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Abstract: Background: The purpose of this study is to determine the relationship between the texture
analysis extracted from preoperative rectal magnetic resonance (MR) studies and the response to
neoadjuvant treatment. Materials and Methods: In total, 88 patients with rectal adenocarcinoma who
underwent staging MR between 2017 and 2022 were retrospectively enrolled. After the completion
of neoadjuvant treatment, they underwent surgical resection. The tumour regression grade (TRG)
was collected. Patients with TRG 1–2 were classified as responders, while patients with TRG 3 to 5
were classified as non-responders. A texture analysis was conducted using LIFEx software (v 7.6.0),
where T2-weighted MR sequences on oriented axial planes were uploaded, and a region of interest
(ROI) was manually drawn on a single slice. Features with a Spearman correlation index > 0.5 have
been discarded, and a LASSO feature selection has been applied. Selected features were trained
using bootstrapping. Results: According to the TRG classes, 49 patients (55.8%) were considered
responders, while 39 (44.2) were non-responders. Two features were associated with the responder
class: GLCM_Homogeneity and Discretized Histo Entropy log 2. Regarding GLCM_Homogeneity, the area
under the receiver operating characteristic curve (AUC), sensitivity, and specificity were 0.779 (95%
CIs = 0.771–0.816), 86% (80–90), and 67% (60–71). Regarding Discretized Histo Entropy log 2, we
found 0.775 AUC (0.700–0.801), 80% sensitivity (74–83), and 63% specificity (58–69). Combining
both radiomics features the radiomics signature diagnostic accuracy increased (AUC = 0.844). Fi-
nally, the AUC of 1000 bootstraps were 0.810. Conclusions: Texture analysis can be considered an
advanced tool for determining a possible correlation between pre-surgical MR data and the response
to neoadjuvant therapy.

Keywords: magnetic resonance imaging; neoplasms; rectal; radiomics

1. Introduction

Rectal cancer, aside from being the third cause of oncologic-disease-related death
worldwide, is a significant cause of disability due to surgical complications and faecal
incontinence. In this panorama, the watch and wait (W&W) approach, first theorised by the
Habr-Gama [1] study group in 2004, raised much interest among the medical community [2],
as it allows patients responding to neoadjuvant treatment to avoid surgery without a
significant prognosis impairment [1,3–5] and undergoing periodic follow-up instead, with
the possibility of endoscopic or surgical treatment if relapsing. Even if with promising
results, it is still not equally applied among different countries. For example, while the
National Comprehensive Cancer Network (NCCN) includes the W&W in its guidelines as a
possible treatment strategy, the European Society for Medical Oncology (ESMO) guidelines
only consider the W&W approach in the context of clinical trials [6–8]; the difference could
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be explained by the lack of objective data to reliably assess the response on restaging
magnetic resonance (MR), and the difficulty in allocating enough resources to instate
periodic follow-ups, thus paving the way to uncertainty and relapse. Moreover, there is still
a wide variability concerning the follow-up strategies in conservatively treated patients
(e.g., the NCCN suggests performing a sigmoidoscopy and digital rectal examination
every three months for the first two years after diagnosis, and MR every six months):
the uncertainty regarding the procedures and timing for follow-up makes it critical to
allocate healthcare resources to properly manage the risk of relapse, especially considering
how differently organised any country’s healthcare system is. The main reason for such
a variability is the absence of objective and highly reproducible instruments to assess the
pre-surgical response, which could enable all radiologists to evaluate the response after
neoadjuvant treatment confidently. The response to neoadjuvant treatment is currently
determined on restaging MR, where normal rectal wall stratification and the absence
of areas of restriction to diffusion or a high T2-signal are indicators of absent disease.
However, it can be difficult to detect these features, as chemoradiotherapy may cause
inflammatory changes that could be mistaken for persistent disease (and vice versa), as
well as mucinous degeneration. Moreover, restaging rectal cancer MR can be difficult and
requires an expertise that not many centres could guarantee: that is why the pressure
of finding objective parameters to rely on for determining the response is high on the
scientific community. While most studies today have focused on extracting a threshold
value from diffusion-weighted images (DWIs) to discriminate between responders and
non-responders [9–15], radiomics is now taking the scene. It assumes that images are
information, and, thus, the distribution of grey levels inside an image reflects the underlying
histological structures of a specific tissue [16–18]. Through texture analysis, it is possible
to obtain quantitative information regarding the distribution of signal intensities inside
a desired structure, thus reflecting its underlying architecture and organisation. Many
authors explored the field and focused explicitly on MR sequences such as T2-weighted
(T2w), DWIs, and dynamic contrast-enhanced (DCE) sequences [16,19–21]. However, none
of the above authors reached the point of designing a reproducible and solid algorithm to,
indeed, discriminate between the two categories (responders vs non-responders), mainly
due to the intrinsic complexity of the radiomic and texture analysis process and the risk of
selecting over-fitting features [22–25]. On these bases, our retrospective study aims to test
whether radiomic features can reliably distinguish between responders and non-responders
according to Mandard’s Tumour Regression Grade (TRG).

2. Materials and Methods
2.1. Patient Selection

We retrospectively collected patients from 2017 to 2022 who were diagnosed with rectal
cancer after colonoscopy and biopsy, and they were then selected according to inclusion
and exclusion criteria. Inclusion criteria were: (1) biopsy-proven rectal adenocarcinoma,
and (2) staging MR examination showing a locally advanced rectal cancer before starting
chemoradiation therapy (CRT).

Exclusion criteria were as follows: (1) anal involvement, (2) distant metastases at
diagnosis, (3) MR examination obtained in other centres, (4) low-quality MR examination
(e.g., including metal or movement artifacts), (5) patients unfit for CRT or surgery, (6) CRT
or surgery performed in other centres, and (7) lack of histological diagnosis.

Flow chart in Figure 1 summarises the selection process.
All patients underwent neoadjuvant treatment via the FOLFOX/FOLFIRI scheme

combined with short-course radiotherapy according to the ESMO guidelines. Treatment
duration varied from two to three months. Restaging MR was performed at ten weeks after
completion of chemoradiation treatment.



Gastrointest. Disord. 2024, 6 860
Gastrointest. Disord. 2024, 6, FOR PEER REVIEW  3 
 

 

 
Figure 1. Flow chart of the study. 

All patients underwent neoadjuvant treatment via the FOLFOX/FOLFIRI scheme 
combined with short-course radiotherapy according to the ESMO guidelines. Treatment 
duration varied from two to three months. Restaging MR was performed at ten weeks 
after completion of chemoradiation treatment. 

Surgery was performed between 1 to 8 weeks after restaging MR: it consisted of either 
trans-mesorectal excision (TME) or rectal anterior resection (RAR) with subsequent 
colostomy, following multidisciplinary discussion (including at least one radiologist, one 
surgeon, one oncologist, and one pathologist). 

2.2. MR Technique and Patients’ Preparation 
All patients underwent MR on a 1.5T magnet (Philips Ingenia, Netherlands) with 16 

high-resolution body array coil and the same study protocol, whose core are T2W 
sequences acquired on three planes (sagittal, oblique axial, and oblique coronal) following 
the ESGAR Consensus Panel [1]. 

The protocol included DWI sequences with four b values (b0, b50, b800, and b1000), 
according to current literature and clinical practice [26]. The MR scanner automatically 
created the corresponding apparent diffusion coefficient (ADC) map. Table 1 summarises 
the MR protocol used in our institution. 

Table 1. MR protocol for rectal cancer. 

 T1W Axial T2W Axial  T2W Sagittal T2W Axial Oblique 
T2W Coronal 
Oblique DWI 

Slice thickness 5 mm 5 mm 3.5 mm 3 mm 3 mm 4 mm 
Repetition time (ms) 688 4080 3654 7074 3539 3718 
Echo time (ms) 14 100 100 85 85 81 
Flip angle 90° 90° 90° 90° 90° 90° 
FOV AP (mm) 440 440 200 200 180 375 
rFOV (mm) 440 440 200 200 180 312 
Acquisition matrix 324 × 253 292 × 292 252 × 198 336 × 251 256 × 182 124 × 105 
NSA 1 2 2 2 2 2 
Acquisition time (min) 1.56 1.30 4.38 5.18 3.32 4 

All patients underwent bowel preparation and cleansing the day before the 
examination. Particularly, patients were instructed to follow a clear liquid diet, without 
eating any solid foods and only drinking clear liquids one full day before the MR. Few 

Figure 1. Flow chart of the study.

Surgery was performed between 1 to 8 weeks after restaging MR: it consisted of
either trans-mesorectal excision (TME) or rectal anterior resection (RAR) with subse-
quent colostomy, following multidisciplinary discussion (including at least one radiologist,
one surgeon, one oncologist, and one pathologist).

2.2. MR Technique and Patients’ Preparation

All patients underwent MR on a 1.5T magnet (Philips Ingenia, Netherlands) with
16 high-resolution body array coil and the same study protocol, whose core are T2W
sequences acquired on three planes (sagittal, oblique axial, and oblique coronal) following
the ESGAR Consensus Panel [1].

The protocol included DWI sequences with four b values (b0, b50, b800, and b1000),
according to current literature and clinical practice [26]. The MR scanner automatically
created the corresponding apparent diffusion coefficient (ADC) map. Table 1 summarises
the MR protocol used in our institution.

Table 1. MR protocol for rectal cancer.

T1W Axial T2W Axial T2W Sagittal T2W Axial
Oblique

T2W Coronal
Oblique DWI

Slice thickness 5 mm 5 mm 3.5 mm 3 mm 3 mm 4 mm

Repetition time (ms) 688 4080 3654 7074 3539 3718

Echo time (ms) 14 100 100 85 85 81

Flip angle 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

FOV AP (mm) 440 440 200 200 180 375

rFOV (mm) 440 440 200 200 180 312

Acquisition matrix 324 × 253 292 × 292 252 × 198 336 × 251 256 × 182 124 × 105

NSA 1 2 2 2 2 2

Acquisition time (min) 1.56 1.30 4.38 5.18 3.32 4

All patients underwent bowel preparation and cleansing the day before the examina-
tion. Particularly, patients were instructed to follow a clear liquid diet, without eating any
solid foods and only drinking clear liquids one full day before the MR. Few minutes before
performing the examination, a rectal enema was performed, to obtain a clearance of the
rectal lumen. Before performing the examination, the rectum was filled with 100 mL of
warm ultrasound gel, while no spasmolytic drugs were routinely employed.
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2.3. ROI Delineation

MR images were collected for any patient via DICOM file format and uploaded in a
free-source radiomic software (LiFEx—v7.6.0) [27], which satisfies the Image Biomarker
Standardisation Initiative (IBSI)’s requirements. The software automatically displayed all
the MR sequences, among which a single radiologist (with four years of experience in
pelvic MR) selected T2w paraxial sequences.

Before starting the segmentation process, a reading session with a more experienced
radiologist (10 years of experience in radiomics and abdominal imaging) was performed.
MR data used in the reading session, composed of 10 external examples with typical
imaging features, were similar to the final cohort and were excluded from the analysis.

The chosen sequence was then exploited on the monitor, and the radiologist identified
the slice where the tumour was most extensive. Then, the radiologist delineated the lesion
by manually drawing a 2D region of interest (ROI) after selecting the number of bins. As
suggested by the LiFEx user manual, we used a fixed bin width equal to 128 to perform the
signal intensity discretisation and obtain isotropic pixels via spatial resampling.

Only tumoral tissue was selected during segmentation, avoiding the healthy rectal
wall, mesorectal fat, and nodes near the rectal lesion. After completing the manual delin-
eation, the software automatically derived the texture-based features for each patient, along
with a histogram representing the distribution of pixels’ intensities within the selected
plane (Figure 2). The histogram was mainly considered as an indicator of the delineation’s
accuracy and reliability of signal intensities’ “normal” distribution inside the selected ROI.
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Figure 2. Radiomic features’ extraction process. On the left, the yellow section depicts the manually
delineated ROI, which is carefully selected to avoid the inclusion of a healthy wall or surrounding
adipose tissue. On the right panel, the histogram represents the distribution of pixels’ signal inten-
sities, which the software automatically generates after ROI’s delineation. After this process, the
radiomics feature extraction was generated by the software.

2.4. Texture Analysis

The LiFEx software automatically extracted 452 features per ROI, which we selected
via the LASSO regression test to avoid redundancy and overfitting. The obtained features
were distinguished among first-, second-, and third-order features: these mathematical
features picture the distribution of signal intensities inside an ROI and, hypothetically, the
histological organisation of the underlying tissues. First-order features are an “absolute”
parameter representing purely the distribution of signal intensities (also called “histogram-
based” features). At the same time, second-order features highlight the existing relationship
between the intensity levels of neighbouring pixels or groups of pixels within the segmented
lesion (also called “texture-based features”). Finally, third-order features allow us, via the
application of mathematical computational models, to extract information regarding the
appearance of the whole segmented region.
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2.5. Pathological Analysis

For all selected patients, the histology report included the Mandard’s TRG, which
describes the amount of residual tumoral cells inside the surgical specimen and, thus,
quantifies response to neoadjuvant treatment. It distinguishes five classes: TRG1 includes
patients for whom no residual cancerous cells are detected, TRG2 defines patients for whom
there is no significant residual disease (or rather with a few cancerous cells outnumbered
by fibrotic tissue), TRG3 identifies cases of dubious response (where the amount of tumoral
cells significantly increases, but still does not overcome the fibrotic tissue), TRG4 identifies
situations where tumoral cells prevail over normal or fibrotic tissue, and TRG5 describes
those patients who did not respond at all and where there was no significant reduction in
number of cancerous tissue.

2.6. Statistical Analysis

To evaluate textural features’ performance, we divided our population into two sub-
categories, according to the histological TRG: TRG1–2 patients were considered among
responders, while TRG3–5 patients were considered non-responders.

A nonparametric measure used to describe the relationship between two variables
is the Spearman’s correlation coefficient: it captures nonlinear interactions by comparing
the statistical dependency of the variable rank. Strong correlations were defined as those
with a 0.9 or higher. Features that showed a very high correlation with a single traditional
metric were eliminated from the study since they were deemed redundant.

The most helpful predictive features were then found using the logistic regression
model with the least absolute shrinkage and selection operator (LASSO). LASSO is a regres-
sion analysis technique that uses penalised estimation functions to select and regularise
features in order to increase prediction accuracy.

After the LASSO regression test allowed the elimination of the redundant data and the
harmonising of the remaining ones, a correlation test was run to determine which texture
sub-features retain some correlation with the histological response to treatment. We then
performed bootstrapping with 1000 iterations.

After selecting radiomics features associated with the responders and non-responders
groups, median values of each feature were used to compute diagnostic values [sensitivity,
specificity, negative predictive, and positive predictive values (NPV and PPV, respectively),
and accuracy] using crosstabs.

All tests were two-sided, and the p-value ≤ 0.05 was considered statistically signifi-
cant. All the statistical analyses were performed using IBM SPSS 28.0 (SPSS Incorporated,
Chicago, IL, USA).

3. Results

After selection via the aforementioned criteria, we obtained a final cohort of 88 patients
(51 males and 37 females; the median age at diagnosis: 66.8 years). They were further
subclassified according to their respective TRG’s status as non-responders (39, 55.7%) and
responders (49, 44.3%).

3.1. Clinical Data

A total of 55.7% showed a histological response to neoadjuvant treatment, while
the remaining 44.3% was considered as non-responders. After collecting TRGs, we also
followed our patients during their follow-up: 58 (65.9%) did not show signs of recurrent
disease at the 5-year follow-up. Six patients (6.8%) were lost at follow-up; we could not
include them in our observation. The remaining 24 cases (27.2%) underwent disease
recurrence during the follow-up period, mainly due to the development of metastatic
disease (in the nodes and liver) or the persistence of a residual tumour on the surgical bed
(R1 at histology report).
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3.2. Texture Analysis

After applying the LASSO regression test, 67 features per patient were obtained.
Discretized Histo Entropy log 2 was the only histogram-based feature capable of discrim-

ination between responders and non-responders, with an eight-times difference between
the two subpopulations (B = 8.331, 95%CIs 7.691–10.428, p = 0.003). Histo-Entropy_log2
showed a reasonably good performance in discriminating between responders vs non-
responders, with an 80% sensitivity (95%CIs = 74–83%), 63% specificity (95%CIs = 58–69%),
77% and 82% PPV and NPV, respectively, and 77.5% accuracy (95%CIs = 70–80.1%). Table 2
summarises the LASSO regression analysis computed for first-order texture features.

Table 2. First-order features selected after LASSO regression test. Among all the features extracted,
only Histo_Entropy_log2 resulted in a significant capability of differentiation between responder and
non-responder. For the LASSO regression, the reference was the responder group.

Feature Corrected B 95%CIs p-Value

min max

CONVENTIONAL_HUmin 3.036 0.668 8.501 0.223

CONVENTIONAL_HUmean 2.878 2.310 10.484 0.374

CONVENTIONAL_HUstd 7.517 5.739 13.945 0.722

CONVENTIONAL_HUmax 8.992 7.313 11.187 0.804

CONVENTIONAL_HUQ1 5.477 4.151 8.974 0.719

CONVENTIONAL_HUQ2 1.364 −0.108 2.830 0.321

CONVENTIONAL_HUQ3 9.712 9.231 18.995 0.737

CONVENTIONAL_HUSkewness 0.820 0.189 9.278 0.614

CONVENTIONAL_HUKurtosis 0.188 −1.017 8.645 0.505

CONVENTIONAL_HUExcessKurtosis 0.614 −0.162 9.541 0.517

CONVENTIONAL_RIM_HUmin 4.196 1.341 12.626 0.243

CONVENTIONAL_RIM_HUmean 1.535 −0.629 10.570 0.487

CONVENTIONAL_RIM_HUstdev 0.806 −0.240 3.904 0.118

CONVENTIONAL_RIM_HUmax 6.472 4.698 13.486 0.150

CONVENTIONAL_RIM_HUVolume 1.388 −1.068 2.757 0.624

CONVENTIONAL_RIM_HUsum 2.821 2.188 8.599 0.289

DISCRETIZED_HUmin 8.502 5.741 11.940 0.218

DISCRETIZED_HUmean 9.902 9.656 12.522 0.422

DISCRETIZED_HUstd 2.017 −0.579 2.401 0.531

DISCRETIZED_HUmax 8.695 8.629 15.429 0.564

DISCRETIZED_HUQ1 7.514 7.486 15.391 0.804

DISCRETIZED_HUQ2 4.075 3.359 5.998 0.833

DISCRETIZED_HUQ3 3.725 3.075 6.441 0.589

DISCRETIZED_HUSkewness 8.166 5.583 12.949 0.523
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Table 2. Cont.

Feature Corrected B 95%CIs p-Value

min max

DISCRETIZED_HUKurtosis 6.760 4.352 16.595 0.700

DISCRETIZED_HUExcessKurtosis 6.552 3.918 12.059 0.691

DISCRETIZED_HISTO_Entropy_log10 0.362 −1.382 6.493 0.638

DISCRETIZED_HISTO_Entropy_log2 8.331 7.691 10.428 0.003

DISCRETIZED_HISTO_Energy [=Uniformity] 2.476 2.443 2.938 0.458

DISCRETIZED_AUC_CSH 2.439 1.332 11.129 0.306

DISCRETIZED_RIM_HUmin 0.106 −1.466 4.483 0.237

DISCRETIZED_RIM_HUmean 0.384 0.268 3.570 0.197

DISCRETIZED_RIM_HUstdev 4.724 2.375 14.204 0.736

DISCRETIZED_RIM_HUmax 6.381 3.834 15.313 0.093

DISCRETIZED_RIM_HUsum 9.291 6.646 12.168 0.274

GLCM_Homogeneity was the only significant feature helping distinguish between
responders and non-responders, with a nine-times difference between the median values of
the two subpopulations (B = 9.072; 95%CIs = 7.946–18.357, p = 0.004). GLCM_Homogeneity
showed a reasonably good performance in discriminating between responders vs non-
responders, with an 86% sensitivity (95%CIs = 80–90%), 67% specificity (95%CIs = 60–71%),
81% and 88% PPV and NPV, respectively, and 77.9% accuracy (95%CIs = 77.1–81.6%).
Table 3 summarises the LASSO regression analysis computed for second-order texture
features. Figure 3 reported an example of responder and non-responder patients.

Table 3. Second-order radiomic features selected after LASSO regression test. Among all the features,
GLCM_Homogeneity was the only one with a significant capability of discrimination between our
two target groups. For the LASSO regression, the reference was the responder group.

Feature Corrected B 95%CIs p-Value

min max

GLCM_Homogeneity [=InverseDifference] 9.072 7.946 18.357 0.004

GLCM_Energy [=AngularSecondMoment] 0.998 −0.288 5.901 0.157

GLCM_Contrast [=Variance] 6.626 5.163 13.350 0.839

GLCM_Correlation 8.534 7.282 8.676 0.345

GLCM_Entropy_log10 2.059 1.633 7.999 0.512

GLCM_Entropy_log2 [=JointEntropy] 4.273 3.064 12.434 0.196

GLCM_Dissimilarity 3.204 2.095 9.535 0.743

GLRLM_SRE 0.615 −0.237 4.620 0.702

GLRLM_LRE 5.991 4.491 6.086 0.158

GLRLM_LGRE 4.996 2.451 7.431 0.864
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Table 3. Cont.

Feature Corrected B 95%CIs p-Value

min max

GLRLM_HGRE 7.530 7.448 13.936 0.790

GLRLM_SRLGE 2.308 0.622 12.014 0.781

GLRLM_SRHGE 4.137 1.385 12.582 0.570

GLRLM_LRLGE 6.632 5.665 8.221 0.503

GLRLM_LRHGE 5.604 3.657 14.327 0.123

GLRLM_GLNU 3.500 3.291 10.624 0.365

GLRLM_RLNU 8.220 7.394 16.867 0.363

GLRLM_RP 3.720 1.268 12.588 0.300

NGLDM_Coarseness 6.948 4.251 10.424 0.800

NGLDM_Contrast 5.190 3.675 12.618 0.526

NGLDM_Busyness 5.084 2.787 6.938 0.557

GLZLM_SZE 8.786 6.138 15.255 0.749

GLZLM_LZE 2.380 0.877 8.874 0.851

GLZLM_LGZE 0.231 0.134 9.652 0.061

GLZLM_HGZE 0.028 −0.204 1.988 0.802

GLZLM_SZLGE 2.404 0.899 8.676 0.422

GLZLM_SZHGE 6.937 6.366 15.250 0.851

GLZLM_LZLGE 6.041 3.873 8.421 0.784

GLZLM_LZHGE 0.314 −0.525 9.400 0.543

GLZLM_GLNU 0.271 −1.708 3.410 0.213

GLZLM_ZLNU 6.650 4.799 12.793 0.316

GLZLM_ZP 2.594 1.510 11.939 0.498

Combining both radiomics features increased the radiomics signature diagnostic
accuracy to 84.4% (95%CIs = 82.2–86.7%). Finally, the accuracy of 1000 bootstraps was 81%
(95%CIs = 80.1–83.7%) (Table 4).

Table 4. Performance of the two selected textural features. Both had a satisfactory performance.

Histo_Entropy_log2 GLCM_Homogeneity

Sensitivity (95%CIs) 80% (74–83%) 86% (80–90%)

Specificity (95%CIs) 63% (58–69%) 67% (60–71%)

PPV (95%CIs) 77% (80–81%) 81% (76–84%)

NPV (95%CIs) 82% (80–85%) 88% (84–90%)

Accuracy (95%CIs) 77.5% (70–80.1%) 77.9% (77.1–81.6%)
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Figure 3. Two examples of patients who underwent MR were considered responders ((A)—TRG
1) and non-responders ((B)—TRG 4). The conventional evaluation of T2w sequences (first line)
and DWI (second line) cannot help discriminate between significant differences in two patients.
However, by computing texture analysis of the rectal tissue, it is possible to obtain quantitative
data regarding them. Notably, the DISCRETIZED_Histo_Entropy_log2 values were 8.001 and 9.798,
while GLCM_Homogeneity values were 15.879 and 7.771 for the responder and non-responder
patients, respectively.

4. Discussion

According to our results, texture analysis has the potential to pre-operatively dis-
criminate between responders and non-responders via two features showing a statis-
tically significant difference among the subpopulation into which we categorised pa-
tients. HISTO_Entropy_Log2 tends to be eight times higher in the non-responders, while
GLCM_Homogeneity is nine times higher in the responders’ subpopulation.

Texture analysis is a promising tool in artificial intelligence and is currently being
explored for its capabilities in creating a personalised treatment protocol for many oncologic
diseases [25,28], such as rectal cancer [20,21,29,30].

There is widespread interest in texture analysis due to its implications for treatment:
as Staal et al. [31] summarised in a recent review, T2w-image-based models yield great
potential in predicting the response to treatment (AUC between 63% and 79%), and en-
tropy was the most reproducible feature among different studies, being higher in patients
not responding to treatment. Although radiomic feature extraction is challenging due to
its dependency on the acquisition protocol and on the normalisation, interpolation, and
resampling process, which strongly depend on the signal intensity [32–34], it could poten-
tially avert controversies during the reading of restaging images, where the discrimination
between inflammation and residual disease is critical. As Achilli et al. highlighted [35], the
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MR-based TRG modestly agrees with the pTRG and is biased by the low sensitivity and
low positive predictive value. Not even functional imaging is discriminative, due to the
limitations in terms of vendors’ algorithms (e.g., diffusion-weighted imaging and ADC—
apparent diffusion coefficient—mapping) and reduced availability (e.g., fusion imaging,
such as PET/MR) [36]. Considering this background, the scientific community shall be en-
couraged to conduct research about strategies for implementing radiomics’ reproducibility
and applicability in daily life, not only by defining rapid and secure delineation strategies,
but also by determining which features best serve the purpose.

Among the data we analysed, HISTO_Entropy_log2 and GLCM_Homogeneity were
the most significant textural features: according to the IBSI standard [37], grey-level co-
occurrence matrix (GLCM) features fit better in a situation in which a high number of
grey levels are analysed (as it is in our case); they belong to the “second-order features”
group and depict the relationship existing between signal intensities in neighbouring pixels,
thus reflecting the tissues’ heterogeneity (or, as for GLCM_Homogeneity, their similitude
in architecture); GLCM features specifically describe the frequency of occurrence of two
intensity levels in neighbouring pixels or voxels within a specific distance along a fixed
direction. On the other hand, HISTO_Entropy_log2 belongs to the “first-order features”
class and it is a statistical measure of the randomness of grey levels’ distribution inside an
ROI, in absolute terms.

Interestingly, as Robins et al. [38] highlighted, entropy and homogeneity are among
the most stable radiomic features, which aligns with our results for responders and non-
responders. Based on similar findings from other authors, we are optimistic that our
results could be replicated in different patient cohorts. From an empirical perspective, we
compared the HISTO_Entropy_log2 and GLCM_Homogeneity values of a responder and
a non-responder and found that GLCM_Homogeneity is tendentially higher in patients
responding to treatment, while HISTO_Entropy_log2 tends to be lower in patients not re-
sponding to treatment. Our findings are aligned with the definition of HISTO_Entropy_log2
and GLCM_Homogeneity themselves, so they come as no surprise and are adherent to the
histology findings.

To test and strengthen our results, we aim to walk a few more steps: first, we would
like to combine the analysis of “morphological” T2w sequences with functional DWI
sequences and create an algorithm that integrates imaging and clinical data (e.g., age
at diagnosis, presence of extramural vascular invasion—EMVI—or nodal involvement,
concurrent diseases, etc.), which other authors [39] have proven to perform well, also
significantly improving inexperienced readers’ performance.

Some limitations should be disclosed. Firstly, our cohort was relatively small, consid-
ering that radiomics studies should be as wide as possible. Furthermore, we are aware
that one of the main limitations of our study is how we performed the segmentation pro-
cess. Firstly, we used a 2D segmentation process instead of a 3D process, and we only
considered the paraxial plane when delineating the ROI, thus opening up the possibility of
losing some information. Implementing sequences in the sagittal and para-coronal planes
could help obtain a complete overview of the tumour. We also manually selected the
ROI, which many authors [40–42] recognise as a scarcely reproducible approach that is
prone to error (especially if carried out by an inexperienced operator); thus, semi-automatic
or deep-learning-based methods could be considered to reduce variability. In addition
to that, radiomics application requires a great, cumulative effort as it is deemed by the
complexity of the statistical analysis to be performed to delineate a reliable model, so that
the efforts should be aimed also to simplify the selection process to the core, in order to
make any potentially “universal” radiomics model friendly to the daily work-process in
Radiology Departments worldwide. Deep-learning methods could obviate the complexity of
the radiomic process, as the system processes all the information derived from the feature
maps and should be catilizedngcognising a precise pattern and providing the final answer,
similarly to what the human brain would do [16,37]: however, these neural networks are
still far from perfect and are, in any case, dependent on the development of trustworthy ra-
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diomic models. It is critical to remember that textural analysis, being based on pixel/voxel
gray-level analysis, highly suffers from MR-based artifacts [37], and is influenced by the
signal-to-noise ratio (SNR) and spatial resolution (which is already known to be lower
in MR ttilizedmoreovoer, some variability dependintilized utilised software for texture
analysis is expected, and that is another factor that shall be acquired for in future studies.
Another potentially confounding factor may derive from the statistical processes applied
to select the most significant features and avoid overfitting: among these methods are the
so-called regression tests (e.g., LASSO) which aim to eliminate repetitive data, avoiding
repetition and multicollinearity; however, they may involuntarily cause the loss of informa-
tion, as the key to the neoplastic degeneration is the accumulation of multiple, repetitive
mutations, which could somehow be depicted by the abundance of textural features. Of
course, the argument is beyond the scope of the present paper, and we redirect the reader
to a specific paper on statistics and mathematics.

We performed our analysis on T2w sequences (and not on DWI sequences or post-
contrast imaging) because they are the core sequences of rectal cancer MR, so that our
measurements are potentially reproducible in every setting; moreover, they are not as
dependent as diffusion-weighted sequences on an algorithm’s variation, although still
reflecting the “pathologic” component inside the volume of study via their capability of
reflecting the watery-content of tissues.

Radiomic and mathematical models are thoroughly gaining interest in the medical com-
munity, as they could support the clinicians’ work in many ways, from the prediction of the
response to CTRT to redrawing the patients’ influx in the emergency department [39,43,44],
thus allowing for the better allocation of the finite resources of the healthcare system worldwide.

5. Conclusions

To conclude, our study underlined the importance of preoperative texture analysis in
discriminating responder and non-responder patients with advanced rectal cancer, with
more than acceptable diagnostic values. Further studies should validate the presented
result to enhance their application in clinical practice.
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