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Abstract: Temporal feature integration refers to a set of strategies attempting to capture the information
conveyed in the temporal evolution of the signal. It has been extensively applied in the context
of semantic audio showing performance improvements against the standard frame-based audio
classification methods. This paper investigates the potential of an enhanced temporal feature
integration method to classify environmental sounds. The proposed method utilizes newly introduced
integration functions that capture the texture window shape in combination with standard functions
like mean and standard deviation in a classification scheme of 10 environmental sound classes.
The results obtained from three classification algorithms exhibit an increase in recognition accuracy
against a standard temporal integration with simple statistics, which reveals the discriminative ability
of the new metrics.

Keywords: environmental sound recognition; temporal feature integration; statistical feature integration;
semantic audio analysis; audio classification

1. Introduction

Environmental Sound Recognition (ESR) is a semantic audio application that has received
considerable attention in recent years. The goal of ESR is to capture environmental sounds using
audio sensors and assign them to predefined categories (or classes) by applying semantic labels to
them. By environmental sounds, we refer to various sounds that are both natural and artificial, other
than speech and music, which are present in an acoustic scene. Practical applications of ESR include
hearing-aid technology, home-monitoring, audio surveillance, assisting robotics, animal bioacoustics,
and information retrieval applications such as keyword-based search in audio archives [1]. An emerging
trend in audio is the incorporation of ESR applications into portable or wearable devices [2]. For
example, a mobile device could be designed by applying ESR in order to automatically change the
notification mode based on the knowledge of the user’s surroundings [3]. The increasing interest in the
field of ESR has heightened the need for optimized algorithms and processing workflows that could
achieve higher recognition accuracy and reduce computational requirements.

Automatic sound recognition is commonly executed in two processing stages. First, a set of audio
features is extracted on short-time audio segments (or frames) over which the signal can be considered
stationary and then the resulting feature data are used by classification algorithms for training and
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testing purposes. However, this frame-based method neglects the information conveyed in the temporal
evolution of the signal, since it assumes that the observed features in successive frames are statistically
independent. Several strategies, often termed temporal feature integration, use additional steps in
order to incorporate this information into measures, which improves the accuracy of classification
algorithms [4]. Although considerable research has been devoted to the frame-based approach aiming
at exploring the most appropriate features and classifications algorithms [5–8], rather few studies have
addressed the issue of temporal feature integration in the context of sound recognition, with most of
them focusing on music signals.

Temporal feature integration techniques generally fall into two major categories. If the integration
is performed at the feature extraction level by combining short-time features over a larger frame, which
is termed texture window, the process is called early integration, as opposed to late integration, where
features are combined on the classifier level [9]. Early integration results in reduced variability among
the features of the sound samples within the same semantic category, while the lower amount of data
delivered to the classification algorithm reduces computational complexity [10]. A straightforward
type of early integration consists in the computation of statistical instances like the mean and variance
of the short-time features [4]. In Reference [11], Meng et al. introduce autoregressive models in order
to capture the temporal evolution of features in a musical genre classification task. Another temporal
integration strategy is presented in Reference [12], where the power spectrum of the feature values
across consecutive short frames captures the temporal dependencies for each feature. Joder et al. [13]
explore both early and late integration methods in a musical instrument recognition task. A fusion
scheme, which combines features integrated at different texture window lengths, is proposed in
Reference [14] for generalized sound recognition (environmental sounds and speech). Flocon-Cholet
et al. [9] propose several temporal integration methodologies for a speech/music/mix classification
task in a low-latency framework so that they could be used in real-time applications. A real-time
environmental sound recognition system for Android mobile devices using temporal integration
with simple statistics is implemented by Pillos et al. [15]. Among the different approaches, statistical
feature integration achieves the best balance between classification performance and computational
complexity [16].

The purpose of the paper is to expand the investigation of a new method for temporal feature
integration that was recently introduced in Reference [10], where simple statistics mixed with newly
proposed functions capturing the texture window shape are evaluated for their performance in
a speech/music/other classification task. The novelty of this work lies in the investigation of the
applicability of these new metrics for early temporal integration in the context of environmental
sound recognition. The metrics are tested on a database of environmental sounds created by the
authors and their effectiveness is compared against the standard temporal integration with simple
statistics (mean and variance) and the frame-based method without integration. This work focuses on
simple engineering, avoiding complexity, and aspires to propose a robust set of aggregated features
that improves performance in environmental sound classification tasks. The proposed technique is
also evaluated on an extensively tested public dataset (UrbanSound8K), and compared against some
computationally heavier Deep Learning approaches.

The remainder of the paper is structured as follows. In Section 2, the database and the proposed
methodology are presented, Section 3 contains a precise description and evaluation of the experimental
results, and the conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Database

A reliable comparison of ESR methods presented in different papers is only valid if all the
evaluation tests are performed on a common universal database. In the absence of such a database, any
performance benchmarking of the various approaches is futile. To address this problem, we decided
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to create a library of environmental sounds that has the potential to be used as a reference database
for future benchmarking. The library, which we called BDlib_2, is an extended version of the library
presented in Reference [5] and is publicly available at the following location: research.playcompass.
com/files/BDLib-2.zip. The library was created by identifying and isolating 10 s audio segments that
represent discrete sound categories from the following sources: BBC Complete Sound Effects Library
(bbcsfx.acropolis.org.uk) and freesound.org. Particular care has been taken in the selection of the
segments in order to keep the sound samples clean of background noise and prevent overlapping of
the sound classes. The library is organized in the following 10 classes: airplanes, alarms, applause,
birds, dogs, motorcycles, rain, rivers, sea waves, and thunders. Our intention was to include classes of
sounds—encountered either in indoor or outdoor soundscapes—that are extensively used in similar
recognition schemes. Each class is equally represented in the database by 18 audio files with great
variations between them, which reflect real life situations. All the recordings are uncompressed mono
audio files in WAV format, with a sampling rate of 44.1 kHz and 16 bit analysis. The total duration of
the collected files is 1800 s, which is generally considered a relatively small database for the specific
classification task. In order to overcome the problem of data scarcity, we applied two common data
augmentation techniques to the whole dataset that have been reported to increase model accuracy for
environmental sound classification tasks [17]: time stretching by the factors 0.85 and 1.15 and pitch
shifting by −4 and +4 semitones. The deformation factors were selected so that the deformed data
preserve their semantic meaning. The idea is that, if a model is trained on additional deformed data,
it can generalize better on unseen data. The augmentations were applied using the command line tool
Sound eXchange (SoX) [18]. The resulting duration of the complete database after augmentation is
8820 s, which is comparable to the duration of similar databases that are regarded as reliable. All things
considered, the authors believe that this database meets the specifications of a reference environmental
sound library and encourage its use for future benchmarking.

2.2. Feature Extraction

The first step of each ESR algorithm consists in extracting useful attributes from raw audio data
that can describe the signal in a compact way. In practice, the signal is divided into small frames using
a window function and a number of features are extracted from each frame separately. Each vector of
features corresponding to a single frame is used as an instance for training and testing (for frame-based
methods). Based on the domain where the extraction occurs, audio features can be grouped into
three categories: time-domain (or temporal) features, frequency-domain (or spectral) features, and
cepstrum-domain (or cepstral) features. It is crucial to choose appropriate features for each application
that have the potential to result in effective discrimination between the sound classes. In this paper,
the choice of the extracted features was based on the results of a previous study on ESR [5]. Table 1 lists
the extracted audio features along with their corresponding dimensions (when not noted, the feature
dimension is 1) and their abbreviated symbols that are used in this paper. All features add up to a
feature vector of 100 dimensions. At this stage, along with the extraction of features, each instance was
annotated with the corresponding sound class label. The extraction was performed with the following
open-source software tools: MIRtoolbox (MATLAB)—Version 1.7 [19], Marsyas–version 0.5.0 [20], and
jAudio—Version 1.0.4 [21].

As stated in the introduction, our intention is to compare the frame-based method against temporal
integration methods. In order to make a fair comparison, the window length of the frame-based
method should match the length of the texture window of the temporal integration methods. To that
end, the features were extracted with two different window configurations: long windows for the
frame-based method and short windows over which the statistical integration is performed, which
form a texture window with aggregated features for the temporal integration methods. Based on
experience derived from previous work [22], the optimal duration for the short window is a few dozens
of milliseconds and, for the long window, about one second. Accordingly, the following setup was
selected, using a Hann window for both cases.

research.playcompass.com/files/BDLib-2.zip
research.playcompass.com/files/BDLib-2.zip
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• short window: 2048 samples length (duration~46 ms) with 50% overlapping
• long window: 65,536 samples length (duration~1.48 s) with 50% overlapping

Therefore, extracting aggregated features over 64 subsequent short windows forming the texture
window with 50% overlapping, we have the same temporal resolution for both the frame-based and
the temporal integration methods.

Table 1. List of extracted features.

Feature Symbol

Zero Crossing Rate ZCR
Root Mean Square RMS

Relative Difference Function RDF
Spectral Centroid CEN
Spectral Spread SPR

Spectral Flux FLU
Spectral Roll-Off ROL

Spectral Skewness SKEW
Spectral Kurtosis KURT
Spectral Entropy ENTR

Spectral Variability VAR
Spectral Smoothness SMO

Spectral Flatness Measure (24) SFM
Spectral Crest Factor (24) SCF

Brightness BRI
Roughness ROU
Irregularity IRR
MFCC (13) MFCC

Delta-MFCC (13) DMFCC
LPCC (12) LPCC

2.3. Temporal Feature Integration

As already mentioned, statistical feature integration methods fall into the group of early integration
techniques. Several integration functions are applied on baseline features over successive short frames
attempting to capture the temporal evolution of these features into aggregated features.

To describe this approach more formally, assume that U baseline features are extracted for each
frame and Z[k] = [z1[k], z2[k], . . . , zU[k]] is the U-dimensional original feature vector for the k-th frame.
A texture window matrix contains a sequence of L frames from k−L+1 to k. Thus, the texture window
matrix has a dimension of LxU. A number of Q integration functions [F1, F2, . . . FQ] are applied
to each zi component over the n-th texture window. As depicted in Figure 1, every column of the
texture window matrix is used as an input to each Fj function. As a consequence, a total of N = UxQ
transformations will occur in each texture window n, which results in a new N-dimensional feature
vector W[n], whose elements are given by Equation (1).

wp = F j(zi(k− L + 1), . . . , zi[k]), with p = (i− 1) Q + j (1)

The final feature vector W[n] = [w1[n], w2[n], . . . , wUxQ[n]] is the integrated feature vector.
The most common statistical measures used in place of the function F are the Mean Value (MEA),

Standard Deviation (STD), Skewness (SKE), and Kurtosis (KUR). For example, the Mean Value is
calculated as follows.

XMEA[n] =
1
L

k∑
m=k−L+1

x[m], (2)

where x[m] is the original feature component of the m-th frame and XMEA[n] is the integrated component
over the n-th texture window that contains L frames.
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While these measures have been widely used, providing robust performance, they only partly
capture the temporal information of successive features. According to Reference [10], more metrics can
be used to exploit the information that is hidden inside the time-series of the features. Some of them
are used in this paper and presented below.

Mean Sequential Difference (MSD): Like the Standard Deviation (STD) measure, MSD aims to
quantify the amount of variation of feature values inside a texture window, taking also into account the
frequency of these changes. It is calculated as the Mean value of the summed up absolute differences
of successive feature values, as defined in Equation (3).

XMSD[n] =
1

L− 2

k∑
m=k−L+2

∣∣∣x[m] − x[m− 1]
∣∣∣ (3)

Mean Crossing Rate (MCR): Inspired by the well-known Zero Crossing Rate (ZCR) that is directly
applied on raw signals, MCR estimates the alternations of successive feature values inside a texture
window, with respect to their Mean value (Equation (4)).

XMCR[n] =
1

L− 1

k∑
m=k−L+1

1R<1(d[m]), (4)

where
d[m] = [x[m] −XMEA[n]][x[m− 1] −XMEA[n]] (5)

Flatness (FLA): Like Spectral Flatness, Temporal Flatness is calculated by dividing the geometric
mean of the feature values by their arithmetic mean, inside a texture window, according to Equation (6).

XFLA[n] =

L
√∏k

m=k−L+1 x[m]∑k
m=k−L+1 x[m]

L

(6)

Crest Factor (CRF): Similar to the Crest Factor measure that is used in waveforms, CRF is calculated
by dividing the Maximum by the Mean value of feature values inside a texture window (Equation (7)).

XCRF[n] =
MAX(x[k− L + 1], . . . , x[k])

XMEA[n]
(7)

The statistical feature integration functions were implemented in VBA and MATLAB.
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2.4. Feature Selection

As we mentioned earlier, the baseline feature vector for the Standard Frame Based (SFb) method
has a dimension of 100. The feature vector for the Standard Temporal Integration (STi) method consists
of the aggregated features representing the mean, standard deviation, skewness, and kurtosis of the
following 12 baseline features: MFCCs, CEN, SPR, SKEW, KURT, ROL, ENTR, BRI, VAR, RMS, ZCR,
and RDF, which results in a vector dimension of 96. A decision not to include all the extracted features
for calculating the corresponding aggregated feature vector components was taken on the grounds
that this would result in a significant increase of the final vector’s dimension, while preliminary tests
indicated low discriminative power for these attributes. Lastly, the Extended Temporal Integration (ETi)
method extends the STi feature set by 96 additional features since it specifies four additional metrics
(MSD, MCR, FLA, CRF). The feature vector dimensions for the three methodologies are summarized
in Table 2. As we can notice, feature integration leads to high-dimensional vectors, which is an
outcome that generally does not necessarily deliver better performance. High-dimensional feature
vectors lead to data sparsity, which is a problem known as “the curse of dimensionality”. A smaller
feature set containing the most salient features, i.e., features that contribute more to the discrimination
between the classes, is preferable since it reduces computational complexity, while it can also lead
to performance improvements [23,24]. For this purpose, it is common practice to select an optimal
subset of features out of the total set of the extracted ones. Several methodologies have been proposed
for this purpose. In some approaches, the significance of each feature is estimated individually by
calculating certain measures, while, in others, the candidate feature subsets are tested iteratively until
classification performance is maximized [25]. In our study, feature ranking was carried out using the
following ranking algorithms implemented in the RapidMiner Studio.

1. Information Gain Ratio (IGR): The algorithm calculates weights for each feature corresponding to
their relevance to the class attribute by using the information gain ratio. The higher the weight of
a feature, the more relevant it is considered.

2. Generalized Linear Model (GLM): The generalized linear model is an extension of ordinary
linear regression. This algorithm fits generalized linear models to the data by maximizing the
log-likelihood and calculates feature weights with respect to the class of each instance.

3. Support Vector Machine (SVM): The coefficients of a hyperplane calculated by an SVM are set as
feature weights signifying the relevance of the class attribute.

Based on the ranking ratings and further experimentation, an optimal subset of features was
selected for each method (SFb, STi, and ETi).

Table 2. Feature vector dimension for each method (before feature selection).

Method SFb STi ETi

Dimension 100 96 192

2.5. Classification

The resulting feature sets of each method were tested with the following classification algorithms,
utilizing the RapidMiner science platform [26] and Keras software library [27].

1. Logistic Regression (LR)
2. Artificial Neural Network (ANN)
3. Generalized Linear Model (GLM)

LR and GLM were deployed in RapidMiner under a default setup, while ANN was developed
in Python, utilizing Keras with the following topology: Two hidden layers with (input + output
dimensions)/2 neurons each, followed by a dropout layer. The rest of the parameters followed a typical



Acoustics 2019, 1 416

setup: RELU activation function for the intermediate layers, SoftMax for the output layer, Categorical
Cross-Entropy as the loss function, and Adam as the optimizer. The learning rate was set to 0.01 and
the dropout to 25%, while a validation set was used to identify the parameter setting (epoch) that
achieves the highest classification accuracy. We used 10% of the training samples as a validation set for
identifying the training epoch that yields the best model parameters.

The performance evaluation was based on the measure of Accuracy. Accuracy provides an overall
evaluation of the achieved recognition score by estimating the ratio of the total number of correctly
classified instances to the total number of samples. It is reminded that each sound class in the database
contains 18 different source files. For the classification, these files were split to 12 files for the training
set and six for the testing set. This separation was performed in order to ensure that the algorithms are
tested on previously unseen data, and guarantee unbiased and comparable results. If the split was
generated randomly, we might have ended up with segments of the same source file being used for
both training and testing, which would have led to artificially high classification accuracies. Lastly,
in order to prevent overfitting to the test set, the process was repeated three times with different
selections for the training and test sets (three-fold cross validation) and the results were averaged over
the three iterations to give an estimate of the model’s predictive performance.

3. Results and Discussion

In this section, the most significant experimental results are presented and interpreted. Table 3
demonstrates the results of feature ranking using the baseline feature set (SFb method). The features
are ranked by the three ranking algorithms according to their discriminative power. Features that
appear in the top ranking of all three methods are highlighted with gray, features that appear in two
methods are highlighted with lighter gray, while features that appear only in one method are not
highlighted. We can see that the results of the three different algorithms are in good agreement, since
they all result in almost the same set of salient features.
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Table 3. Top 20 features for the SFb method.

Rank Order
Ranking Algorithms

IGR GLM SVM

1 MFCC1 MFCC3 MFCC3

2 ENTR MFCC1 MFCC2

3 BRI MFCC2 ENTR

4 ROL SFM15 MFCC1

5 MFCC2 MFCC4 BRI

6 CEN ZCR CEN

7 SKEW VAR VAR

8 SFM12 SFM18 MFCC4

9 KURT SFM14 SMO

10 SFM10 ROU ROL

11 ZCR ROL ZCR

12 SMO SFM17 KURT

13 SFM18 SFM13 MFCC5

14 SFM11 SMO SFM24

15 MFCC3 SCF7 SFM17

16 SFM13 ENTR SFM18

17 SFM17 BRI SFM14

18 VAR SFM5 RDF

19 SFM19 SFM16 SFM13

20 SFM9 SFM12 SKEW

The same process was repeated for the ETi feature set in order to determine the most salient
aggregated features. It is reminded that the ETi feature set is a superset of the STi feature set containing
all the aggregated features. The results are shown in Table 4. A standard notation is followed for
aggregated features, where subscripts symbolize the integration function and baseline text of the
source feature (e.g., CENSTD denotes the Standard Deviation of the Spectral Centroid). The source
features of the aggregated features are the same as the baseline features, with some exceptions, like
SFM that does not appear at the salient aggregated features, even though it performs well as a baseline
feature. On the other hand, SPR, for example, is ranked high at the aggregated features, while it is not
present at the salient baseline features. Regarding the integration functions, it is clear that MEA and
STD are the top performers, while MSD, FLA, and MCR have very high rankings. It is important to
note that SKEW and KURT do not appear at all in the top 20 features, which indicates that the new
metrics are more relevant than those two standard statistic measures. These results are a preliminary
indication that the ETi method has the potential to outperform the STi method.
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Table 4. Top 20 features for temporal integration methods (STi and ETi).

Rank Order
Ranking Algorithms

IGR GLM SVM

1 MFCC1MEA MFCC3MEA MFCC3MEA

2 MFCC2MEA MFCC2MEA MFCC2MEA

3 ENTRMEA MFCC1MEA MFCC1MEA

4 MFCC10STD VARMEA ENTRMEA

5 MFCC11STD BRIMEA BRIMEA

6 BRIMEA SPRMEA SPRMSD

7 MFCC12STD SPRMSD SPRMEA

8 MFCC9STD RMSMSD MFCC4MEA

9 ROLMEA ENTRMEA VARMEA

10 CENMEA MFCC4MEA ZCRMEA

11 MFCC8STD VARFLA RMSMSD

12 MFCC7STD MFCC1MSD MFCC5MEA

13 SKEWMEA ZCRMEA MFCC1MSD

14 ROLMSD RDFMEA ROLMSD

15 KURTSTD ROLMEA RDFMEA

16 ZCRMEA ENTRFLA VARFLA

17 KURMEA MFCC7MEA CENMSD

18 MFCC6STD MFCC12MCR ZCRMSD

19 MFCC7MEA SKEWMEA MFCC6MEA

20 MFCC11MCR CENMSD CENMEA

Feature ranking allows us to identify which features should be prioritized in the selection of
the optimal subset of features. However, we need to perform extra experiments in order to select
the optimal dimension for each vector. This was decided after reviewing classification performance
considerations with respect to different dimensions. Figure 2 shows the performance of the three
feature sets in terms of accuracy, when tested with the ANN algorithm, with respect to the feature
vector dimension. We notice a performance improvement from the SFb method to the STi method
and another boost in performance, albeit smaller, when the ETi feature set is used. Based on this plot,
the dimension of each feature set was selected as the dimension where each curve reaches maximum
accuracy. A similar behavior was observed when the same test was performed with the other two
classifiers, LR and GLM, which showed a peak in performance at the vector dimension of 55 and
60 features, respectively. Table 5 shows the resulting vector dimensions for each feature set after feature
selection, evaluated with each classification algorithm. It can be observed that ANN and GLM require
a higher dimension feature vector than LR to reach their peak performance. However, the differences
in the resulting dimensions are not significant.
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Table 5. Feature vector dimension for each method (after feature selection) evaluated with
three classifiers.

LR ANN GLM

SFb 40 75 70

STi 60 70 65

ETi 55 75 65

The classification results of the resulting feature sets when tested with the respective classification
algorithms are shown in Table 6. Similar conclusions as before can arise. The STi feature set outperforms
the SFb feature set, which demonstrates that the process of temporal feature integration with simple
statistics can improve performance in environmental sound classification tasks. Furthermore, the ETi
feature set, which extends the statistical measures, brings further improvements. This proves the
discriminative power of the proposed measures. The top performing classifiers with the ETi feature set
are ANN and GLM, with ANN scoring a bit higher, while, for LR, we do not observe a difference in
performance between the STi and ETi methods. Nevertheless, time integration brings a considerable
boost in performance to this method as well, when compared to the SFB method. The classification
accuracy of the best performing setup (ETi combined with ANN) is very promising (81.5%) for
environmental sound related applications (sound source identification, indoor/outdoor soundscape
semantics etc.). Moreover, the recognition task is evaluated in time frames. In most real world cases of
Environmental Sound Recognition tasks, the duration of a soundscape is more than a few seconds.
Thus, time integration, which implements a voting scheme across multiple time frames, is expected to
improve accuracy results.

Table 6. Classification ratings (Accuracy).

LR ANN GLM

SFb 60.4% 69.8% 69.3%

STi 73.6% 75.2% 75.0%

ETi 74.8% 81.5% 80.4%

In Table 7, we also present the relative difference in performance between the 10 classes of the top
performing setup (ETi combined with ANN) in terms of precision and recall. The recognition rates are
acceptable for every class with relatively small variations.
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Table 7. Classification ratings per class (Precision & Recall).

Airplane Alarms Applause Birds Dogs m/Cycles Rain Rivers Sea Waves Thunders

Precision 84.8% 97.5% 79.6% 87.8% 83.4% 88.9% 73.0% 90.7% 75.6% 82.0%

Recall 76.7% 86.6% 93.4% 98.9% 79.1% 74.4% 78.0% 75.6% 74.9% 98.5%

In order to compare the performance of the proposed method against previously published
approaches, we performed an additional evaluation of our best performing setups (STi and ETi combined
with ANN with vector size of 75 features) on the UrbanSound8K dataset [28], which has been utilized by
several authors for similar classification purposes. This dataset contains 8732 labeled sound clips taken
from field recordings (8.75 h), divided into 10 environmental sound categories: air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street music.
The methods that are evaluated on the same dataset (without data augmentation) include a dictionary
learning approach (spherical k-means, SKM) presented in Reference [29] and two convolutional neural
network (CNN) methods (PiczakCNN and SB-CNN) presented in Reference [17,30]. Table 8 shows
the classification results of the previously mentioned methods. We can see that the proposed method
(ETi-ANN) delivers comparable performance to the state-of-the-art approaches, even though it requires
fewer computational resources than the more demanding deep learning methods. It is also evident that
the proposed metrics of the ETi method outperform the simple statistical metrics of the STi method.

Table 8. Classification accuracy comparison between the proposed methods ETi-ANN and other
methods on the dataset Urbansound8K.

ETi-ANN 72%

STi-ANN 69%

SKM 74%

PiczakCNN 73%

SB-CNN 73%

4. Conclusions and Future Work

A new method for temporal feature integration introducing a set of robust and lightweight
measures that supplement the common statistical measures is tested for its effectiveness in
environmental sound recognition tasks. The experiments are conducted on a publicly available
database of environmental sounds that the authors created. The evaluation methodology is described
in detail and the results reveal promising performance for the new metrics. The proposed method ETi
combined with the classifiers ANN or GLM results in more than 80% classification accuracy, which
significantly outperforms the framed-based approaches and the methods utilizing simple statistical
integration. Furthermore, a comparative evaluation against state-of-the-art algorithms and deep
learning methodologies was conducted on the dataset Urbansound8k, which reveals that the proposed
method achieves similar performance to more computationally expensive approaches. As far as the
applicability of the method in real-world scenarios and in the presence of computational constraints is
concerned, a trade-off between complexity and performance is intended. Therefore, the results of the
evaluation of the method against deep learning techniques are considered satisfactory and suggest
that the proposed method can be a good alternative for applications where computational efficiency is
a priority.

A future direction of the study could be an exhaustive comparison of all early and late integration
methods in order to highlight the best performing approaches or combinations of them. Lastly,
taking into consideration that the main objective of this research is to evaluate the advantages of time
integration against baseline feature extraction, a reasonable idea would be to further experiment with
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different baseline features (e.g., wavelets) [31], in order to investigate how they function within the
time integration approach. It would be of great interest on Indoor Soundscaping to adapt enhanced
temporal integration for aiding wavelet-based approaches that have been successfully applied for
utilizing multi-band-/scale and multi-resolution activity detection, accompanied with the extraction of
temporal, spectral, and cepstral features [32,33].
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