBB due to enhanced permeabil-
ity, activating the HPA axis. Cortisol, a central stress response mediator, regulates its further
production by modulating corticotropin in the hypothalamus [427,428]. Thus, the HPA axis,
a pivotal regulator of the stress response, also modulates the gut–brain axis. In the hypotha-
lamus, IL-1 and IL-6 can induce cortisol release by activating the HPA axis [429]. Finally,
the gut epithelium houses various types of hormone-secreting specialized neuroendocrine
cells included in delicate metabolic pathway regulatory mechanisms [430–433]

9. Therapeutic Opportunities
9.1. The Evolving Concept of Neutrophil Heterogeneity

Our understanding of neutrophils is rapidly evolving. Once thought to be a ho-
mogeneous cell population with uniform functions, recent insights have revealed their
heterogeneity in various physiological and pathological contexts [434–436]. While tradi-
tional classification methods relied on morphology, gradient separation, or surface markers,
cutting-edge techniques, like single-cell RNA sequencing, have unveiled transcriptomically
distinct neutrophil populations, even among mature peripheral neutrophils and those
involved in chronic inflammatory states [437–439]. This newfound heterogeneity is concep-
tualized through a developmental continuum known as the “neutrotime”, revealing distinct
poles separated by transcriptomic shifts [440]. However, further research is required to
elucidate the precise links between neutrophil transcriptomes and their phenotypic or
functional properties.

Certain subsets of neutrophils, such as CD177+ and CD117+ neutrophils, have emerged
with specific functions or associations with disease states [321]. Moreover, the notion of
“low density neutrophils”, encompassing both mature and immature neutrophils with both
proinflammatory and immunosuppressive properties, challenges the traditional view of
neutrophil homogeneity [441]. These subsets have been implicated in a variety of con-
ditions, including systemic lupus erythematosus and sepsis, highlighting their clinical
relevance [442,443]. Additionally, distinct subsets of tumor-infiltrating neutrophils, such as
the N1 and N2 subsets, exhibit differential effects on tumor growth, suggesting a complex
interplay between neutrophil phenotypes and the tumor microenvironment [321].

Neutrophils also demonstrate remarkable transcriptional and translational plasticity in
response to inflammatory cues, leading to alterations in functions and heterogeneity [444].
Metabolic reprogramming during the neutrophil life cycle further contributes to their
functional diversity, with metabolic pathways influencing key aspects of neutrophil biology,
including lifespan and the resolution of inflammation [445,446]. These findings underscore
the intricate nature of neutrophil biology and highlight the importance of understanding
neutrophil heterogeneity in both health and disease contexts.

9.2. Understanding the Fate of Emigrated Neutrophils

Neutrophils, the foot soldiers of the immune system, are recruited to sites of infection
or tissue injury, where they execute a variety of functions critical for mounting an effective
immune response and restoring tissue homeostasis. However, the outcomes of their
actions are multifaceted, influenced by numerous factors, and can either promote protective
inflammation or contribute to uncontrolled, chronic inflammatory states. Neutrophil
swarming, a fascinating phenomenon, involves the congregation of neutrophils in tissues
following their migration across endothelial barriers [321]. This coordinated clustering



Gastrointest. Disord. 2024, 6 578

around the site of infection or injury is crucial for containing pathogens and sealing off
damaged areas. Swarming is orchestrated by a series of events, including neutrophil
contact with necrotic cells, the release of signaling molecules, like LTB4, and the formation
of stable gradients that guide further neutrophil migration [447]. While swarming is
generally considered protective, excessive neutrophil accumulation and activation during
this process can lead to collateral tissue damage and exacerbate inflammation [448].

9.2.1. Beta-2 Integrin as a Target for Therapeutic Innovation

The conformational variations in Mac-1 and its broad ligand-recognition ability influ-
ence neutrophil responses and contribute to their functional diversity [449]. Consequently,
β2 integrins have emerged as promising therapeutic targets [449,450]. Alternative strate-
gies involve targeting specific Mac-1 conformations or ligand-specific signaling pathways
without compromising host defense [321]. Allosteric inhibitors stabilizing β2 integrins
in the high-affinity bent conformation effectively hindered neutrophil adherence and re-
stricted neutrophil accumulation in murine models [451]. The targeted inhibition of specific
glycan motifs on Mac-1 with plant lectins reduced neutrophil adhesion and transmigration
while enhancing phagocytosis and neutrophil apoptosis [452]. Additionally, small molecule
agonists, like leukadherins, activated Mac-1, reducing neutrophil trafficking into the kidney
while enhancing leukocyte adherence to the endothelium in murine models, leading to
arterial narrowing attenuation and improved renal functions [321].

9.2.2. Shifting towards Resolution through FPR2 Stimulation

The activation of the ALX/FPR2 receptor triggers various processes critical for resolu-
tion, such as blocking neutrophil trafficking into tissues, promoting neutrophil apoptosis,
and enhancing macrophage efferocytosis [453–455]. Moreover, annexin A1-containing
microparticles and exosomes released by activated neutrophils mediate anti-inflammatory
activity. Neutrophil-derived microvesicles can penetrate cartilage, protecting joints in
RA [321]. These findings suggest the potential therapeutic use of annexin A1-loaded mi-
crovesicles for reducing neutrophil infiltration and preventing tissue damage [456,457].
For instance, 15-lipoxin A4 expedites inflammation resolution across various experimental
models in mice [321,454]. The nanomedicine delivery of SPMs to correct resolution deficits
represents a promising avenue for preventing chronic disease progression, evidenced by
the decreases in tissue SPMs immediately before plaque rupture [458–461].

The intriguing biology of the ALX/FPR2 receptor has spurred numerous medicinal
chemistry programs aimed at developing small-molecule agonists to activate resolution
programs [456]. Synthetic lipoxin mimetics and the prototype peptide agonist WKYMVM
have demonstrated beneficial effects in various preclinical models [462,463]. Phase I clin-
ical trials have reported promising tissue-protective actions with other small-molecule
ALX/FPR2 agonists, such as compound ACT-389949 and compound BMS986235, in heart
failure [464].

9.3. Manipulating Neutrophil Survival and Programmed Cell Death

Significant advancements have occurred in understanding neutrophil apoptosis. Early
studies by Savill et al. in 1989 showed that aged neutrophils undergo programmed cell
death, marked by chromatin condensation, DNA fragmentation, and cytoplasmic vac-
uolation, remaining intact for at least 24 h without granule enzyme release [465]. This
process, termed efferocytosis, involves the macrophage-mediated clearance of apoptotic
neutrophils [393]. Further research by Whyte et al. demonstrated that apoptotic neutrophils
exhibit reduced antimicrobial and proinflammatory capacities [466].

Neutrophil apoptosis can proceed via intrinsic or extrinsic pathways, involving mi-
tochondrial permeabilization or death receptors, like FAS and TNF receptor [467]. Proin-
flammatory molecules, both host- and pathogen-derived, can delay neutrophil apoptosis,
prolonging their lifespan and priming them for enhanced function [468]. Additionally, the
host microenvironment, particularly hypoxia, can inhibit neutrophil apoptosis, regulated
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by hypoxia-inducible factor-1 alpha [469]. Despite their prolonged lifespan, neutrophils in
hypoxic conditions exhibit reduced ability to kill pathogens, like S. aureus, due to impaired
ROS production [470].

Direct interactions with intact microbes also influence neutrophil survival, leading
to either delayed apoptosis or rapid lysis post-phagocytosis [393]. However, specific
mechanisms for these processes remain incompletely understood, underscoring the need
for further research.

Preclinical evidence suggests the therapeutic potential of targeting neutrophil apopto-
sis to facilitate inflammation resolution. The pharmacologic blockade of cyclin-dependent
kinases (CDKs) has shown potent anti-inflammatory effects in neutrophil-dominated in-
flammation models and the enhanced resolution of severe lung injury. For instance, the
CDK inhibitor R-roscovitine increased bacterial clearance, possibly through an unidenti-
fied mechanism [471]. The annexin A1 mimetic peptide Ac2-26 also induces neutrophil
apoptosis [472]. Moreover, IFN-β, produced by resolution-phase macrophages, promotes
neutrophil apoptosis through the IFNαR1–STAT3 signaling pathway and accelerates Mcl-1
degradation [473]. These findings highlight Mcl-1 as a promising target for resolution ther-
apy. Restoring impaired phagocytosis represents another strategy to accelerate neutrophil
apoptosis. Bacterial and mitochondrial DNA reduce phagocytosis, bacterial clearance, and
phagocytosis-induced death by inducing the cleavage of the complement C5a receptor,
crucial for mediating phagocytosis [454,474].

9.4. Microbiota Modulation and Cognitive Function: Insights and Innovations

Research has linked the gut microbiota to various stress- and mood-related condi-
tions [475]. Regarding stress, clinical studies have associated probiotic and prebiotic sup-
plementation with positive outcomes [476]. However, most studies on mood and anxiety
have relied on pre-clinical animal models [475]. For instance, healthy mice administered a
probiotic formulation containing Lactobacillus rhamnosus showed improved performance
in tests designed to induce anxiety, depression, and stress [477]. Clinical trials have yielded
conflicting results [477,478]. Reviews of clinical trials have indicated that probiotics may
have limited effects on psychological outcomes, partly due to incomplete evidence and
heterogeneity in populations, cognitive tests, and interventions [477]. Nevertheless, one
study found a positive probiotic effect on mood and anxiety in patients with inflammatory
bowel disease (IBD) [479].

9.4.1. Implications for Autism Spectrum Disorder

The microbiota has been implicated in autism spectrum disorder (ASD). Transplant-
ing microbes from individuals with ASD into mice induced ASD-like behavior [480].
Conversely, clinical studies have shown that microbiota modulation through antibiotics,
prebiotics, probiotics, and fecal transplantation can improve social behavior in ASD pa-
tients [481–483]. These interventions have also led to reductions in anxiety behavior,
hyperactivity, and defiance [481]. Children with ASD are four times more likely to experi-
ence gastrointestinal (GI) symptoms, such as inflammation and abdominal pain [481]. Fecal
transplantation has shown long-term beneficial effects on both intestinal and behavioral
symptoms [483].

9.4.2. Learning and Memory

Studies have investigated the link between the gut microbiota and memory during
childhood [484]. It is increasingly recognized that sensitive developmental periods occur
across the microbiota–gut–brain axis. Animal studies suggest that alterations in the gut
microbiota can affect performance in visual-spatial learning and memory tasks [162]. While
human data are limited, one study has correlated microbial diversity with cognitive function
in infants.
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There is a need for a new perspective on cognitive development research, one that
recognizes the microbiota–gut–brain axis as a significant player alongside other biological
systems shaping behavior. Enhanced comprehension could open avenues for ground-
breaking therapies targeting learning and memory disorders [484]. Studies in mice have
shown that fecal microbiota transplantation can correct age-related immune defects [485].
Transplanting fecal microbiota from aged to young mice, however, negatively impacts CNS
functions [486,487]. These findings underscore the importance of the microbiota–gut–brain
axis in aging, suggesting that a “young” microbiota may maintain or improve cognitive
functions in later life [488–491].

9.5. Gut Microbiota: A Double-Edged Sword in Cancer Treatment

Empirical evidence has demonstrated a reciprocal relationship between the gut mi-
crobiota and therapeutic approaches. Specifically, distinct therapeutic approaches may
modify the gut microbiota in distinct ways, and the presence of the gut microbiota may
influence distinct therapeutic outcomes. To improve the treatment outcome, altering the
gut microbiota to lessen drug-induced toxicity may serve as an adjuvant therapy. With
the intricate role that gut microbiota play in cancer treatment, there are alternatives for
reducing damage and enhancing the effectiveness of cancer therapy [492].

It has long been a struggle for the research community to develop a cure for cancer,
as it is the top cause of mortality globally. The aforementioned anticancer treatments
have demonstrated success in offering palliative or curative care for cancer; nevertheless,
a number of side effects persist during this process, which compromises both efficacy
and prognosis. Preclinical and clinical studies, together with reports on the microbiota’s
function in cancer, have revealed this subject as a potentially important mediator in the
response to cancer treatment [492].

The interaction between the gut microbiota and chemotherapy is complex, with micro-
biota influencing both the toxicity and efficacy of anticancer drugs [492]. Microbes exert
their effect on cancer through contact-dependent and contact-independent mechanisms.
Contact-dependent effects occur locally, while contact-independent effects involve micro-
bial metabolites and outer membrane vesicles circulating systematically [493]. Pathogenic
microbes, like lipoteichoic acid and deoxycholic acid, can promote cancer development
through contact-independent effects [494]. The gut microbiota can enhance drug toxicity
by metabolizing certain drugs into compounds that inhibit critical detoxification enzymes,
leading to increased side effects. Conversely, microbiota can also enhance the anticancer
activity of chemotherapy drugs by inducing the expression of enzymes responsible for ROS
production, facilitating tumor cell apoptosis. Additionally, microbiota can modulate the
immune response to chemotherapy, influencing its effectiveness [492].

Furthermore, it has been shown that altering the gut microbiome through the use
of probiotics or FMT can improve the response to cancer treatments. These techniques
may also be used in future research to precisely regulate the composition of the micro-
biota, including the quantity of a given microbiota genus. Clinical trials are necessary
to thoroughly assess which makeup of the gut microbiota is most suitable to stimulate
the anti-tumor immune response. Additional key elements that need to be determined in
order to modify the gut microbiota include modifying the preparation prior to antibiotic
administration [492–496].

Moreover, certain gut microbiota species have been linked to chemoresistance, either
by activating oncogenic pathways or by inactivating chemotherapy drugs [495]. This
highlights the importance of understanding the microbiota composition in cancer pa-
tients to address chemoresistance effectively. Furthermore, the microbiota can impact the
efficacy of immunotherapy, with specific strains enhancing immune responses against
cancer cells [496]. Conversely, immunotherapy can alter the gut microbiota composition,
potentially affecting treatment outcomes [497,498].
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Regarding the effects on the intestinal mucosal surface, certain luminal microbes pose
a threat to the host, increasing the risk of carcinogenesis [499,500]. For instance, H. pylori
induces DNA damage in gastric epithelial cells, promoting gastric carcinogenesis [501].
Additionally, bacteria like F. nucleatum trigger inflammation and disrupt the mucosal
barrier, contributing to colorectal cancer initiation and progression [502,503].

In the tumor microenvironment (TME), microbes thrive due to factors like angiogenesis
and immune suppression, influencing the cancer phenotype and progression [504,505].
Intratumoral bacteria, such as F. nucleatum, enhance metastatic potential and inhibit local
antitumor immunity, impacting cancer prognosis [506,507]. Microbial components, like
outer membrane vesicles and metabolites, reshape the TME, exacerbating inflammation
and promoting tumor growth [508]. Furthermore, fungal species, like Malassezia and
Candida, are found in the TME, potentially contributing to tumor progression [509,510].
The relationship between fungal and bacterial communities within the TME remains
unclear [511]. Overall, understanding microbial interactions in cancer development and
progression is essential for developing targeted therapies and improving patient outcomes.

In the context of surgery, changes in the gut microbiota composition post-operation
can influence the recurrence rate and disease-free survival of cancer patients [512,513].
Similarly, radiotherapy can alter the gut microbiota diversity, leading to side effects, such
as inflammation, and compromising therapeutic efficacy [492,514]. However, manipulat-
ing gut microbiota holds promise for improving therapeutic efficacy, as the microbiota
composition can influence the treatment response [492].

10. Future Perspectives on the Neutrophil Role in the Gut–Brain Axis

The intersection of research on the microbiota–gut–brain axis has reached a pivotal
juncture [475]. With the ubiquitous presence of the gut microbiota and its multifaceted
influence on physiological systems, there is a growing recognition of the need for a holistic,
interdisciplinary research approach to unravel the intricate mechanisms and potentials
for enhancing human well-being and quality of life, akin to approaches seen in metabolic
diseases [512]. Multifaceted interventions that combine dietary modifications with other
health-promoting lifestyle strategies have demonstrated efficacy, targeting both endogenous
and environmental factors, which modulate the gut microbiota, highlighting substantial
variability among individuals [162].

Consequently, while current tools and methodologies have significantly advanced our
comprehension of the microbiota–gut–brain axis’s role in brain health and disease, most
studies thus far have been confined to animal models and primarily observational in clinical
settings. Many unanswered questions within the field necessitate clearer elucidation to
propel meaningful advancements toward microbiota-targeted strategies for enhancing
brain health. Addressing these knowledge gaps demands adept scientific inquiry.

Numerous studies have established causal connections between the gut microbiota
and the CNS [513–515]. However, focused studies are needed to identify and validate the
mechanisms of action in humans. Significant gaps in existing knowledge include the follow-
ing: determining the hormonal characteristics of microbiota-regulated neurotransmitters
in humans, including the processes by which they stimulate the HPA axis, as well as the
immunological effects of particular microbes in the human gut microbiota and their roles
in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders; furthermore,
studying the roles that particular microbes play in the early development of the brain, as
well as the effects that microbial by-products, including methylamines, peptides, SCFAs,
and branched-chain fatty acids, have on brain function in conjunction with immunological
and neurological signaling molecules.

It is also important to highlight that the characteristics and functions of a “healthy”
gut microbiota remain elusive. Although numerous studies have documented reduced
functional diversity and compositional alterations associated with various disorders, lit-
tle is known about how the microbiota evolves over time and may indicate impending
disease onset [516]. Unraveling the phenomenon of microbiota diversity could offer in-
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sights into defining a “healthy aging microbiota pattern” [517]. Similarly, there is a dearth
of knowledge regarding disease biomarkers and their reversibility through treatment or
dietary interventions. While some studies reported positive effects on depression and anxi-
ety symptoms [518,519], others found insignificant data to support dietary interventions’
role in mood and cognitive functions [520]. Moreover, targeting the gut microbiome to
alleviate anxiety and depression symptoms appeared to be more pronounced in clinical
patient populations compared to healthy adults [521]. Additional double-blind, random-
ized, placebo-controlled clinical trials in clinical populations are warranted to further
evaluate efficacy.

There are significant prospects in developing methods to track neurotransmitter move-
ment from the gut through the BBB in response to neuroinflammatory processes. Some
methodologies are emerging, with human brain imaging offering the possibility to monitor
the microbiota’s influence on neurotransmission [522]. Metabolomic, metaproteomic, and
metagenomic analyses, along with gut biopsies, present additional methodological avenues.

Advancing future research hinges on the innovation of novel models and sophisticated
tools to explore bidirectional communication pathways. While animal models have been
instrumental in establishing current knowledge, the substantial differences between the
rodent and human gut microbiota necessitate the development of robust humanized rodent
models [523]. In vitro models offer promising avenues, with three-dimensional brain
and gut organoids and advanced co-culture systems incorporating the ENS, VN, and
BBB providing alternative means to investigate realistic conditions for unraveling the
mysteries of microbiota–gut–brain interactions [524]. When combined with digestion
models, these organoids and co-cultures could serve as in vitro workflow models for
studying the gut–brain axis comprehensively. Although organ-on-a-chip in vitro models
have been developed for this purpose, they still have limitations [525].

The integration of machine learning technology will be pivotal in enhancing study ef-
ficiency and accuracy. Bioinformatics holds the key to integrating large, multi-dimensional
datasets and gaining a better clinical understanding of their significance. With ongoing tech-
nological advancements, there is the potential for such tools to identify high-risk patients
early, determine microbial/immunological imbalances contributing to these risks, and
suggest interventions to mitigate them [526]. Additionally, incorporating statisticians from
the outset of research studies ensures robust study design, while computational and data
scientists are indispensable for maximizing research value through comprehensive data
analysis. Specialized computer programs can provide advanced precision in generalizing
and stratifying results concerning specific population groups, such as those at risk of brain
disorders [527].

Moreover, collaboration is paramount for extracting maximum knowledge and build-
ing a validated evidence base. Establishing new biobanks to facilitate material sharing
from human and animal studies is essential, along with deep phenotyping databases and
standardized data formats [528]. In vitro models must also become more accessible across
laboratories. While competition for funding has hindered scientific collaboration, initiatives
like the Community Research and Development Information Service (CORDIS) within
Europe aim to foster collaboration by gathering and disseminating results from EU-funded
research projects [529]. Projects like the GEMMA, ONCOBIOME, and MICROB-PREDICT,
funded by Horizon 2020, are exploring microbiome-related research across various health
domains [530–533]. Organizations like the International Life Science Institute Europe (ILSI
Europe) and the International Scientific Association for Probiotics and Prebiotics (ISAPP)
promote progress in the field by supporting scientific integrity, harmonizing efforts, and
providing guidance for collaborative research [534,535]. ISAPP, in particular, sets an exam-
ple by focusing on objectives relevant to advancing microbiota–gut–brain axis research and
developing dietary strategies targeting the gut microbiota.
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Future Perspectives in Cancer Management

Therapeutic resistance and adverse effects continue to pose significant challenges in
cancer treatment, despite ongoing efforts to enhance treatment efficacy and minimize toxic-
ity. The gut microbiota emerges as potential predictive biomarkers and treatment targets,
although challenges lie ahead [536]. These include gaps in understanding how microbiota
modulation affects treatment responses, undefined microbial signatures as biomarkers, and
the absence of a consensus on optimal modulation methods. Additionally, while current
research primarily focuses on bacteria, commensal viruses, fungi, and archaea also play no-
table roles in cancer [537,538]. Consequently, the utilization of cancer-associated microbes
in clinical settings presents both prospects and challenges that require acknowledgment
and resolution.

Currently, the lack of standardized methodology, including variations in sample
selection, collection techniques, technology, data quality, and resource analysis, hinders
the homogeneity and consistency of understanding the mechanistic effects of microbes
on cancer. Heterogeneous results may arise from different sample types collected, such
as the digestive tract mucosa and feces, which have similar but not identical microbial
compositions [539]. On note, fecal microbiota transplantation (FMT) transfers not only
bacteria but also other non-bacterial microbes, raising safety concerns due to unclear effects
on recipients [536]. To mitigate bias, research should involve the collection and analysis of
multiple sample types.

Moreover, errors during sample collection and handling, particularly in tumor micro-
biota with low biomasses, can significantly impede microbial research due to contamination
risks from various sources, such as long surgeries or laboratory environments. Implement-
ing stringent measures, like wearing protective clothing during sample collection, is crucial
to minimize contamination [540]. Technical variables in identifying microbial signatures,
including sample handling and DNA extraction methods, further contribute to data hetero-
geneity and accessibility challenges [541].

Beyond methodological hurdles, individual biological differences, such as genetics,
diet, age, sex, and accompanying diseases, as well as regional variations, complicate mi-
crobial strategy applications [542,543]. Regional differences, influenced by factors like
economic development and ecological environment, significantly impact the human mi-
crobiota composition, limiting the generalizability of findings across diverse populations.
Addressing these challenges requires the stratification of microbiota and in-depth research
into host-specific microbial strains.

In the future, focusing on precise microbiota stratification and leveraging advanced
preclinical models, like patient-derived organotypic tumor spheroids, can enhance the
mechanistic understanding and validate findings in vitro. Despite accumulating evidence,
the clinical translation of microbial interventions in cancer management remains limited due
to complex individual sensitivities to microbial agents [544]. Integrating microbial-targeted
interventions into existing cancer-management systems necessitates more preclinical re-
search and prospective clinical trials to address challenges effectively.

Addressing these challenges requires intensive efforts and multifaceted research [545–548].
While significant challenges persist, the pivotal role of the gut microbiota in developing new
anticancer strategies cannot be overstated. Exploring holistic approaches that incorporate
microbial modulation therapy into current cancer management systems is imperative for
advancing cancer treatment [536]. Collaborative efforts from scientists and clinicians are ex-
pected to unravel more mysteries of the human microbiota, paving the way for next-generation
personalized medicine.
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11. Conclusions

In both health and disease, neutrophils and the microbiota engage in complex interac-
tions, yet much remains unknown about the underlying mechanisms. Questions persist
regarding the impact of various microbiota members, such as protozoa, viruses, and fungi,
on neutrophil regulation. Furthermore, while some microbial nutrients and metabolites
have been shown to influence neutrophil activity, the coordination of these signals from the
microbiome remains unclear. Disruptions in the microbiota can lead to disease, affecting
immune regulation, barrier integrity, and brain function.

Understanding the mechanisms governing the microbiome’s interaction with the CNS
offers insights into neurological disorders like depression and anxiety. Studies suggest that
probiotics and microbial transplants may offer therapeutic benefits for these conditions,
highlighting the potential for microbiota-based interventions in neurological diseases.
Understanding these interactions holds therapeutic promise for conditions like cancer
and chronic inflammatory diseases, driving the need for further investigation into their
molecular processes and the identification of key commensal species with pro- or anti-
inflammatory properties.

It is evident that the expanding field of gut–brain axis research holds immense promise
for transforming medicine and enhancing human well-being. Understanding the intri-
cate interplay among the microbiota, gut, and brain offers unparalleled opportunities to
develop novel therapeutic interventions for neurological disorders and improve overall
health outcomes. The continued investment in research, interdisciplinary collaboration,
and the development of advanced methodologies are imperative to unlock the full po-
tential of this field and translate scientific discoveries into tangible clinical benefits for
patients worldwide.
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