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Abstract: The gut microbiome plays a crucial role in human health by influencing various physiologi-
cal functions through complex interactions with the endocrine system. These interactions involve the
production of metabolites, signaling molecules, and direct communication with endocrine cells, which
modulate hormone secretion and activity. As a result, the microbiome can exert neuroendocrine
effects and contribute to metabolic regulation, adiposity, and appetite control. Additionally, the
gut microbiome influences reproductive health by altering levels of sex hormones such as estrogen
and testosterone, potentially contributing to conditions like polycystic ovary syndrome (PCOS) and
hypogonadism. Given these roles, targeting the gut microbiome offers researchers and clinicians
novel opportunities to improve overall health and well-being. Probiotics, such as Lactobacillus and
Bifidobacterium, are live beneficial microbes that help maintain gut health by balancing the microbiota.
Prebiotics, non-digestible fibers, nourish these beneficial bacteria, promoting their growth and activity.
When combined, probiotics and prebiotics form synbiotics, which work synergistically to enhance the
gut microbiota balance and improve metabolic, immune, and hormonal health. This integrated ap-
proach shows promising potential for managing conditions related to hormonal imbalances, though
further research is needed to fully understand their specific mechanisms and therapeutic potential.
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1. Introduction

The human body is home to a vast array of microorganisms that reside in various
areas, such as the gut, skin, mouth, and vagina, with the gastrointestinal (GI) tract being
the primary site [1]. This collection of microorganisms forms the microbiome, which is
composed of various microbial species known collectively as the microbiota [2]. The gut
microbiota plays a critical role in human health, interacting closely with the endocrine
system through mechanisms that involve hormones regulating host behavior, metabolism,
immunity, insulin signaling, and other functions [3–5]. The gut microbiota can influence
host behavior by modulating neurohormones like serotonin, dopamine, and gamma-
aminobutyric acid (GABA), as well as stress hormones like cortisol [6].

The gut microbiota is increasingly being shown to influence the host immune net-
work [7,8]. This relationship begins at birth, with the microbiota playing a crucial role
in shaping immune system development, which in turn impacts the composition of the
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microbiome [7]. The gut microbiota also significantly affects the host’s metabolic status
through multiple mechanisms. It produces short-chain fatty acids (SCFAs) like butyrate,
propionate, and acetate. SCFAs via G protein-coupled receptor 43 (GPR43) activation can
reduce inflammation and lipolysis, increase adipogenesis and leptin release, and ultimately
lead to lower fat accumulation [9]. Additionally, SCFAs activate AMP kinase in muscles,
which reduces lipid accumulation and improves insulin sensitivity [9], aiding in appetite
regulation and weight management [9,10]. Furthermore, the gut microbiota produces
metabolites that act as signaling molecules, influencing the release of key metabolically
active hormones such as serotonin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY),
and cholecystokinin (CKK) from enteroendocrine cells (EC) in the gut [3]. These hormones
regulate important metabolic processes, including glucose metabolism, insulin sensitivity,
adiposity, and appetite [3]. SCFAs, in particular, are known to modulate the secretion of
these gut peptides [11]. GLP-1 and PYY, secreted by L-cells located primarily in the ileum
and colon, play essential roles in regulating food intake and satiety. The gut microbiota’s
influence on GLP-1 and PYY secretion highlights its significant implications for the de-
velopment of metabolic diseases [3]. CCK, secreted from “I cells” predominantly found
in the upper small intestine [12], is released in response to dietary fat and protein intake.
However, the regulation of CCK by gut microbes is less well understood due to the limited
exposure of CCK-containing cells to the microbiota in the small intestine [3].

Recent evidence highlights a possible significant role of the gut microbiota in regulat-
ing sex steroid levels. It affects estrogen metabolism through the estrobolome, a collection
of bacterial genes encoding enzymes such as β-glucuronidase [13,14]. These enzymes de-
conjugate estrogens, impacting their bioavailability and circulating levels [14]. Additionally,
the gut microbiota has been identified as a major regulator of androgen metabolism in the
intestines, leading to relatively high levels of free dihydrotestosterone (DHT), the most
potent androgen, in the colonic contents of young and healthy mice and men [15].

A disrupted gut microbiome, in turn, can have detrimental effects on reproductive and
metabolic health through hormonal fluctuations and inflammation. This imbalance in the gut
microbiota can lead to altered sex hormone levels and metabolic dysfunctions, contributing to
conditions such as PCOS, infertility, and various metabolic disorders [13,16–18].

2. Dysbiosis as a Possible Trigger of Hormonal Disorders

Gut dysbiosis refers to an imbalance or disruption in the composition and function of
the gut microbiome. Dysbiosis can be triggered by various factors, including xenobiotics
(such as prolonged antibiotic use), lifestyle habits (such as an unhealthy diet, smoking,
and alcohol use), health status (such as chronic stress, infections, and chronic conditions
like inflammatory bowel disease; IBD and irritable bowel syndrome; IBS), as well as
environmental toxins, age, ethnicity, and genetic background [13,19,20] (Figure 1).

Gut dysbiosis can lead to alterations in the production and signaling of neurotrans-
mitters and hormones, such as serotonin, dopamine, and cortisol [21]. These imbalances
can have profound effects on mood, cognition, and overall brain function [22]. Individuals
with gut dysbiosis are more likely to experience symptoms of depression and anxiety [23].
A study in germ-free (GF) mice and specific pathogen-free (SPF) mice showed that altering
microbial colonization can affect behavioral responses to chronic stress by modulating
hormones and hormone receptors in the hypothalamic–pituitary–adrenal (HPA) axis under
stress [24]. Additionally, the altering gut microbiome can influence the production of
neurotrophic factors, which are essential for brain development and repair [25].

Recent studies suggest a possible link between gut dysbiosis and female hormonal
disorders [20]. Dysbiosis can lead to fluctuations in circulating estrogens by altering
β-glucuronidase activity, which may contribute to metabolic complications, PCOS, and
female infertility [13,16]. Additionally, dysbiosis may promote PCOS development, the
most common reproductive endocrine disorder in females, by increasing gut permeability,
leading to systemic inflammation and insulin resistance (IR) [26]. Dysbiosis-induced
hypoestrogenemia could also influence the progression of endometriosis and its potential
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malignant transformation [27]. Hypoandrogenism in males and hyperandrogenism in
females are both types of androgen disorders. Gut microbial imbalance can contribute
to androgen synthesis dysfunction, which may lead to androgen-driven diseases such as
obesity, metabolic syndrome, PCOS in females, and male hypogonadism [15,28].
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Figure 1. Factors that can induce dysbiosis and the link to hormonal disorders. Dysbiosis can
result from factors such as xenobiotics, poor lifestyle habits, chronic stress, environmental toxins,
age, ethnicity, and genetics. This imbalance can lead to hormonal fluctuations and inflammation,
contributing to several reproductive and metabolic disorders. Created in BioRender.

Intestinal dysbiosis may affect the secretion of multiple hormones and vitamins,
including vitamin D, thyroid hormones, and insulin [29,30]. Recent evidence indicates that
primary hypothyroidism is associated with altered bacterial diversity and reduced SCFA
production, which may contribute to thyroid dysfunction by lowering thyroxine levels [31].
There is also an established link between the gut microbiome and other thyroid disorders,
such as thyroid nodules, Hashimoto’s thyroiditis, and Graves’ disease [32–35].

A healthy gut microbiome is essential for maintaining glucose homeostasis. Evidence
from basic and clinical studies indicates that gut dysbiosis can be a causal or contributing
factor in the pathogenesis of various glucose metabolism disorders, including obesity,
IR, and Type-1 and Type-2 Diabetes [36]. Turnbaugh and colleagues demonstrated that
gut microbiota dysbiosis can cause metabolic disease in mice independent of genetic
background [37]. Their study showed that microbiota transplantation from mice with
diet-induced obesity to lean germ-free mice recipients resulted in more fat deposition than
transplants from lean mice donors. Likewise, another study reported that the transplant
of microbiota from lean and obese human twins into germ-free mice lacking a native gut
microbiome resulted in the conveyance of the metabolic phenotype of the host [38]. These
findings highlight the potential of targeting the gut microbiome as a strategy for preventing
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and treating disorders related to hormonal imbalances. Common approaches include the
use of probiotics, prebiotics, and synbiotics.

3. Probiotics: Definition, Mechanisms of Action, and Impact

Probiotics are living, non-pathogenic microorganisms that offer benefits to human
health when consumed in adequate amounts [2]. Multiple microorganisms that belong to
the genera Propionibacterium, Lactococcus, Enterococcus, Pediococcus, and Bacillus are consid-
ered to be probiotics [39]. Still, the most important probiotic strains are the Lactobacillus
and Bifidobacterium, which are commonly used in functional foods and dietary supple-
ments [40,41]. While microbiota refers to the natural population of microorganisms in the
body, probiotics are beneficial microbes that are taken to support or enhance the microbiota.

Probiotics have been found to play a supportive role in the treatment and prevention
of various conditions, including IBD, IBS, lactose intolerance, cancer, diarrhea, and allergic
diseases [39]. The major therapeutic effects of probiotics are primarily attributed to their
direct or indirect effect on the GI tract [42]. These beneficial effects are attributed to several
key mechanisms by which probiotics eradicate pathogens and maintain a healthy balance of
gut flora. These mechanisms include competing with pathogens for nutrients and adhesion
sites in the gut, enhancing intestinal barrier functions, improving the immune system,
and producing neurotransmitters [39], which makes it difficult for harmful pathogens to
thrive. Probiotics also function as antimicrobial agents by producing substances, such as
organic acids and hydrogen peroxide, which combat the pathogenic bacteria in the gut [43].
In addition, probiotics increase the production of mucin proteins, which strengthen the
function of the intestinal barrier [44].

Apart from the direct effect on the GI tract, the gut microbiome interacts with the
body’s endocrine system via several complex mechanisms. One important pathway is
the gut–brain axis [45]. Probiotics influence the production and release of a number of
neurotransmitters and hormones, such as dopamine, serotonin, and norepinephrine [46].
Additionally, probiotics reduce the level of stress hormones such as cortisol [47,48]. Accord-
ingly, probiotics have a role in regulating depression, anxiety, and other central nervous
system (CNS)-related disorders [48,49]. While existing studies highlighted the impact of
probiotics on neurotransmitter production, stress hormone levels, and CNS-related disor-
ders, further research is warranted to determine the strain-specific effects of probiotics for
targeting specific CNS disorders.

The synthesis of GI hormones such as leptin, ghrelin, and GLP-1 is influenced by specific
strains of microbiota, indicating a role for the microbiota in appetite regulation [3,50]. Probi-
otics contribute to the fermentation of dietary fibers, producing SCFAs that positively affect
metabolism and enhance the release of hormones involved in appetite control and insulin
secretion [41,51]. While the impact of probiotics on GI hormones is well documented, the
precise mechanisms through which different probiotic strains modulate these hormones
remain unclear and warrant further research.

In a recent observational study, probiotic use was associated with higher estradiol
levels in premenopausal women and lower total testosterone levels among pre- and post-
menopausal women [52]. In ovariectomized mice, probiotics were found to influence
estrogen levels by modulating the gut microbiota, enhancing SCFA production, and up-
regulating estrogen receptors in adipose tissue [53]. While the gut microbiota’s role as
a major regulator of colonic androgen content in young and healthy mice and men is
well documented [15], there is a lack of studies investigating the impact of probiotics on
androgen regulation in both males and females. Moreover, despite the potential benefits
of probiotics for overall health in both men and women, their role in preventing or treat-
ing sex hormone-related disorders, such as hypogonadism in men and PCOS in women,
remains understudied.
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4. Prebiotics: Definition, Mechanisms of Action, and Impact

While probiotics are live beneficial bacteria that support gut health, prebiotics are
non-digestible fiber compounds that selectively nourish the gut microbiota, stimulating
their growth and activity. This selective stimulation of the microbiota ultimately confers
health benefits to the host [54]. Importantly, a prebiotic must be resistant to stomach acid,
remain unabsorbed in the GI tract, be fermented by microbiota, and selectively stimulate
the growth and activity of beneficial intestinal bacteria [55]. Prebiotics include diverse
carbohydrates, including fructans, β-glucans, galacto-oligosaccharides, inulin, starch, guar
gum, lactulose, maltodextrin, xylo-oligosaccharides, and arabino-oligosaccharides [54,56].

By promoting a healthy gut microbiome, prebiotics contribute to improving physical
health. Several studies have reported the positive role of prebiotics on the GI tract. For
instance, prebiotics can help manage conditions like bloating and constipation [57]. In a
randomized controlled trial involving patients with functional bowel disorders, the admin-
istration of fructo-oligosaccharides (FOSs) over a six-week period was found to improve
the symptoms of IBS [58]. FOS supplementation was also shown to decrease Crohn’s
disease activity in patients in a clinical trial [59]. Prebiotic fermentation products have
also demonstrated protective effects against the development and progression of colorectal
cancer [60,61]. In addition, prebiotics have been found to aid in weight management in
both adults and children [62,63]. Because the GI tract is connected to the brain via the
gut–brain axis, prebiotics have positive effects on the nervous system, such as improved
cognition and memory [64].

Prebiotics offer numerous health benefits by selectively stimulating the growth and
activity of beneficial bacteria in the gut. Their primary mechanism of action involves
promoting the growth of beneficial bacterial strains like Lactobacilli and Bifidobacteria, which
outcompete pathogenic microbes for resources and attachment sites, thereby enhancing
gut health [65]. Additionally, the fermentation of prebiotics produces SCFAs, which diffuse
through gut enterocytes and enter blood circulation, affecting not only the GI tract but
also distant organs and systems [66]. The acids produced from prebiotic fermentation
alter the gut environment by decreasing its pH, leading to changes in the composition and
population of gut microbiota [67]. Prebiotics also improve gut barrier function by increasing
mucin production and strengthening the tight junctions between intestinal cells, which
helps prevent harmful substances from entering the bloodstream [68,69]. Furthermore,
prebiotics stimulate the immune system by increasing the population of beneficial microbes
in the gut and altering cytokine expression [70].

The prebiotic, inulin, has been shown to increase plasma levels of GLP-1 and reduce
levels of ghrelin [71,72]. This suggests that prebiotics can influence GI hormone production,
likely through the production of SCFAs, thereby affecting appetite regulation. As a result,
prebiotics could serve as new targets for managing obesity and other eating disorders.
In addition, prebiotics may help people cope with stress and mild anxiety by lowering
cortisol levels, a stress hormone [73]. Some prebiotics have also been reported to increase
estrogen metabolism in the intestine by suppressing β-glucuronidase activity [74], which
could potentially reduce the risk of estrogen-mediated cancers. However, data on the
role of prebiotics in hormone regulation are still limited. More research is needed to fully
understand their impact on hormonal regulation and their potential therapeutic uses.

5. Synergistic Effects of Probiotics and Prebiotics (Synbiotics)

Synbiotics are a specific combination of probiotics, microorganisms that provide health
benefits when consumed, and prebiotics, compounds that promote its growth, having a syner-
gistic effect when paired together [75,76]. In May 2019, the International Scientific Association
for Probiotics and Prebiotics (ISAPP) updated the definition of a synbiotic to “a mixture of
live microorganisms and substrate(s) that confer health benefits to the host” [77]. Synbiotics
are classified mainly into two groups: (a) complementary synbiotics and (b) synergistic syn-
biotics [75]. The complementary synbiotics are composed of probiotics and prebiotics that
provide health benefits independently of each other, without requiring any mutual func-
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tion. In contrast, synergistic synbiotics include a substrate that is specifically utilized by the
co-administered live microbial populations, enhancing their effectiveness [75,77].

The use of synbiotics is an efficient and promising approach for maintaining gut
microbiota homeostasis, promoting the restoration and maintenance of beneficial gut bacte-
ria [78]. A randomized controlled trial has demonstrated that synbiotics can significantly
improve metabolic health in individuals with metabolic syndrome and prediabetes [79].
Synbiotic supplementation under high-fat diet conditions has been found to alleviate
metabolic disturbances and improve intestinal barrier integrity by increasing gut hormones
and SCFAs [80]. Some potential benefits of synbiotic consumption in humans include the
following: (a) increasing the populations of Lactobacilli and Bifidobacterial, which helps
maintain gut microbiota balance; (b) boosting the production of SCFAs; (c) improving
metabolic processes such as bile acid deconjugation and mineral absorption; (d) strength-
ening the modulation of the host immune system; and (e) enhancing liver function in
individuals with cirrhosis and other [75,81–83]. Overall, the synbiotic approach has proven
to be more effective than using prebiotics or probiotics alone in modulating gut micro-
biota and alleviating metabolic disorders associated with an imbalanced gut microbiota in
humans [84].

6. Probiotics and Prebiotics in the Management of Endocrine Disorders

The potential role of probiotics in hormonal regulation and the management of en-
docrine disorders is suggested by recent findings from both basic and clinical research
(Table 1). A recent observational cohort study among 2699 women, comprising a nationally
representative sample of adults who participated in the National Health and Nutrition
Examination Survey between 2013 and 2016, suggests the potential beneficial effect of
probiotics. Probiotic ingestion was considered when a subject reported yogurt or probiotic
supplement consumption. The data revealed that premenopausal women who consumed
probiotics had higher estradiol levels, and postmenopausal women who consumed probi-
otics had lower total testosterone levels than women who did not consume probiotics [52].
Whether these findings could be extrapolated to other clinical conditions is unclear. For
example, among patients with type 2 diabetes mellitus (T2DM), women have a higher level
of circulating testosterone [85] and could be a population that could greatly benefit from
probiotics. Another condition where excess of androgen is present in women is PCOS.
About 80% of women with PCOS have hyperandrogenemia, and the level of testosterone
is about 1.5-fold higher compared to women with normal cycling. Interestingly, women
with PCOS and elevated androgen levels have a worse cardiometabolic profile compared
to women with PCOS with normal levels of androgens [86]. Thereby, it can be speculated
that a simple intervention such as yogurt or probiotics intake may result in beneficial
hormonal changes that will decrease cardiovascular risk in those populations. However,
this hypothesis remains to be tested. In contrast, in men with hypogonadism, probiotics
administration failed to increase the plasma level of testosterone [87]. Whether and how
probiotics, in a sexually dimorphic manner, regulate the levels of sex steroids remains to
be elucidated.

Early puberty is defined by the development of secondary sexual characteristics and
menses before eight years of age in girls and nine years in boys. Early puberty has been
extensively linked to adverse health outcomes, such as metabolic syndrome. Recent data
suggest that probiotic drinks or yogurt have a protective effect against early puberty [88].
Thereby, probiotics administration could constitute an effective intervention to modulate
sex steroids in a variety range of clinical conditions.

Besides sex steroids, other steroids, such as cortisol, could also be impacted by pre-
biotics. Cortisol, or the stress hormone, has several functions in the human body, such
as mediating the stress response, regulating metabolism, the inflammatory response, and
immune function [89]. Data from a small randomized clinical trial demonstrated that a
three-week consumption of two types of prebiotic supplements in healthy human volun-
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teers was associated with decreased waking salivary cortisol reactivity (a stress biomarker)
and improvement in anxiety [90].

The thyroid hormones are well known for controlling metabolism, growth, and many
other critical functions. Recent data have suggested that microbes influence thyroid hor-
mone levels by regulating iodine uptake, degradation, and enterohepatic cycling [35]. A
recent meta-analysis of eight randomized clinical trials has shown that although probi-
otics and prebiotics did not change the level of thyroid hormones, they may modestly
reduce thyroid-stimulating hormone receptor antibody levels in patients with hyperthy-
roidism [91].

T2DM, a metabolic disorder characterized by elevated glucose levels, has emerged
as a major public health problem. Its prevalence is increasing, and it is estimated that by
2045, 700 million individuals worldwide are expected to have diabetes mellitus. A recent
meta-analysis of 22 randomized clinical trials, including a total of 2218 patients, suggested
that probiotics may lower baseline levels of HbA1c, fasting glucose, and IR in patients
with T2DM. Similar findings were observed in women with gestational diabetes [92]. Met-
formin is an antihyperglycemic medication approved for the management of T2DM when
glycemic control cannot be accomplished by lifestyle modification alone. Metformin is also
recommended for diabetes prevention in patients age < 60 years and/or BMI ≥ 35 kg/m2,
or HbA1c of 5.7% to 6.4%, in whom lifestyle modifications failed to reduce hyperglycemia
Metformin is the initial therapy of choice in T2DM due to its efficacy, weight-neutral ef-
fect, general tolerability, favorable cost, and protection from cardiovascular events [93].
Recent data demonstrated that the co-administration of oral probiotic interventions along
with metformin treatment was found to significantly improve glycemic control in T2DM
patients [94].

Dyslipidemias, or abnormal levels of cholesterol and/or triglycerides, are frequently
associated with T2DM. The administration of probiotics is associated with improvement in
the lipid profile of patients with dyslipidemias [95]. However, whether this improvement
of glycemic parameters or lipids results in an improvement in cardiovascular morbidity or
mortality remains unknown.

Table 1. Role of gut microbiome in hormonal regulation.

Hormone of Interest Main Findings Proposed Mechanisms Reference

Cortisol, adrenocorticotropic
hormone, (ACTH),
aldosterone

■ Germ-free (GF) mice exhibit an imbalance
in the HPA axis, affecting the
neuroendocrine system in the brain and
resulting in an anxiety-like behavioral
phenotype in response to chronic
restraint stress.

Tendency to ↑ Cortisol
↑ ACTH
↑ Aldosterone
↑ Corticotropin-releasing
hormone receptor 1 (Crhr1)
mRNA levels
↓ Mineralocorticoid receptor
(MR) mRNA levels

[24]

■ Probiotic formulation exerts anxiolytic-like
effect in rats and beneficial psychological
effects in healthy human volunteers.

↓ Urinary free cortisol in
tested subjects [47]

■ Probiotic Bifidobacterium longum 1714
reduced stress and improved memory in
healthy human volunteers.

↓ Salivary cortisol [96]

■ Prebiotics: FOS and B-GOS intake reduces
the waking cortisol response and alters
emotional bias in healthy volunteers.

↓ Salivary cortisol [73]
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Table 1. Cont.

Hormone of Interest Main Findings Proposed Mechanisms Reference

Estrogen

Gut bacterial species containing
β-glucuronidases and β-glucuronides enzymes
are capable of metabolizing estrogens.

The deconjugation and
conjugation of estrogen by the
estrobolome modulate the
enterohepatic circulation of
estrogens, thereby affecting
circulating and excreted
estrogen levels

[97]

In men and postmenopausal women, the level of
total urinary estrogens was strongly and directly
associated with fecal microbiome richness.

Altering β-glucuronidase
activity [98]

Dysbiosis may influence the progression of
endometriosis in females. ↓ Estrogen level [27]

■ Diet rich in the probiotic Lactobacillus
plantarum and soy isoflavones reverses
menopausal obesity and increases
circulating estrogen levels in
ovariectomized mice.

↑ Serum estradiol, upregulate
estrogen Receptor α (ERα) in
adipose tissue.
↑ SCFA production

[53]

■ Probiotic supplements and yogurt intake
are associated with higher estradiol levels
among premenopausal women.

- [52]

Androgens

■ Gut microbiota produces high free levels of
DHT in the colonic content of young and
healthy mice and men.

De-glucuronidation of DHT
and testosterone [52]

■ Probiotic supplements and yogurt intake
are associated with lower total testosterone
levels among postmenopausal women.

- [52]

Insulin

■ High-fat diet induces gut dysbiosis,
promoting insulin resistance in
TLR5-deficient mice.

Disrupting insulin signaling [99]

■ Gut microbiota from obese donors induced
insulin resistance in recipient mice.

Altering host gut microbiota
composition [38]

■ Gut microbiota alteration can impair
insulin signaling and cause
insulin resistance.

Increased intestinal
permeability,
lipopolysaccharide absorption,
and inflammatory pathway
activation

[100]

■ Probiotic VSL#3 I improve metabolic status
and insulin sensitivity in
overweight adults.

↓ Circulating inflammatory
markers and insulin
Improves the lipid profile and
decreases the
atherogenic index

[101]

■ Prebiotic oligofructose improve glucose
tolerance and glucose-induced insulin
secretion in high fat fed mice.

↓ Bifidobacterium spp.
↓ Endotoxemia and plasma
and adipose tissue
proinflammatory cytokines
↑ Colonic mRNA levels of the
GLP-1 precursor proglucagon

[102]
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Table 1. Cont.

Hormone of Interest Main Findings Proposed Mechanisms Reference

Leptin, Ghrelin, GLP-1

■ Gut microbiota affects the levels/signaling
of GI hormones such as leptin, ghrelin,
and GLP-1.

SCFAs modulate leptin release
via activating GPR41 receptor
SCFAs induce GLP-1 release
through interacting with
enteroendocrine cells
SCFAs attenuate
ghrelin-mediated signaling
via the growth hormone
secretagogue receptor-1a
lipopolysaccharide (LPS)
modulates GLP-1 release
via TLR4

[3,50]

■ The prebiotics inulin and oligofructose
exert favorable effects on glucose and
lipid metabolism.

↑ GLP-1 production
↓ Serum ghrelin levels [71]

Thyroid ■ Gut dysbiosis negatively impacts the
thyroid function in humans.

↓ SCFA production
↓ Thyroxine levels [31]

7. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) refers to administering stool bacteria into
the intestinal tract of a patient, a clinically relevant example is the treatment of recurrent
Clostridioides difficile infection (CDI) [103]. Patients with recurrent CDI have a reduced
diversity and number of the intestinal microbiome compared to healthy individuals [104].
This infection can be observed in up to 20% of antibiotic users. The mechanism is not
entirely understood, but it is related to changes in the homeostatic balance of the GI mucosa.
The alteration of the colonic microbiota following FMT appears to be long-term, with
a high cure rate after FMT [105]. Limited data suggest that FMT can also be beneficial
in CDI-associated bloodstream infections [106]. Additionally, FMT has demonstrated
potential in reducing dysbiosis, decreasing hospitalizations, and improving disease severity
in patients with hepatic encephalopathy and liver cirrhosis. It has also been shown to
enhance metabolic outcomes in patients with non-alcoholic fatty liver disease [107].

The impact of FMT on the endocrine system has been suggested in recent findings in
cross-sex fecal transplants in Wistar rats. Male rats that received FMT from female donors
displayed lower plasma concentrations of testosterone compared to the male recipients
that received same-sex FMT without changes in other hormones such as cortisol [108]. It is
very early to fully understand the clinical relevance of these findings and the mechanisms
underlying this change. Recent findings suggest the existence of local testosterone synthesis
and metabolism in the colon, with higher concentrations than those in plasma in male
rats [109]. This finding is not novel per se; several other organs have the full machinery
necessary to synthesize or activate sex steroids [110–112]. Although the sex of the donor
is accounted for in some transplants, such as the heart [113], it is not usually the case for
FMT. Clinical evidence also suggests that FMT may help preserve endogenous insulin
production in patients recently diagnosed with type 1 diabetes [114]. However, further
research is needed to fully understand the effects of FMT on the endocrine system.

8. Limitations, Future Directions, and Research Gaps

Despite their proven benefits to improve gut health overall, the efficacy of probiotics is
limited by several factors. For example, patients who have long-term dysbiosis as a conse-
quence of chronic gut inflammatory conditions, such as Crohn’s disease or ulcerative colitis,
may be resistant to new colonization introduced by probiotics, reducing their efficacy [115].
Similarly, the concurrent use of antibiotics can also limit probiotic efficacy [116]. Since
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probiotics rely on fibers as substrates [117], a diet high in sugar and low in fiber creates a
poor environment, further reducing their effectiveness. However, this limitation can be
mitigated by the use of probiotics or synbiotics. Although generally considered safe for
healthy populations, the use of certain probiotic species in immunocompromised, very
young, or elderly patients carries the risk of adverse effects, such as fungemia, fungal sep-
ticemia, endocarditis, probiotic-associated pneumonia, allergic responses, and abdominal
or liver abscesses [118]. Therefore, the effectiveness of probiotics, prebiotics, and synbi-
otics depends heavily on the specific strains used and the individual’s unique microbiome
profile. Using non-personalized or generic strains that do not address specific microbial
imbalances may result in suboptimal outcomes. The personalization of treatment, proper
microbial balance, and careful consideration of underlying health conditions are crucial for
optimizing the benefits of these interventions.

The use of probiotics is not fully established in clinical practice. This is mainly due
to the sizeable, significant heterogeneity in the studies and variability in results. Large-
scale randomized clinical trials with clear and predefined endpoints are necessary to
fully determine the efficacy and safety of probiotics in humans. Also, clear protocols
and dose-dependent effects are required to untangle the complex impact of probiotics in
chronic conditions. The findings from basic research could be beneficial in describing novel
mechanisms and informing about efficacy and safety that could be translated to humans.

9. Conclusions

A disrupted gut microbiome can negatively impact reproductive and metabolic health
by affecting the hormonal system. Due to its relatively safe profile, probiotic and prebiotic
supplementation has drawn considerable interest recently as potential strategies to improve
gut health. However, stronger evidence, such as data from large randomized clinical trials
in different groups, is needed to better estimate its efficacy and safety. Other caveats
are the wide-ranging variations in the composition of the probiotics administered, the
dosage and duration of the probiotic interventions, and limited endpoints, which could
explain the inconsistent findings across studies. Regardless of the gaps in our knowledge,
probiotics and prebiotics are emerging as novel co-adjuvant therapies in treating several
endocrine disorders.
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