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Abstract: The human microbiome, a complex ecosystem of microorganisms residing in and
on the body, plays a pivotal role in the regulation of a wide range of physiological processes,
including digestion, immune responses, and metabolic functions. In recent years, the
rapidly growing field of microbiome-driven therapeutics has garnered significant attention
owing to its potential to revolutionize healthcare. This review explores the evolving land-
scape of microbiome-based therapies, with a particular focus on the gut microbiome and
its implications for both gut health and precision medicine. We highlight recent advances
in understanding how microbial communities influence disease pathogenesis and treat-
ment outcomes, spanning conditions such as inflammatory bowel disease (IBD), metabolic
disorders, neurological diseases, and even cancer. This article also discusses emerging
therapeutic strategies, including probiotics, prebiotics, fecal microbiota transplantation
(FMT), and microbial-based drugs, as well as the challenges associated with their clinical
implementation. Additionally, we examined how the integration of microbiome profiling
and metagenomic data is advancing the field of precision medicine, paving the way for
personalized and effective treatments. This review serves as a comprehensive resource
that synthesizes current knowledge, identifies key gaps in microbiome research, and offers
insights into the future direction of microbiome-driven therapeutics, thus providing a
valuable framework for clinicians, researchers, and policymakers seeking to harness the
potential of microbiomes to advance personalized healthcare solutions.

Keywords: microbiome-driven therapeutics; gut microbiota; precision medicine; probiotics;
prebiotics; fecal microbiota transplantation (FMT); microbial-based therapies; personalized
healthcare; microbiome profiling; disease modulation

1. Introduction
Microbiome-driven therapeutics have emerged as a transformative field in medicine,

utilizing complex interactions between microbial communities and host biological func-
tions to address various health problems [1]. The human microbiome, often called the
“second genome”, is involved in crucial processes, such as regulation of the immune system,
metabolic activities, and maintenance of gut homeostasis. Disruption of the microbiome,
known as dysbiosis, has been associated with numerous health disorders, including in-
flammatory bowel disease (IBD), neurological diseases such as autism and Parkinson’s,
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metabolic conditions such as obesity and diabetes, and certain cancers [2]. Despite sig-
nificant advances, some notable gaps remain in our understanding of the mechanisms
underlying host–microbiome interactions. Understanding these interactions is essential to
develop more effective microbiome-based therapies.

Current therapeutic strategies, such as fecal microbiota transplantation (FMT), pro-
biotics, and treatments based on microbial metabolites, have shown varying degrees of
success. However, their clinical application is often hindered by factors such as the high
inter-individual variability of microbiomes, the complexity of microbial interactions, and
significant gaps in our mechanistic understanding of how these therapies work at the
molecular level. Moreover, regulatory hurdles and the lack of standardized protocols fur-
ther complicate their widespread clinical adoption. These challenges underscore the urgent
need for advanced research to uncover the underlying mechanisms of host–microbiome
interactions and refine microbiome-based interventions for more consistent and predictable
clinical outcomes [3–5].

One promising direction is the development of personalized microbiome therapies
tailored to the specific microbial profiles of individual patients. Precision-based approaches
that consider the genetic, environmental, and lifestyle factors that shape the microbiome
could enhance therapeutic efficacy and reduce variability. Although interventions such
as FMT and probiotics have demonstrated potential in clinical settings, their inconsistent
results highlight the need for more targeted and individualized treatments [6,7]. Another
key area of exploration is the engineering of synthetic microbiomes, such as customized
microbial consortia, designed to modulate the host physiology in a controlled manner.
Recent advancements, particularly in CRISPR-based microbiome editing technologies, offer
exciting possibilities for precise microbial interventions. However, these technologies are
still in their infancy and face challenges related to stability, delivery, and safety that need to
be addressed before they can be translated into widespread clinical use [8,9].

The therapeutic potential of the microbiome extends beyond the gut, with emerging
research highlighting its role in diverse areas such as cancer immunotherapy, neuroimmune
modulation, and the gut–brain axis [10]. These findings underscore the need for interdisci-
plinary research that integrates microbiology, genomics, immunology, and personalized
medicine. However, translating microbiome-based therapies into clinical practice requires
the establishment of robust regulatory frameworks and ethical guidelines to ensure patient
safety and treatment efficacy [11,12]. Simultaneously, a comprehensive exploration of
under-studied microbiome niches, such as those in the skin, oral cavity, and respiratory
tract, is essential and holds promise for novel therapeutic applications [12,13]. This review
discusses recent developments in the field of microbiome-driven therapeutics, highlights
the challenges that must be overcome, and proposes future directions for research and
clinical implementation. By addressing these gaps and fostering innovative approaches,
microbiome-based therapies have the potential to become the cornerstone of precision
medicine, offering personalized, effective, and sustainable solutions for a broad spectrum
of diseases.

2. Microbiome and Disease Connections
Human microbiome imbalance or dysbiosis, which is increasingly associated with

various health disorders, ranges from gastrointestinal diseases such as inflammatory bowel
disease (IBD) and irritable bowel syndrome (IBS) to systemic diseases such as metabolic
syndrome, cardiovascular diseases, neurological diseases, and immune-related diseases.
Evidence now points to its role in cancer, especially colorectal cancer, in which some
microbial species contribute to inflammation and DNA damage (Figure 1).
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2.1. Gastrointestinal Disorders
2.1.1. Irritable Bowel Syndrome (IBS)

IBS is a common functional gastrointestinal disorder with a variety of symptoms, in-
cluding abdominal pain, bloating, and altered bowel habits, such as diarrhea, constipation,
or a combination of both. Although the exact cause of IBS remains unclear, several studies
have consistently demonstrated that individuals with IBS have distinct changes in their gut
microbiota compared with healthy individuals [13–15]. A comprehensive meta-analysis
revealed a significant reduction in bacterial diversity among IBS patients, particularly
a noticeable decrease in beneficial bacteria such as Bifidobacterium and members of the
reclassified Lactobacillus genera, including Lacticaseibacillus and Limosilactobacillus, which
are known to support gut health and maintain microbial balance [16]. This loss of microbial
diversity can disrupt the overall harmony of the gut ecosystem, potentially leading to
the overgrowth of pathogenic bacteria such as those belonging to the Enterobacteriaceae
family [17,18]. These shifts in bacterial composition may worsen IBS symptoms through
mechanisms such as increased intestinal permeability (also known as “leaky gut”) and al-
tered immune responses [19]. Elevated levels of pro-inflammatory cytokines in IBS patients
trigger inflammation in the gut, leading to pain perception and more severe abdominal
discomfort [20,21]. IBS symptomatology is also linked to gut bacterial fermentation of
undigested carbohydrates. When these carbohydrates are not properly absorbed, they
become substrates for bacterial fermentation, leading to increased gas production and
symptoms such as bloating and abdominal distension [22]. In addition to gut dysbiosis
and immune dysregulation, IBS is also related to abnormal gut–brain communication [23],
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and changes in the gut microbiota can affect neurotransmitter levels, potentially leading to
emotional disorders in patients with IBS [23].

2.1.2. Inflammatory Bowel Disease (IBD)

IBD is a chronic inflammatory condition affecting the gastrointestinal tract (GIT),
primarily in Crohn’s disease (CD) and ulcerative colitis (UC), leading to damage to the
intestinal lining [24]. Recent studies have highlighted significant alterations in the gut
microbiota of IBD patients, shedding light on its potential role in disease development
and progression [25]. One of the most consistent findings is the depletion and imbalance
of the beneficial bacterial populations. A study by Sokol et al. (2008) demonstrated
that one of the beneficial bacteria, Faecalibacterium prausnitzii, is significantly depleted in
patients with IBD, particularly those with CD [26]. F. prausnitzii is known for producing
short-chain fatty acids (SCFAs), particularly butyrate, which is crucial for maintaining
intestinal barrier function and regulating immune responses [27,28]. Its depletion has
been linked to increased intestinal permeability, which allows harmful substances and
bacteria from the gut lumen to cross the epithelial barrier, leading to immune activation
and chronic inflammation [26]. Another protective role of F. prausnitzii is that it can inhibit
the secretion of pro-inflammatory cytokines, such as TNF-α and IL-6, which are major
contributors to the inflammatory cascade in IBD patients [29]. This ability to dampen
inflammation underscores the importance of maintaining a balanced gut microbiota to
prevent disease exacerbation.

In addition to the loss of beneficial bacteria, the microbiota of patients with IBD is
often characterized by an overrepresentation of pathogenic bacteria such as Escherichia
coli. Adherent-invasive E. coli (AIEC) strains have been implicated in mucosal inflamma-
tion [30]. These pathogenic strains adhere to and invade the epithelial cells of the gut,
producing virulence factors that trigger and sustain inflammation. A meta-analysis found
that AIEC strains are significantly more prevalent in individuals with CD, supporting the
idea that microbial dysbiosis, in the form of pathogenic overgrowth, contributes to disease
pathogenesis [31]. Given the strong association between gut microbiota alterations and
IBD, therapeutic strategies for restoring microbial balance are gaining significant attention.

2.2. Metabolic Disorders

Emerging evidence suggests that the gut microbiota significantly influences metabolic
health and is crucial for the development of metabolic disorders such as obesity and type
2 diabetes [32]. The microbiota composition of obese individuals tends to differ from
that of lean individuals, with a higher proportion of Firmicutes and a lower proportion
of Bacteroidetes. This altered microbial composition may affect energy extraction from
dietary sources, leading to increased fat storage and weight gain [33]. The gut microbiota
regulates host metabolism by producing metabolites, particularly SCFAs [34]. For instance,
certain bacterial taxa, such as F. prausnitzii, are associated with increased SCFA production,
which has been linked to improved insulin sensitivity and anti-inflammatory effects [35].
Conversely, dysbiosis can lead to reduced SCFA levels and promote insulin resistance,
creating a vicious cycle that exacerbates metabolic disorders [27]. Moreover, the gut
microbiota affects lipid metabolism and cholesterol homeostasis by influencing energy
balance and insulin sensitivity. Some intestinal bacteria metabolize bile acids, which play
a vital role in the digestion and absorption of fat. Alterations in bile acid metabolism,
influenced by gut microbial composition, can affect lipid profiles and potentially lead to
disorders such as hyperlipidemia and fatty liver disease [36]. Furthermore, the microbiota
influences the host response to dietary interventions [37]. For example, individuals with
diverse and balanced microbiota tend to respond better to dietary changes aimed at weight
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loss than those with dysbiosis [38]. This finding underscores the importance of considering
the microbiota composition in the development of personalized dietary recommendations
for weight management and metabolic health.

2.3. Mental Health

Emerging research has focused on the complex relationship between the gut and brain,
known as the gut–brain axis [39]. The gut–brain axis represents a bidirectional communica-
tion pathway between the gastrointestinal tract and central nervous system, mediated by
various signaling mechanisms, including hormonal, neural, and immune pathways [40].
Research has uncovered significant connections between the gut microbiota and mental
health conditions such as depression, anxiety, and neurodegenerative diseases [41]. Gut
microbiota can influence brain function by producing neurotransmitters and neuroactive
compounds that directly affect central nervous system (CNS) function, influencing gastroin-
testinal motility and pain perception [39,42]. For instance, certain bacteria can synthesize
gamma-aminobutyric acid (GABA) and serotonin, both of which are critical for mood
regulation [43]. Dysbiosis may disrupt this process and potentially contribute to the onset
of mood disorders. Moreover, the gut–brain axis is thought to play a role in neurode-
generative diseases such as Alzheimer’s and Parkinson’s [44]. Research has indicated
that changes in gut microbiota composition may precede the onset of neurodegenerative
symptoms, suggesting that microbial intervention may be a novel approach to preventing
or mitigating these conditions [45]. The role of microbial metabolites, such as SCFAs, which
are produced through the fermentation of dietary fibers, has also been shown to affect
gut–brain signaling pathways by interacting with the nervous system, potentially affecting
gut motility, inflammation, and visceral sensitivity—key factors in the manifestation of IBS
symptoms [46].

2.4. Immune-Mediated Diseases

Gut microbiota plays a pivotal role in regulating the immune system, and its inter-
actions with immune cells are critical for maintaining immune homeostasis [47]. The gut
houses a large proportion of the body’s immune cells, particularly within gut-associated
lymphoid tissue (GALT). It is a major interface between the microbiota and the immune
system [48]. Microbiota can influence innate and adaptive immune responses, particularly
by shaping the functions of T-cells, dendritic cells, and macrophages. Studies have shown
that specific microbial populations are involved in the differentiation of T helper (Th)
cells and regulatory T cells (Tregs), which are key to maintaining immune tolerance and
preventing autoimmunity and chronic inflammation [49]. For example, Lactobacillus genera
(e.g., Lacticaseibacillus and Limosilactobacillus) and Bifidobacterium strains have been shown
to promote Treg differentiation, which can help prevent inflammatory diseases such as
IBD and reduce excessive immune responses [50]. Dysbiosis, or an imbalance in microbial
composition, has been implicated in a range of autoimmune and inflammatory diseases,
including rheumatoid arthritis (RA) and IBD [51]. In IBD, the microbial diversity is often
reduced, causing an increased abundance of pro-inflammatory bacteria such as E. coli and
Fusobacterium [52]. This dysbiosis contributes to the inappropriate activation of the immune
system, leading to chronic inflammation and tissue damage in the gut [53]. Similarly,
altered gut microbiota composition in RA has been associated with increased intestinal
permeability and systemic inflammation, highlighting the role of the gut in modulating
joint health [54].

Dysbiosis, or microbial imbalance, is increasingly recognized as a driver of various
immune-mediated diseases, including IBD, rheumatoid arthritis, and autoimmune dis-
orders such as type 1 diabetes and multiple sclerosis. Disruptions in the gut microbial
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diversity or overgrowth of pathogenic bacteria can lead to a dysregulated immune response,
resulting in chronic inflammation and tissue damage. For instance, reduced microbial di-
versity in the gut has been observed in patients with IBD, with an overabundance of
pro-inflammatory bacteria and the depletion of anti-inflammatory species [54]. The gut mi-
crobiota influences systemic immune responses by producing metabolites, such as SCFAs,
which have potent anti-inflammatory effects. SCFAs produced through fiber-fermenting,
particularly butyrate bacteria, can modulate immune function by promoting Treg activity
and inhibiting the activation of pro-inflammatory cytokines [52].

2.5. Cardiovascular Diseases

The relationship between the microbiome and cardiovascular disease (CVD) has
emerged as a prominent area of research, highlighting the critical role of the micro-
biome in systemic health. However, significant gaps remain in our understanding of
the precise mechanisms and the multifactorial nature of these interactions. A foundational
study has shown that gut bacteria can metabolize dietary phosphatidylcholine to produce
trimethylamine-N-oxide (TMAO), a metabolite associated with atherosclerosis. These find-
ings indicate a correlation between elevated TMAO levels and cardiovascular events [55].
Tang et al. (2013) suggested that a more diverse gut microbiota might counteract the
harmful effects of TMAO, further highlighting the importance of overall microbial diver-
sity in maintaining cardiovascular health [56]. Chronic inflammation is another critical
mechanism linking the microbiome to cardiovascular diseases (CVDs). Cani et al. (2009)
demonstrated that dysbiosis increases intestinal permeability, allowing bacterial endotoxins
to enter the bloodstream and provoke systemic inflammation. This pathway, involving
glucagon-like peptide-2 (GLP-2), has been implicated in developing atherosclerosis and
other cardiovascular conditions [57].

The impact of the microbiome on key cardiovascular risk factors such as obesity and
diabetes has also been extensively studied. A recent study found that specific microbial
communities are associated with obesity and insulin resistance, suggesting that the micro-
biome may influence metabolic pathways contributing to cardiovascular risk [58]. However,
the translational potential of these findings remains unclear. For instance, a systematic re-
view by Dixon et al. (2020) reported mixed outcomes in clinical trials assessing the efficacy
of probiotics in reducing cardiovascular risk factors, highlighting the need for standardized
protocols and clearer definitions of success in these studies [59]. Moreover, the literature
often overlooks the individual variability inherent to microbiome composition. Genetics,
age, sex, and ethnicity can significantly influence microbiome diversity and its interactions
with cardiovascular health [60].

2.6. Cancer

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, and grow-
ing evidence suggests a critical link between the composition of gut microbiota and the
development of this malignancy [61]. Research has shown that certain bacterial profiles,
particularly those enriched in pathogenic species, are associated with an increased like-
lihood of CRC development [62,63]. Fusobacterium nucleatum is one of the most notable
bacteria associated with colorectal cancer [64]. It is known to activate oncogenic signaling
pathways, thereby facilitating tumor growth and progression. Specifically, the bacterium
produces virulence factors such as adhesins and inflammatory mediators, which can alter
the tumor microenvironment by promoting chronic inflammation [65]. Rubinstein et al.
(2013) demonstrated that F. nucleatum plays a key role in colorectal tumorigenesis by inter-
acting with colorectal cells and inducing an inflammatory response through the modulation
of E-cadherin/catenin signaling [64]. In turn, this inflammation contributes to the initia-
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tion and progression of cancer. Clinical studies have shown that patients with elevated
F. nucleatum levels have poorer prognoses and increased tumor metastasis, suggesting
that this pathogen may contribute not only to tumor development but also to disease
progression [66]. This highlights F. nucleatum as a potential biomarker for CRC severity and
as a target for therapeutic interventions to reduce bacterial load and inflammation in the
tumor environment.

Polimeno et al. (2019) conducted a pilot study comparing the anaerobic gut microbiota
in stool samples from patients with sporadic colorectal adenomas/polyps (SCA/P) and
healthy controls. Their findings revealed distinct differences in the microbial composition
between the two groups. Notably, Bacteroides fragilis and Prevotella melaninogenica were
present exclusively in SCA/P patients, whereas Bacteroides stercoris and Parabacteroides
distasonis were found only in controls. Among Gram-positive bacteria, Clostridium clostrid-
ioforme, Propionibacterium avidum, and Pediococcus pentosaceus were identified solely in
controls, whereas Eubacterium limosum, Clostridium innocuum, and Corynebacterium xerosis
were unique to patients with SCA/P. These findings suggest that specific alterations in
gut microbiota may create a microenvironment conducive to the development of prolifer-
ative lesions, highlighting the potential of microbiota manipulation as a future target for
personalized CRC treatments [67].

Dysbiosis in colorectal cancer is an overrepresentation of pathogenic bacteria and the
depletion of beneficial anti-inflammatory bacteria [68]. In particular, there was a reduction
in butyrate-producing bacteria such as those belonging to the phylum Firmicutes. Butyrate,
an SCFA, plays a crucial role in maintaining the integrity of the intestinal epithelium,
protecting it against DNA damage, and regulating immune responses [69,70]. Studies have
shown that butyrate has anticancer properties, including the ability to induce apoptosis
(programmed cell death) in cancer cells [71]. Sanchez-Alcoholado et al. (2020) also reported
that CRC patients exhibited significantly reduced levels of butyrate-producing bacteria,
which may contribute to compromised gut barrier function and increased susceptibility
to colorectal cancer [72]. Li et al. (2022) analyzed the gut microbiota across different
colorectal mucosal sites (tumor, para-cancerous, normal) and feces in CRC patients. They
observed significant variations between the tumor and normal mucosal microbiota, with
the para-cancerous mucosal microbiota representing a transitional state between the two.
Six key genera, Fusobacterium, Gemella, Campylobacter, Peptostreptococcus, Alloprevotella, and
Parvimonas, were consistently overrepresented in the tumor mucosa compared with normal
mucosa and/or in mucosa compared with feces. These genera may contribute to the
topographic variances in the microbiota of tumor-bearing colorectum, underscoring the
importance of considering microbial composition at specific colorectal sites when studying
CRC pathogenesis [73].

In addition to colorectal cancer, the human microbiome appears to be involved in the
development and progression of several other types of cancers. For example, Helicobacter
pylori infection is a well-known risk factor for gastric cancer, and chronic inflammation of the
stomach lining increases the risk of malignancy [74]. Similarly, some oral microbiota have
been associated with an increased pancreatic cancer risk, suggesting that oral pathogens
may influence pancreatic carcinogenesis [75,76]. Moreover, lung microbiota have been
found to differ between individuals with lung cancer and healthy controls, suggesting
a potential role in lung tumorigenesis [77,78]. Additionally, the oral microbiota exhibits
a close relationship with the intestinal microbiota through the oral–gut axis, impacting
not only local conditions but also systemic health. Talapko et al. (2024) highlighted how
dysbiosis in the oral microbiome contributes to the pathogenesis and progression of oral
cancer, emphasizing the importance of microbial balance in maintaining oral health [79].
Santacroce et al. (2023) further underscored the broader systemic implications of the oral
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microbiota, linking its dysbiosis to conditions such as cardiovascular diseases, diabetes,
and gastrointestinal disorders [80]. McCune et al. (2024) also revealed compositional
differences in the gut and oral microbiota among women with breast cancer, indicating
that microbial imbalances in these niches might influence cancer development [81]. These
findings reinforce the integral role of the oral microbiota in human health and disease,
warranting further exploration of its therapeutic potential.

The complex connections between the microbiome and various disease states under-
score the potential of microbiome-driven therapeutics in clinical practice [82]. Understand-
ing the mechanisms underlying these associations may lead to novel treatment strategies
aimed at restoring the microbial balance and improving health outcomes across a spectrum
of conditions. Table 1 summarizes the bacterial strains implicated in gastrointestinal and
other diseases, including their alterations and their clinical significance.

Table 1. Key bacterial strains and clinical implications of microbiome-related disorders.

Disorder Associated Bacterial
Strains Alterations Clinical Implications References

Irritable Bowel
Syndrome (IBS)

Bifidobacterium spp.,
Lactobacillus genera (e.g.,
Lacticaseibacillus,
Limosilactobacillus),
Methanobrevibacter smithii,
Escherichia coli

Decreased Bifidobacterium and
members of the reclassified
Lactobacillus genera; increased
Methanobrevibacter and E. coli.

Increased gas
production, altered
motility, and
inflammation.

[83]

Inflammatory Bowel
Disease (IBD)

Faecalibacterium prausnitzii,
Roseburia spp., Eubacterium
rectale, Akkermansia
muciniphila, Escherichia coli

Depletion of
anti-inflammatory species
(F. prausnitzii, Roseburia);
overgrowth of pathogenic
E. coli.

Loss of gut barrier
integrity, chronic
inflammation.

[84]

Clostridioides difficile
Infection

Clostridioides difficile,
reduced Bacteroidetes and
Firmicutes diversity

Overgrowth due to disrupted
microbiota (e.g.,
post-antibiotics).

Severe diarrhea
and colitis. [84]

Helicobacter pylori
Infection Helicobacter pylori

Colonizes the stomach lining,
reduces protective
microbial diversity.

Gastritis, ulcers,
increased gastric
cancer risk.

[85]

Colorectal Cancer
(CRC)

Fusobacterium nucleatum,
Bacteroides fragilis,
Escherichia coli

Enrichment of F. nucleatum
and B. fragilis.

Promotes
tumorigenesis via
inflammation and
DNA damage.

[86]

Diverticulitis
Bacteroides fragilis,
Escherichia coli,
Enterococcus spp.

Altered microbial diversity,
increased inflammation.

Pain, fever,
abscess formation. [87]

Metabolic Disorders
Akkermansia muciniphila,
Bacteroidetes spp.,
Firmicutes spp.

Reduced Akkermansia; altered
Firmicutes/Bacteroidetes ratio.

Obesity, insulin
resistance, increased
inflammation.

[88]

Celiac Disease

Bifidobacterium spp.,
members of the reclassified
Lactobacillus genera (e.g.,
Lacticaseibacillus,
Limosilactobacillus),
increased Enterobacteriaceae.

Reduced beneficial bacteria;
increased pathogenic strains.

Triggers inflammatory
responses in the gut. [89,90]

Autism Spectrum
Disorders (ASD)

Bacteroides spp., Clostridium
spp., Prevotella spp.

Decreased Prevotella;
increased Clostridium.

Altered gut–brain axis
signaling, behavioral
symptoms.

[91,92]

Cardiovascular
Diseases

Members of the reclassified
Lactobacillus genera (e.g.,
Lacticaseibacillus,
Limosilactobacillus),
Bifidobacterium spp.,
Firmicutes

Increased
trimethylamine-N-oxide
(TMAO)-producing species.

Links to
atherosclerosis and
hypertension.

[93,94]
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3. Current Microbiome-Driven Therapies
3.1. Fecal Microbiome Transplantation

One of the most promising interventions in microbiome-driven therapy is fecal mi-
crobiota transplantation (FMT), a procedure in which fecal matter from a healthy donor
enters the recipient’s gastrointestinal tract to re-establish a healthy microbial composition
(Figure 2) [95]. This is most often accomplished using colonoscopies, enemas, or capsules.
The aim of transplanting healthy fecal matter is to restore gut balance by repopulating
it with bacteria that are beneficial to the body and eliminating harmful viruses [96]. The
procedure begins by selecting a donor with no family history of autoimmune, metabolic, or
malignant diseases, followed by infection testing of the donor. The fecal matter from the
donor is suspended in a solution containing either water or saline and is strained to elimi-
nate particulate matter. The resulting concoction may be delivered to the recipient using
numerous means, such as a nasogastric or nasojejunal tube, esophagogastroduodenoscopy,
colonoscopy, or retention enema [97,98].
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Figure 2. Gut microbiota restoration through fecal microbiota transplantation (FMT) in patients with
Clostridioides difficile infection (Created in https://BioRender.com).

Fecal microbiota transplantation (FMT) has a rich history in ancient Chinese medicine,
predating modern scientific understanding of the microbiome. The earliest records of
fecal therapy in China, dating back to the 4th century AD, were attributed to physician
Ge Hong. He described the use of a fecal slurry known as “yellow soup” to treat severe
gastrointestinal issues, including diarrhea and food poisoning. This practice has been noted
for its effectiveness in protecting patients from critical conditions [99,100]. Currently, FMT
is being studied in various patients in North America. The participating investigators
entered de-identified data into an online platform, including the FMT protocol, baseline
patient characteristics, Clostridioides difficile infection (CDI) cure and recurrence, and short-
and long-term safety outcomes. FMT has demonstrated a 90–92% success rate in resolving
recurrent CDI after a single treatment [4,101]. A systematic review and meta-analysis
showed that fecal microbiota transplantation had a clinical cure rate of 76.1% after the
first administration. It also revealed that open-label studies had high cure rates of 82.7%
compared with 67.7% in randomized trials [102].

Several studies have reported that FMT can lead to significant clinical improvement in
patients with IBD. IBD is closely linked to disruptions in the gut microbiota, characterized

https://BioRender.com
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by the depletion of beneficial bacteria and overgrowth of pathogenic strains. The primary
goal of FMT in IBD is to restore a balanced gut microbiota and improve the interaction
between the microbiota and the host immune system [103]. A randomized controlled trial
by Moayyedi et al. (2015) found that FMT successfully induced remission in a subset
of patients with UC, providing strong evidence that restoring microbiome balance can
positively affect disease outcomes [104]. According to a comprehensive study, FMT can
alleviate symptoms in approximately 76% of IBD patients, with 63% exhibiting disease
improvement. However, recent large-scale meta-analyses have reported decreased efficacy
rates, with approximately 36% of patients with UC and 50.5% of patients with CD receiving
symptomatic relief after FMT [95,105].

3.2. Probiotics, Prebiotics, and Synbiotics

Probiotics, prebiotics, and synbiotics have become key interventions for restoring
and maintaining a balanced gut microbiota [106]. Probiotics are live microorganisms that
provide health benefits to their hosts when consumed in sufficient quantities. Commonly
used probiotic strains include members of the reclassified Lactobacillus genera (e.g., Lac-
ticaseibacillus and Limosilactobacillus), Bifidobacterium, and Saccharomyces boulardii. These
beneficial bacteria enhance intestinal health by inhibiting pathogenic microorganisms,
modulating immune responses, and strengthening the intestinal barrier. Next-generation
probiotics (NGPs) represent an innovative class of beneficial bacteria derived directly from
the human gut microbiota, offering enhanced adaptability to the intestinal environment
compared with traditional probiotics. NGPs have shown promise in modulating the gut
microbiome to address various health conditions. For instance, Faecalibacterium prausnitzii
and Akkermansia muciniphila have been studied for their anti-inflammatory properties and
potential roles in managing chronic diseases such as inflammatory bowel disease and
metabolic disorders [107]. The therapeutic potential of NGPs extends beyond gastroin-
testinal health. Research indicates that certain NGP strains may influence the gut–brain
axis, thereby affecting mental health outcomes. Additionally, NGPs are being explored
for personalized probiotic therapies, synthetic biology applications, and targeted delivery
methods, highlighting their versatility in precision medicine [108]. Incorporating NGPs
into clinical practice requires rigorous research to establish their efficacy and safety pro-
files. Nonetheless, their emergence marks a significant advancement in microbiome-based
therapeutics, potentially offering more tailored and effective interventions for various
health conditions.

Clinical applications of probiotics have successfully managed conditions such as IBS,
IBD, and antibiotic-associated diarrhea. For instance, certain strains, such as Bifidobacterium
infantis, have been found to reduce IBS symptoms, particularly bloating and abdominal
pain [109,110]. Although probiotics have been associated with symptom relief in IBD, evi-
dence supporting their role in remission is limited. According to some studies, they may be
advantageous in sustaining remission in UC but less effective in Crohn’s disease [111,112].
Probiotics have been explored for their ability to modulate the immune responses against
allergic diseases. Research has indicated that early life administration of probiotics re-
duces the incidence of eczema during infancy, suggesting its preventative role in allergic
diseases [113]. The gut–brain axis was another focus of this probiotic research, where
results from a randomized controlled trial showed that a multispecies probiotic supplement
reduced symptoms of depression in patients with a major depressive disorder, indicating
a potential adjunctive treatment for the management of mood disorders [114]. Animal
studies have demonstrated that altering the gut microbiome through diet or probiotics
can affect behavior and cognitive function [115]. For example, germ-free mice, which lack
gut microbiota, exhibit increased anxiety-like behavior. Clinical studies have shown that
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probiotics can improve anxiety and depression symptoms, highlighting the therapeutic
potential of targeting the gut microbiome for mental health treatment [116].

Prebiotics are non-digestible food components that selectively stimulate the growth
and activity of beneficial intestinal bacteria. Common prebiotics include dietary fibers, such
as inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS). Prebiotics act as
substrates for beneficial microorganisms, promoting a beneficial intestinal environment and
increasing microbial diversity and metabolic activity. This may lead to enhanced digestion,
an improved immune response, and reduced inflammation. Research has shown that prebi-
otic consumption promotes the growth of Bifidobacterium and members of the reclassified
Lactobacillus genera (e.g., Lacticaseibacillus and Limosilactobacillus), thereby enhancing overall
gut health. Additionally, supplementation with prebiotic inulin-type fructans improves
insulin sensitivity and reduces body weight in overweight adults, emphasizing the role of
prebiotics in metabolic health [117].

Synbiotics are combinations of probiotics and prebiotics that have synergistic advan-
tages. The rationale behind synbiotics is that the prebiotic component provides a specific
substrate that supports the growth and activity of probiotic strains. This would eventu-
ally lead to an increase in the therapeutic outcome because the prebiotics guarantee that
the beneficial bacteria not only survive the gastrointestinal transit but also become active
and start exerting their health-promoting effects [106]. Clinical research on synbiotics has
investigated their potential applications in various health areas, including gastrointesti-
nal diseases, metabolic disorders, and immune system modulation. Specific synbiotic
formulations are being investigated for their potential to reduce the incidence of necrotiz-
ing enterocolitis in preterm infants, most of which show positive results [85]. Synbiotics
have been evaluated as adjunctive therapies for IBD. Randomized controlled trials have
demonstrated that the synbiotic combination of Bifidobacterium breve and prebiotic GOS
improves the clinical outcome of patients with UC, suggesting a possible synergistic effect
in modulating gut inflammation [118]. The effects of synbiotics on cardiovascular health
have also been investigated. A meta-analysis showed that synbiotic supplementation sig-
nificantly lowered systolic and diastolic blood pressure levels in patients with hypertension,
suggesting a positive impact on blood pressure regulation [119].

3.3. Microbial Metabolite-Based Therapies

Microbial metabolite-based treatments offer a way to capitalize on the positive effects
of gut microbiota on host health, marking a new chapter in the treatment of illness. Their
use includes the treatment of neurological illnesses, metabolic diseases, and inflammatory
bowel diseases. Further research is needed to improve and incorporate these treatments into
routine clinical practice. Microbial metabolites are small molecules produced by gut bacteria
during the fermentation of dietary fibers and other substrates. These metabolites, including
SCFAs, bile acids, and other signaling molecules, play crucial roles in host physiology and
health [120]. Metabolites can influence various biological pathways, including immune
response, inflammation regulation, and metabolic processes. For instance, SCFAs, such as
butyrate, are known to enhance gut barrier integrity, modulate immune function, and exert
anti-inflammatory effects [121,122].

Microbial metabolites play an important role in the gut–brain axis. SCFAs, such as
butyrate, produced by the intestinal microbiota modulate cognitive function and behavior.
Butyrate exhibits neuroprotective effects and can modulate immune responses, suggesting
great therapeutic applications for neurodegenerative diseases, including Alzheimer’s and
Parkinson’s diseases [123]. SCFAs also have potent effects on host metabolism. They
provide energy to colonocytes, regulate glucose and lipid metabolism, and modulate
appetite via hormonal actions. Restoring the healthy levels of these metabolites improves
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insulin sensitivity and reduces inflammation. This opens up new prospects for the treatment
of metabolic disorders such as obesity and type 2 diabetes [124]. In IBD, intestinal dysbiosis
leads to changes in the microbial metabolite profile, which contributes to chronic intestinal
inflammation. Treatments to re-establish beneficial metabolites, such as butyrate, have
shown promise for reducing inflammation and facilitating mucosal healing. For instance,
butyrate enemas are used to reduce the symptoms in patients with UC [125].

Microbial metabolite-based and probiotic treatments are two distinct approaches to
modulating the gut microbiome for health benefits. Table 2 shows microbial metabolite-
based and probiotic treatments.

Table 2. Comparative overview of microbial metabolite-based treatments and probiotic treatments.

Aspect Microbial Metabolite Based Therapies Probiotic Treatment

Definition
Utilizes metabolites produced by gut
microbiota (e.g., SCFAs) to exert therapeutic
effects [126].

Involves the administration of live
microorganisms that confer health benefits when
consumed in adequate amounts [127].

Mechanism
Directly modulates host signaling via
metabolites, influencing immune responses
and gut health [126,127].

Restores or maintains a healthy gut microbiota,
inhibiting pathogenic bacteria and enhancing
mucosal barrier function [127].

Efficacy in
Disease Treatment

Effective for conditions like IBD, metabolic
disorders, and neurological conditions through
targeted action [126].

Variable efficacy; beneficial for gastrointestinal
disorders like diarrhea and IBD, but
effectiveness can be strain-specific [127].

Advantages
Provides targeted therapy; may overcome
limitations of probiotics related to colonization
and individual microbiomes [126].

Generally safe; can restore gut flora balance
effectively in many individuals [127].

Limitation
Less research on long-term effects; potential
need for personalized approaches based on
specific metabolites.

Variable efficacy based on strain and individual
microbiome composition; may pose risks for
immunocompromised individuals.

Safety Profile Generally low toxicity; fewer risks associated
with live organisms.

Safe for most; caution advised in
immunocompromised individuals or those with
severe underlying conditions.

Administration Can be administered as stable compounds
(e.g., supplements).

Requires viable organisms; may have storage
and viability issues.

3.4. Emerging Microbiome Editing Therapeutics

Recent breakthroughs in microbiome editing therapeutics have paved the way for
innovative treatments that precisely target the microbial genes in the human gut. These
emerging techniques, mostly CRISPR and base editing, offer promising approaches for
manipulating microbial communities in situ with high specificity and efficacy, thus show-
ing great potential for treating various diseases. This in situ technique manipulates the
microbiome in its native setting. Although microbiome transplants can create large-scale
changes but lack specificity, in situ-engineered microbiomes are designed to target spe-
cific bacteria, limiting their impact on the rest of the microbial community [128]. Base
editing is a genome-editing technique that enables precise modification of specific DNA
bases without causing double-strand breaks or relying on homologous recombination,
without introducing double-strand breaks or homologous recombination. This fusion
technology combines a catalytically weakened CRISPR-associated nuclease (Cas) protein
and nucleobase deaminase enzyme. The guide RNA guides these complexes to the target
DNA sequence, where the deaminase catalyzes chemical alterations and produces a point
mutation. This method allows for accurate genetic modifications with a lower risk of
unintended genomic changes [129]. Together, these approaches represent a new paradigm
in microbiome manipulation and have tremendous potential for addressing the challenges
associated with antibiotic resistance and the complex populations of microbes.



Gastrointest. Disord. 2025, 7, 7 13 of 23

Several research groups have developed new gene editing tools specifically for indi-
vidual gut bacteria or entire communities. Techniques such as CRISPR-Cas9 and inducible
CRISPR interference (CRISPRi) have been used to effectively modify bacterial genetic
materials [130]. For example, researchers have engineered bacteriophages and viruses that
infect bacteria using CRISPR-Cas systems that selectively target antibiotic-resistant bacteria,
thereby providing a new approach to combating antibiotic resistance. Recently, clinical
trials have tested whether microbiome modification can be used as a therapeutic agent
for infection. Locus Biosciences performed a phase 2 trial of CRISPR-enhanced bacterio-
phages against E. coli in patients with urinary tract infections (UTIs). The results showed
significant reductions in both bacterial numbers and symptoms of UTIs, suggesting that
CRISPR may be useful in treating bacterial infections [124,131]. In addition, researchers
at the University of California have used CRISPR gene-cutting tools to modify the gut
microbiota and prevent childhood asthma by changing the structure of the microbiome.
This shows a promising avenue in which diseases related to microbial dysbiosis can be
prevented through microbiome modification [132].

Despite these promising improvements, several challenges still remain in the field of
microbiome-edited therapeutics. Specificity and safety must be guaranteed for genome-
editing techniques to avoid off-target effects that may disrupt the sensitive balance of the
microbiome. Moreover, knowledge of the complex interactions between microbial commu-
nities and their consequences on human health is essential for the successful application
of such therapies. Ongoing research on the development of more precise editing tools
and delivery methods aims to overcome these challenges. For instance, the Innovative
Genomics Institute (IGI) is developing new CRISPR-based strategies to increase both the
safety and accuracy of microbiome editing, which could improve the therapeutic potential
of such interventions. The Berkeley Initiative for Optimized Microbiome Editing (BIOME)
is dedicated to advancing CRISPR technologies to edit microbiomes within their natural
environments. The goal is to develop safe and effective solutions to complex problems by
understanding and manipulating the microbial communities [133].

4. Microbiome-Based Drug Development
4.1. Microbiome as a Drug Target and Modulator

Recent microbiome research has opened avenues for novel strategies to develop drugs
that precisely target specific microbial metabolic pathways for treating infections and as a
weapon against antibiotic resistance. Understanding and manipulating these pathways
will help devise therapeutic interventions that inhibit or modulate selective microbial
functions without damaging the host. One strategy involves targeting vital bacterial pro-
cesses, including the synthesis of cell walls, proteins, nucleic acids, and other metabolic
processes. For example, antibiotics in the β-lactam family inhibit cell wall biosynthesis by
attaching penicillin-binding proteins, leading to bacterial cell lysis. Similarly, drugs such as
tetracyclines and macrolides disrupt bacterial protein synthesis by binding to ribosomal
subunits, thereby hindering bacterial proliferation [134]. Another promising strategy is
the inhibition of bacterial fatty acid biosynthesis. This pathway provides membrane pro-
duction and energy storage for the bacteria. Compounds that target the essential enzymes
in this pathway, such as enoyl-acyl carrier protein reductase (FabI), have demonstrated
potent activity against Staphylococcus aureus, including strains resistant to methicillin [135].
The application of genomics has enabled the discovery of new drug targets in microbial
metabolic pathways. Studies on bacterial genomes have enabled researchers to identify
unique enzymes or mechanisms that are not present in human cells as drug targets, facili-
tating the design of highly specific drugs with low toxicity. For example, targets include
two-component signal transduction systems (TCSTSs) and histidine kinases, which play
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crucial roles in bacterial adaptation and virulence [136]. Furthermore, the integration of
synthetic biology and metabolic engineering has enabled the production of antimicrobial
drugs through engineered microbial pathways [137].

The gut microbiota, referred to as the second human genome, is critically important
in drug metabolism and significantly influences therapeutic efficacy and adverse effects.
Recent research has shown that the microbiota itself is responsible for several drug modifica-
tions, such as activation, inactivation, and even toxification. Variations in the gut microbiota
of different individuals may result in divergent microbe-drug interactions, underscoring the
importance of personalized approaches in pharmacotherapy [138–140]. Emerging evidence
has highlighted the role of the gut microbiota in determining the efficacy and toxicity of
anticancer drugs. Lam et al. (2021) explored the potential of gut microbes to predict the
efficacy and toxicity of combined immune checkpoint blockade therapies. Their findings
underscore the importance of gut microbiota composition in modulating host immune
responses to cancer therapies, suggesting that microbial profiles could be used as predictive
biomarkers for treatment outcomes [141]. Furthermore, Sadeghi et al. (2024) discussed
the role of gut microbiota in gastrointestinal cancer resistance to treatment. Their study
demonstrated that microbiota-mediated mechanisms, such as drug metabolism, immune
modulation, and the creation of a tumor-promoting microenvironment, can affect the ef-
ficacy of cancer therapies. These findings highlight the potential for microbiota-targeted
strategies to enhance the effectiveness of anticancer treatments [142].

4.2. Engineered Microbiomes

Engineered microbiomes, or synthetic microbial communities, are designed to perform
specific functions in a host or environment for precise interventions in health and disease
management. Researchers have assembled defined microbial consortia with tailored func-
tionalities to modulate the host physiology, enhance therapeutic outcomes, and mitigate
disease processes. The development of synthetic microbiomes involves the careful selection
and integration of microbial species with specific traits to achieve targeted effects. This
process can be achieved through two approaches: bottom-up and top-down approaches.
The bottom-up approach isolates and assembles specific microbial strains into an organized
community with defined functions. This method allows for the complete and precise
control of the community, composition, and interactions. The top-down approach involves
altering existing microbial communities by adding or deleting members of the community
to change community behavior and function [143]. Advances in genetic engineering and
synthetic biology have enabled the programming of microbial consortia to execute complex
tasks, including biosensing, metabolic production, and immune modulation [144].

Engineered microbiomes have significant potential in precision medicine by facili-
tating treatments customized to each patient’s unique characteristics. In disease therapy,
engineered microbiomes can modulate metabolic pathways, generate therapeutic com-
pounds, or outcompete pathogenic microbes to treat conditions such as IBD, infections,
and metabolic disorders [144]. Engineered gut microbiota composition also controls drug
metabolism, thereby improving efficacy and decreasing adverse effects [7]. In addition,
engineered microbial communities modulate immune responses, thus offering potential
treatments for autoimmune diseases and allergies [144]. Despite their promise, engineered
microbiomes face several challenges, such as stability in the host, avoidance of off-target
interactions, and ethical and regulatory concerns. Ongoing studies are focused on areas
such as developing strategies to control engineered microbes and prevent horizontal gene
transfer to native microbiota [145], altering synthetic microbiomes to individual genetic
and microbiome profiles to maximize therapeutic benefits [7], and establishing regulations
for the clinical use of engineered microbiomes to confirm safety and efficacy [146].
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5. Challenges and Limitations
5.1. Individual Microbiome Variation

Research has demonstrated a significant correlation between gut microbiome diver-
sity and factors such as food, demographics, health problems, and hygiene [147]. While
ethnicity has an impact on the microbiome, other factors such as geographic location,
culture, tradition, dietary pattern, lifestyle, and exposure to toxins and diseases largely
contribute to differences in microbiomes among different populations of humans, which
poses challenges in microbiome-driven therapy [148]. Recent research indicates that a “one
size fits all” approach to dietary interventions for treating metabolic disorders could be
insufficient because the gut microbiota plays a critical role in inter-individual variability
in the metabolism of key nutrients [149]. Despite considerable heterogeneity, identifying
reliable microbiological biomarkers that predict therapeutic responses is challenging be-
cause each individual’s microbiome is unique; individuals with similar symptoms may
show divergent reactions to identical treatments [150].

5.2. Mechanistic Gaps in Microbiome Research

Although microbiome data have enormous therapeutic potential, they are still difficult
to analyze and interpret owing to several factors, including compositional structure, which
introduces a negative correlation bias, sparsity, and collinearity [151]. The complexity of mi-
crobial ecosystems has led to a lack of understanding of specific microbial-host interactions.
Consequently, the effects of probiotics and synbiotics are not yet fully understood [152].
The human microbiome comprises a complex array of microorganisms, and our knowledge
of their individual roles in human health remains limited. There is a lack of a comprehen-
sive understanding of how successfully these microbial species perform their roles, their
interactions with the host and other microbial species, and their specific locations within
the host where they exert their influence. This knowledge gap highlights the need for
further research to better understand these complex relationships.

5.3. Regulatory and Ethical Considerations

According to research ethics, the potential societal benefits of conducting a study
must be weighed against the potential risks. Studies on the human microbiome must
explain the favorable risk-benefit ratio. However, this can be extremely challenging because
of several unresolved microbiological, clinical, and social problems. Balancing potential
risks and benefits is often difficult and nearly impossible in some cases [153]. To ensure
safety and effectiveness, therapies involving live organisms such as FMT, probiotics, and
prebiotics are under strict regulatory oversight. Selecting the right regulatory category,
such as drug, biological, or dietary supplement, can be challenging, as it profoundly affects
the requirements and approval process. Depending on their functions and characteristics,
developers must classify their products under regulatory frameworks as biological goods,
medications, or medical devices. Preclinical studies, clinical evaluations, and assessments of
adverse effects on the microbiome and host physiology should be performed to determine
both safety and efficacy. The manufacturing, distribution, and storage of live biotherapeutic
products (LBPs) follow standard good manufacturing practice (GMP) guidelines [11].
Ethical considerations in FMT include the major elements necessary to protect patients and
to ensure informed participation. Rigorous screening and precise selection can reduce the
risk of transferring novel diseases to recipients via FMT. Informed consent was another
crucial component of this study. It is a voluntary agreement to participate in clinical trials
based on knowledge of the research goals, risks, potential advantages, and safety issues.
Also, a proper assessment of safety issues and benefit-to-risk ratio should be carried out to
avoid adverse effects and ensure the therapy is safe and effective overall [154].
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6. Future Directions
Microbiome-driven therapeutics are advancing rapidly, with future research focusing

on addressing these challenges and broadening their therapeutic applications. Precision
medicine will play a key role by utilizing individual microbial profiles to develop personal-
ized treatments that enhance efficacy and reduce side effects [155]. Progress in synthetic
biology and computational modeling is expected to improve the design of engineered
microbiomes and predictive tools, thereby increasing their stability and functionality. Addi-
tionally, the integration of microbiome profiling and metagenomic data is transforming the
field of precision medicine. These tools provide deep insights into the functional and ge-
netic attributes of microbial communities, enabling the identification of individual-specific
microbial signatures associated with health and disease. By combining metagenomic data
with advanced computational frameworks and clinical information, researchers can iden-
tify novel biomarkers and therapeutic targets. This integration fosters the development
of tailored interventions, including personalized probiotics, microbiota-targeted drugs,
and predictive models for disease risk. As metagenomic technologies continue to advance,
they promise to bridge the gap between microbial research and individualized healthcare,
paving the way for innovative diagnostic and therapeutic solutions [156,157]. Understand-
ing the gut–brain axis and immune modulation promises new therapies for neurological
diseases and autoimmune disorders [158]. Future research has also highlighted the poten-
tial of microbiome modulation in cancer therapy to improve responses to immunotherapy
and reduce side effects through targeted interventions such as probiotics or engineered
microbiomes [10,159]. Therefore, one of the critical avenues that will ensure the safe and
effective translation of these therapies into the clinic is the creation of strong regulatory
frameworks and ethical guidelines [11]. This will be accelerated through public education,
access equality, and expansion into understudied areas, including research on the skin and
oral microbiomes [160–162]. Together, these efforts will establish microbiome therapeutics
as the cornerstone of precision medicine and improve health outcomes worldwide.

7. Conclusions
Microbiome-driven therapeutics are a next-generation approach to treating complex

diseases, highlighting host-microbial community interplay. This review covers the cur-
rent developments in FMT, probiotics, and engineered microbiomes, each of which holds
promise for meeting unmet medical needs. However, the remaining challenges, such
as individual variability, knowledge gaps, and regulatory hurdles, are significant. How-
ever, with interdisciplinary approaches, innovation, and adherence to ethical standards,
microbiome-based treatments can revolutionize healthcare by providing targeted, effective,
and sustainable solutions for numerous conditions.
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