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Abstract: Understanding students’ acoustic evaluation in learning environments is crucial for identi-
fying acoustic issues, improving acoustic conditions, and enhancing academic performance. However,
predictive models are not specifically tailored to predict students’ acoustic evaluations, particularly
in educational settings. To bridge this gap, the present study conducted a field investigation in a
university library, including a measurement and questionnaire survey. Using the collected personal
information, room-related parameters, and sound pressure levels as input, six machine learning mod-
els (Support Vector Machine–Radial Basis Function (SVM (RBF)), Support Vector Machine–Sigmoid
(SVM (Sigmoid)), Gradient Boosting Machine (GBM), Logistic Regression (LR), Random Forest (RF),
and Naïve Bayes (NB)) were trained to predict students’ acoustic acceptance/satisfaction. The per-
formance of these models was evaluated using five metrics, allowing for a comparative analysis.
The results revealed that the models better predicted acoustic acceptance than acoustic satisfaction.
Notably, the RF and GBM models exhibited the highest performance, with accuracies of 0.87 and 0.84,
respectively, in predicting acoustic acceptance. Conversely, the SVM models performed poorly and
were not recommended for acoustic quality prediction. The findings of this study demonstrated the
feasibility of employing machine learning models to predict occupants’ acoustic evaluations, thereby
providing valuable insights for future acoustic assessments.

Keywords: acoustic evaluation; machine learning; prediction model; leaning environment; field
investigation; on-site measurement; questionnaire survey

1. Introduction
1.1. Importance of Acoustic Quality in Learning Environments

Acoustic quality plays a crucial role in creating an optimal learning environment.
It can significantly impact students’ health [1] and well-being [2]. High noise levels can
decrease students’ cortisol variability and result in stress, fatigue, and headaches [1,3].
Furthermore, long reverberation time also can hurt students’ well-being [4,5] and reduce
their happiness [6]. Long exposure to such environments may further affect students’
cognitive processing and epistemic motivation [7].

Moreover, acoustic comfort is closely related to students’ academic performance, par-
ticularly in relation to their listening comprehension [8]. Various studies have revealed that
different types of noise have detrimental effects on students’ listening comprehension, with
speech distractors having the greatest negative impact [9,10]. Notably, the impacts were
more obvious for non-native speakers and during higher-level comprehension tasks [10,11].
Additionally, noise also hampers students’ numeracy, reading, and writing abilities due to
its potential to disrupt attention control, thereby impeding cognitive processes necessary
for these tasks [12,13].

Considering the effectiveness of acoustic quality on students’ health, well-being, and
learning performance, ensuring a comfortable acoustic environment in learning spaces
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is paramount. To achieve this, the initial and primary step is to effectively evaluate the
acoustic quality in learning environments and identify areas that exhibit poor acoustic
conditions. Subsequently, targeted renovations can be implemented to improve the acoustic
quality in the identified areas.

1.2. Prediction of Acoustic Quality in Learning Environments

Acoustic measurement and evaluation are time-consuming and device-demanding,
especially the measurement of reverberation time and the questionnaire survey. Therefore,
many previous studies have only measured sound pressure level as the indicator of acoustic
quality [14,15], and several studies proposed regression models to evaluate occupants’
acoustic comfort only based on this indicator [16–18]. For example, Yang and Mak [17]
and Cao et al. [18] established linear regression models to predict occupants’ acoustic
satisfaction based on the A-weighted sound pressure level. Wong et al. [19] developed
a logistic regression model to quantify the impact of noise level on occupants’ acoustic
acceptance. Regression analysis, including linear and logistic regression, is renowned for
its simplicity and ease of comprehension. Nevertheless, it is important to acknowledge that
the accuracy of regression models may be limited due to their sensitivity to outliers and
influential points. Consequently, exploring and employing more advanced techniques to
mitigate these limitations is advisable to develop more accurate prediction models.

1.3. Application of Machine Learning for Prediction of Indoor Environment Quality

The development of machine learning techniques has revolutionized the prediction
of indoor environmental quality (IEQ). By leveraging large amounts of data and complex
algorithms, machine learning models can accurately predict the specific quality of the
investigated environments. Many studies have tested different algorithms predicting IEQ
in the past five years. However, most of these studies focused on thermal comfort and
indoor air quality (IAQ) [20–23]. For example, Luo et al. [22] established nine machine
learning models using the ASHRAE Global Thermal Database to predict occupants’ thermal
sensation votes. Wong et al. [20] employed nine classification models to assess indoor air
quality. All these studies demonstrated machine learning models’ ability to accurately
predict the quality of environmental factors.

Nonetheless, regarding the application of machine learning in acoustic-related pre-
diction, studies are relatively limited. Most of these studies focused on the acoustic quality
of vehicles, for example, the sound quality prediction in different types of cars [24], the
sound insulation evaluation in high-speed trains [25], and occupants’ acoustic comfort
prediction in buses [26]. Additionally, some studies utilized machine learning for acous-
tic prediction in buildings. For instance, Yeh and Tsay [27] used four machine learning
algorithms to predict acoustic-related indicators, such as sound pressure level and speech
transmission index in Multi-Functional Activity Centers, based on the geometric informa-
tion and material properties; Bonet-Solà et al. [28] employed convolutional neural network
(CNN) and logistic regression to evaluate the acoustic comfort of dwellings based on the
30 s video of acoustic events recorded onsite; and Puyana-Romero et al. [29,30] applied
different models to predict students’ acoustic satisfaction and online learning performance
at home. However, to the best of the authors’ knowledge, no study has yet applied the
machine learning algorithm to predict students’ acoustic comfort in educational buildings,
and no studies have compared how different algorithms and feature selection can influence
prediction accuracy.

1.4. Research Questions of the Current Study

Therefore, the primary objective of this study is to explore the feasibility of employing
machine learning techniques in predicting students’ acoustic evaluations within a university
library setting. Specifically, this study aims to address the following two research questions:

1. Which variables will likely influence students’ acoustic evaluations of a learning space?
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2. Which predictive models demonstrate the highest accuracy in forecasting students’
acoustic evaluations?

By answering these questions, it will be possible to identify an accurate model capable
of predicting students’ acoustic evaluations and, in turn, that can facilitate assessing and
enhancing acoustic quality in learning environments.

2. Materials and Methods

Figure 1 illustrates the overall process of this study. First, a field study was carried
out in a university library to collect data. Then, data analyses were conducted to select
potential predictors of students’ acoustic evaluations. Lastly, several machine learning
models were trained and compared to predict students’ acoustic assessment. Each step will
be explained in detail in the following subsections.
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Figure 1. Overall research flowchart.

2.1. Data Collection

The field study, including on-site measurement and questionnaire survey, took place
in four study rooms of a university library in Hong Kong for weekdays from 19 October to
1 November 2022. These rooms consisted of two group study rooms where students could
discuss their studies and two self-study rooms where students were required to keep silent.

Four EVQ SENSEs integrated IEQ sensors (Annecy Solutions Limited, Central, Hong
Kong) were utilized for the on-site measurement to measure the A-weighted sound pressure
level (SPL) every minute during the investigation period, specifically from 9:00 to 18:00 each
day (see Figure 2). Following the sampling process recommended by CIBSE (Chartered
Institution of Building Services Engineers) [31], the sensor was placed at the center of
each study room on top of a desk (1.1 m in height). Before this study, the four devices
were compared with a calibrated sound level meter—RS PRO DT-8852 (RS PRO, London,
UK)—in an office environment. No significant differences in sound pressure levels (SPLs)
were identified between the devices, indicating their validity.
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During the measurement, students studying in the investigated rooms for at least
30 min were randomly asked (maximum once) to participate in the questionnaire survey.
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Four researchers, each stationed in one room, were responsible for distributing and col-
lecting the questionnaires. The questionnaire comprised several parts; however, only the
personal and room information (i.e., gender, age, current feeling, seat location, and room
type) and the evaluation of acoustic quality were exported and analyzed in the present
paper. Regarding the question on current feelings (i.e., “How are you feeling now”), the
answers were Good/Neutral/Bad, coded as 1/0/−1; for the questions on seat location
(i.e., “Where do you sit in the room”), the answers were Middle/Others, coded as 1/0;
and for the question on acoustic evaluation (i.e., “How satisfied are you with this acoustic
environment”), a 7-point Likert scale was used, and the answers from totally dissatisfied to
neutral to totally satisfied were coded as −3 to 0 to 3. The room types were also recorded
by the researchers. The group study rooms were coded as 1 and the self-study rooms were
coded as 0.

Previous studies have treated the concept of “neutral” differently when evaluating
IEQ [32,33]. As indicated by Karmann et al. [34], different studies and standards adopted
different ranges of the 7-point scales (i.e., from neutral to very satisfied or from slightly
satisfied to very satisfied) as “satisfied” conditions, because of the different judgements
between satisfaction and acceptability. Since there is no unified method regarding the
satisfaction metrics, this study provided two ways to analyze this parameter: acoustic
satisfaction (exclude neutral) and acoustic acceptance (include neutral). Although the
terms “satisfaction” and “acceptance” have different definitions in the dictionary, they have
sometimes been used interchangeably in previous studies [35,36]. This variation in usage
often depends on the specific context and the authors’ interpretations. In the current study,
as shown in Figure 3, these two sets of terms were defined as follows:

• Acoustic Dissatisfaction: answers from “totally dissatisfied (−3)” to “neutral (0)”;
• Acoustic Satisfaction: answers from “slightly satisfied (1)” to “totally satisfied (3)”;
• Acoustic Unacceptance: answers from “totally dissatisfied (−3)” to “slightly dissatis-

fied (−1)”;
• Acoustic Acceptance: answers from “neutral (0)” to “totally satisfied (3)”.
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By providing these two ways of analyzing the satisfaction metric, this study aims to
offer a more comprehensive understanding of the relationship between acoustic conditions
and occupant satisfaction.

2.2. Data Analysis

The collected data were imported into IBM SPSS 26.0 for the primary analyses. First,
the data were cleaned by screening outliers identified by Z-scores of the SPLs. The cases
where the absolute values of the Z-scores exceeded three were excluded from the analysis.

After that, the 15 min A-weighted equivalent sound pressure level was calculated
based on the SPLs using Equation (1), as this is the most common environmental noise
descriptor [37].

LAeq = 10log10

(
1
n

n

∑
i=1

10
SPLi

10

)
(1)
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where n is the number of samples in the targeted interval, namely 15 min, and SPLi is ith
sampled SPL in dB(A). Also, LA90 and LA10 were calculated to represent the background
noise and the sporadic loud noise levels, as they defined the A-weighted sound level which
exceeded for 90% or 10% of the measurement period.

Then, the relationships between the acoustic acceptance/satisfaction and the variables
at the interval/ratio level (i.e., age and body mass index (BMI)) were checked by indepen-
dent t-tests; relationships between the SPL and the variables at the nominal/ordinal level
(i.e., room type, seat location, gender, and feeling) were checked by Chi-square tests. All the
variables that might potentially influence acoustic acceptance/satisfaction (p < 0.1) were
selected as the indicators in the machine learning models.

2.3. Machine Learning

The process of the model development and selection is shown in Figure 4. Before the
development of the models, the Synthetic Minority Over-sampling Technique (SMOTE)
was applied to address the imbalances in the predicted binary classifications. SMOTE is a
widely used over-sampling technique that generates synthetic samples for the minority
class by interpolating between existing minority class examples [38]. It efficiently deals with
imbalanced datasets [39,40]. The current study used SMOTE to generate new cases that
closely resemble the dataset’s acoustic unacceptance/dissatisfied cases. After this process,
the dataset expanded to 688 cases for the acoustic acceptance prediction and 466 cases for
the acoustic satisfaction prediction.

Acoustics 2024, 6, FOR PEER REVIEW  6 
 

 

 
Figure 4. Model development process. 

The training data and testing data were randomly selected at a distribution ratio of 
training data (80%) and testing data (20%). Based on previous studies in the field of IEQ, 
the following six ML techniques were applied in the current study to predict students’ 
acoustic acceptance/satisfaction in a library. 
•  Support Vector Machine–Radial Basis Function (SVM (RBF)): SVM (RBF) is a popular 

kernel-based classification algorithm that can handle non-linear and high-dimen-
sional data. The radial basis function (RBF) kernel is a common choice for SVM, 
which maps the data into a high-dimensional space using a Gaussian function. SVM 
(RBF) is relatively sensitive to model parameters [41]. 

• Support Vector Machine–Sigmoid (SVM (Sigmoid)). SVM (Sigmoid) is another vari-
ant of SVM, and it is also a powerful technique to handle non-linear data. Unlike the 
SVM (RBF), SVM (Sigmoid) uses the hyperbolic tangent function to map the data 
[41]. 

•  Gradient Boosting Machine (GBM): GBM is an ensemble technique that builds mod-
els sequentially, where each new model aims to improve the previous ones. It com-
bines the predictions of multiple weak learners (usually decision trees) to produce a 
strong model [42]. 

•  Logistic Regression (LR): LR is a statistical model used for binary classification based 
on one or more predictor variables. As indicated by its name, LR uses the logistic 
function to map data [43]. 

•  Random Forest (RF): RF is also an ensemble learning method that constructs multiple 
decision trees. However, unlike FBM, RF builds trees independently and relies on 
averaging prediction, leading to high robustness [44]. 

Figure 4. Model development process.

The training data and testing data were randomly selected at a distribution ratio of
training data (80%) and testing data (20%). Based on previous studies in the field of IEQ,
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the following six ML techniques were applied in the current study to predict students’
acoustic acceptance/satisfaction in a library.

• Support Vector Machine–Radial Basis Function (SVM (RBF)): SVM (RBF) is a popular
kernel-based classification algorithm that can handle non-linear and high-dimensional
data. The radial basis function (RBF) kernel is a common choice for SVM, which
maps the data into a high-dimensional space using a Gaussian function. SVM (RBF) is
relatively sensitive to model parameters [41].

• Support Vector Machine–Sigmoid (SVM (Sigmoid)). SVM (Sigmoid) is another variant
of SVM, and it is also a powerful technique to handle non-linear data. Unlike the SVM
(RBF), SVM (Sigmoid) uses the hyperbolic tangent function to map the data [41].

• Gradient Boosting Machine (GBM): GBM is an ensemble technique that builds models
sequentially, where each new model aims to improve the previous ones. It com-
bines the predictions of multiple weak learners (usually decision trees) to produce a
strong model [42].

• Logistic Regression (LR): LR is a statistical model used for binary classification based
on one or more predictor variables. As indicated by its name, LR uses the logistic
function to map data [43].

• Random Forest (RF): RF is also an ensemble learning method that constructs multiple
decision trees. However, unlike FBM, RF builds trees independently and relies on
averaging prediction, leading to high robustness [44].

• Naïve Bayes (NB): NB is a probabilistic classifier based on Bayes’ theorem. NB assumes
independence between predictors, which is efficient but might result in less accurate
outcomes [45].

Then, these models were applied to predict students’ acoustic acceptance/satisfaction
using the test data. The differences between the predicted and collected results were
used to calculate the models’ accuracies and evaluate their performance. According to the
evaluation metrics of these models, the optimal prediction model could be identified.

In terms of the evaluation metrics, five commonly used indicators were considered in
the current study: accuracy, sensitivity, precision, specificity, and F1 score. Accuracy repre-
sents the percentages of the correctly predicted cases in the tested dataset (see Equation (2),
where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives of the model’s predictions, respectively). Sensitivity, known as the true positive
rate, represents the proportion of correctly predicted positive cases among all the actual
positive cases (see Equation (3)); precision represents the percentage of correctly predicted
acceptance cases among all the cases that were predicted as acceptance (see Equation (4));
specificity, known as the true negative rate, represents the proportion of correctly predicted
negative cases among all the actual negative (see Equation (5)); F1 score represents the
combination of sensitivity and precision, and it is calculated as the harmonic mean of
sensitivity and precision (see Equation (6)). For all these indicators, higher values typically
indicate better performance of the models.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Speci f icity =
TN

TN + FP
(5)

F1 =
2 × Sensitivity × Precision

Sensitivity + Precision
(6)
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3. Results
3.1. Predictor Selection

In total, 404 questionnaires were collected in the field study, and six were excluded
because of the incompletion of the necessary questions (i.e., the acoustic perceptions).
Therefore, 398 questionnaires were considered valid and analyzed in the current study.

Table 1 shows the general information of the occupants’ personal information, room-
related indicators, and dose-related acoustic variables. According to the collected question-
naires, the proportions of females (48%) and males (52%) were relatively balanced; most
students felt good during the survey; their BMIs were generally within the healthy range
recommended by WHO; there were more students in the group-study rooms (57%) than in
the self-study rooms (43%); and about half of the students sat in the middle spots in the
investigated room.

Table 1. Relationships between the potential predictors and the acoustic acceptance/satisfaction.

Variables N = 398 Acoustic Acceptance Acoustic Satisfaction

Occupant-related indicators

Age 21.3 (3.5) t = −3.115 (p = 0.002) t = −2.224 (p = 0.027)

Gender
Female 190 (48%)

X2 = 3.324 (p = 0.068) X2 = 1.611 (p = 0.204)Male 208 (52%)

Feeling
Good 295 (74%)

X2 = 4.775 (p = 0.092) X2 = 9.831 (p = 0.007)Neutral 95 (24%)
Bad 8 (2%)

BMI 20.5 (2.6) t = −0.033 (p = 0.974) t = 3.142 (p = 0.002)

Room-related indicators

Room type Group 228 (57%)
X2 = 8.642 (p = 0.003) X2 = 0.269 (p = 0.604)Self 170 (43%)

Seat location
Middle 213 (54%)

X2 = 12.381 (p = 0.002) X2 = 2.055 (p = 0.358)Others 185 (46%)

Dose-related indicators

LAeq 50.1 (6.2) t = −1.033 (p = 0.302) t = −2.502 (p = 0.013)
LA90 49.1 (6.7) t = −0.806 (p = 0.421) t = −2.356 (p = 0.019)
LA10 51.1 (6.0) t = −1.038 (p = 0.304) t = −2.483 (p = 0.013)

Note: independent t-tests were conducted to check the impact of age, BMI, LAeq, LA10, and LA90 on students’
acoustic acceptance/satisfaction; Chi-square tests were conducted to check the impact of feeling, room type, and
seat location on students’ acoustic acceptance/satisfaction. p-values less than 0.1 were marked in bold.

In addition, the measurement results indicated that the average LAeq in these rooms
was 50.1 dB(A), the average LA10 was 51.1 dB(A), and the average LA90 was 49.1 dB(A).
It should be noted that the LA10 and LA90 were calculated every 15 min, which explains
why the difference between them was minimal. Considering the entire investigated period,
the LA10 was 56.5 dB(A), and the LA90 was 40.0 dB(A). The result indicates that the sound
pressure level (SPL) was lower than 40.0 dB(A) for 90% of the investigated period.

In order to select the factor for predicting students’ acoustic acceptance/satisfaction in
the investigated room, a series of t-tests and Chi-square tests were conducted, and results
are also shown in Table 1. The potential predictors of acoustic acceptance were age, gender,
feeling, room type, and seat location. Additionally, LAeq was selected as the representative
of the dose-related indicator, considering its relatively lower p-value among the three
acoustic indicators. Regarding acoustic satisfaction, its potential predictors include age,
feeling, BMI, and all the acoustic indicators. However, since LAeq, LA10, and LA90 were all
calculated based on SPL [46], only LAeq was selected (because of its relatively lower p-value)
to avoid the intercorrelations between the predictors.

Figure 5 illustrates students’ evaluations of the acoustic quality in the investigated
learning environment. As shown in this figure, the answers of 58% of occupants were
positive (1 to 3), 28% were neutral (0), and only 15% were negative (−1 to −3). Considering
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the large proportion of “neutral”, which cannot be ignored, and the inconsistent classi-
fication regarding the “neutral” choice in previous studies, as mentioned in Section 2.1,
this study applied two modes of analyzing this variable: acoustic satisfaction (1–3) and
acoustic acceptance (0–3). According to the data shown in Figure 4, 58% of occupants
were categorized under “acoustic satisfaction”, 42% under “dissatisfaction”, 85% “acoustic
acceptance”, and 15% “unacceptance”.
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3.2. Acoustic Acceptance Prediction

Figure 6 exhibits the predicted and collected acoustic acceptance in the test dataset.
Since the dataset expanded to 688 cases for the acoustic acceptance prediction after the over-
sampling, the test dataset included 138 cases, namely 20% of the whole dataset. Among
the six tested models, SVM (both Sigmoid and RBF) performed the worst (with less than
65% accuracy), followed by NB and LR (with around 75% accuracy), while GBM and RF
performed the best (with around 83% accuracy). In addition, according to the Chi-square
test results shown in Table 2, the results predicted by almost all these models (except for
SVM (Sigmoid)) were significantly correlated with the collected data (p < 0.05).

Regarding other evaluation indicators, as shown in Figure 7, the ranking among these
models was almost the same as the ranking of accuracy. Specifically, RF and GBM consis-
tently outperformed the others. They achieved high scores across all metrics—accuracy,
sensitivity, precision, specificity, and F1—indicating strong discrimination ability and a
good balance between precision and sensitivity. This comprehensive performance indi-
cates that RF and GBM are highly effective in correctly classifying positive and negative
instances, making them reliable choices for predictive students’ acoustic acceptance. The
NB and LR performed reasonably well. Both models exhibited relatively high accuracy
and demonstrated a balanced performance in terms of precision and sensitivity. NB and
LR showed moderate effectiveness in identifying true positive and true negative cases,
suggesting that they can still be valuable in practical applications where a simpler model
may be preferred for computational efficiency. In contrast, the two SVM models showed the
poorest performance, especially the one with the Sigmoid kernel, with the lowest scores for
all the evaluation indicators. This result indicates that the SVM (Sigmoid) model struggled
significantly with classification tasks, failing to effectively discriminate between acoustic
acceptance and unacceptance. The SVM (RBF) performed slightly better than the SVM
(Sigmoid) but still lagged behind the other models in terms of overall performance.
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Table 2. Correlations between the predicted and collected acoustic acceptance.

Models Collected
Predicted Accepted

N (%)
Unaccepted
n (%)

p *

SVM (Sigmoid) Accepted 52 (37.7%) 26 (18.8%)
0.199Unaccepted 46 (33.3%) 14 (10.1%)

SVM (RBF)
Accepted 53 (38.4%) 25 (18.1%)

<0.001Unaccepted 22 (15.9%) 38 (27.5%)

NB
Accepted 60 (43.5%) 18 (13.0%)

<0.001Unaccepted 16 (11.6%) 44 (31.9%)

LR
Accepted 63 (43.5%) 15 (10.9%)

<0.001Unaccepted 15 (10.9%) 45 (32.6%)

GBM
Accepted 67 (48.6%) 11 (8.0%)

<0.001Unaccepted 13 (9.4%) 47 (34.1%)

RF
Accepted 69 (50.0%) 9 (6.5%)

<0.001Unaccepted 14 (10.1%) 46 (33.3%)

Note: * p-values were obtained from the Chi-square tests, and p-values less than 0.05 were marked in bold.
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3.3. Acoustic Satisfaction Prediction

Regarding the prediction of students’ acoustic satisfaction, the accuracies of these
models (46–67%) were lower than those of the prediction of their acoustic acceptance (48–
83%), as shown in Figure 8. After the over-sampling by SMOTE, the dataset was expanded
to 466 cases for the acoustic satisfaction prediction, and thus the test dataset included 94
(20% × 466) cases. Among the six tested models, the SVM (Sigmoid) performed the worst
(with less than 50% accuracy) for the prediction of acoustic satisfaction, which was similar
to the acoustic acceptance prediction. Next were SVM (RBF) and LR (with around 55%
accuracy), while NB, GBM, and RF performed the best (with around 65% accuracy). In
addition, according to the Chi-square test results in Table 3, only the NB, GBM, and RF
predictions were significantly correlated with the collected data (p < 0.05).

Table 3. Correlations between the predicted and collected acoustic satisfaction.

Models Collected
Predicted

Satisfied n (%) Dissatisfied n (%) p *

SVM (Sigmoid) Satisfied 51 (54.3%) 0 (0%)
/Dissatisfied 43 (45.7%) 0 (0%)

SVM (RBF)
Satisfied 24 (25.5%) 19 (20.2%)

0.221Dissatisfied 22 (23.4%) 29 (30.9%)

NB
Satisfied 32 (34.0%) 11 (11.7%)

0.002Dissatisfied 22 (23.4%) 29 (30.9%)

LR
Satisfied 25 (26.6%) 18 (19.1%)

0.208Dissatisfied 23 (24.5%) 28 (29.8%)

GBM
Satisfied 28 (29.8%) 15 (16.0%)

0.001Dissatisfied 16 (17.0%) 35 (37.2%)

RF
Satisfied 30 (31.9%) 13 (13.8%)

<0.001Dissatisfied 18 (19.1%) 33 (35.1%)

Note: * p-values were obtained from Chi-square tests, and p-values less than 0.05 were marked in bold.

Regarding the evaluation of these models’ performance on acoustic satisfaction pre-
diction, Figure 9 illustrates the related evaluation. Most models demonstrated balanced
scores, except for SVM (Sigmoid). This model had a sensitivity of 1 and specificity of 0,
indicating a problem with its predictions, since it falsely predicted all the dissatisfied cases
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as satisfied and resulted in a complete lack of true negative predictions. Apart from that, all
the other models achieved relatively balanced scores for these evaluation metrics (0.5–0.7).
Moreover, these models’ performances were slightly different than their performance on
acoustic acceptance prediction. Specifically, RF, GBM, and NB performed on par with
each other, demonstrating the top performance. The NB and SVM (RBF) models showed
moderate performance with balanced scores across all the metrics. On the other hand, the
SVM (Sigmoid) model exhibited significant imbalances between sensitivity and specificity,
making it unsuitable for the acoustic satisfaction prediction.

1 
 

  
(a) SVM (Sigmoid) (b) SVM (RBF) 

  
(c) Naïve Bayes (d) Logistic Regression 

  
(e) Gradient Boosting Machine (f) Random Forest 

 
Figure 8. Acoustic satisfaction prediction accuracies of the tested models. Note: AS in the figures
represents acoustic satisfaction.
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4. Discussion
4.1. Parameters to Indicate Occupants’ Acoustic Evaluations

The current study focused on two target parameters, acoustic acceptance and acoustic
satisfaction, derived from students’ acoustic evaluations. Acoustic satisfaction encom-
passed options indicating varying satisfaction levels, while acoustic acceptance included
the satisfaction options and the additional “neutral” option, allowing for a broader response.
Approximately 30% of students selected “neutral” regarding their acoustic satisfaction in
the examined rooms. The classification and treatment of these neutral responses could
substantially influence the ultimate findings and conclusions of the study.

Based on the correlation analysis results shown in Table 1, it seems that acoustic
satisfaction exhibits stronger associations with dose-related acoustic indicators (i.e., LAeq,
LA10, and LA90), whereas acoustic acceptance demonstrates stronger relationships with
room-related indicators (i.e., room type and seat location). In addition, it is worth noting
that there were differences in the impact of BMI on these two parameters. Specifically, BMI
showed a significant correlation with students’ acoustic satisfaction rate: the average BMI
of students who were satisfied with the acoustic quality was 20.9, while it was 20.1 for
those who were not satisfied with the acoustic quality. However, BMI did not correlate with
students’ acoustic acceptance rate, as the average BMIs of accepting and non-accepting
students were 20.5. A one-way ANOVA test was conducted to explore further the re-
lationship between students’ BMI and their acoustic evaluations. The result indicated
a significant difference in BMI between the students with different acoustic evaluations
(F = 2.406, p = 0.027). As shown in Figure 10, the BMI of students who selected “0 (neutral)”
was significantly lower than that of other students. One possible underlying reason is
that students with lower BMI might have healthier behavior and better stress/emotion
management, potentially leading to neutral evaluation. More investigations on students’
lifestyle habits and demographic factors are needed to confirm this hypothesis.

Regarding the prediction of these two parameters, the average accuracy of the six
tested models for acoustic acceptance (0.72) was higher than for acoustic satisfaction (0.58).
The different sizes of the training datasets might cause this. Although the original datasets
were the same for the prediction of these two parameters, more cases were generated for
the prediction of acoustic acceptance to address the imbalances between the positive and
negative cases since the proportion of the binary classifications for acoustic acceptance
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was more unbalanced (85% vs. 15%) than for acoustic satisfaction (58% vs. 42%). A larger
training dataset might increase the prediction accuracy. As Ng et al. [47] found, increasing
the training data size significantly improved the prediction accuracy of machine learning
models. However, contrasting results were reported by Bailly et al. [48], who did not
identify any impact of dataset size on the model performance. Furthermore, Tsangaratos
and Ilia [49] conducted a study indicating that the impact of dataset size was only significant
for the LR model but not for the NB model.
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the box representing the 1st quartile (25th percentile) of the data; the top of the box representing the
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of the data. The “×” symbol inside the box represents the mean value of the data; the whiskers
outside the box represent the minimum and maximum values of the data; the points outside the
whiskers represent outliers.

The inconsistent results suggest that other factors might contribute to the different
prediction accuracies for these two parameters. One potential factor is the selection of input
variables. In the current study, nine variables were examined, but according to research
by Hamida [50], numerous other variables could potentially influence occupants’ acoustic
evaluations. These variables include heart rate, blood pressure, reverberation time, speech
transmission index, floor materials, room volumes, etc. The relatively poorer prediction for
acoustic satisfaction in the current study might be due to the insufficient features captured
by the selected input variables. Therefore, future studies should investigate more variables
influencing occupants’ acoustic satisfaction to understand the underlying factors better.

Based on the present study’s findings, it seems that acoustic acceptance is a more
appropriate parameter for evaluating acoustic quality in the learning environment for the
following two reasons. Firstly, the investigated machine learning models could provide
a more accurate prediction of students’ acoustic acceptance in the learning spaces com-
pared with acoustic satisfaction. Secondly, acoustic acceptance is more inclusive since it
includes “neutral” opinions. Consequently, this implies that the “unacceptance” cases were
relatively fewer but more significant and should be given more attention. Thus, utilizing
this parameter could assist researchers and managers in identifying the spaces with more
serious acoustic issues.

4.2. Comparison of Tested Machine Learning Models

Six machine learning models were trained and compared in the current study. Most of
them, i.e., RF, GBM, LR, and NB, achieved an accuracy rate exceeding 70% for predicting
acoustic acceptance and over 60% for acoustic satisfaction. The RF and GBM demonstrated



Acoustics 2024, 6 694

the most favorable performance. Similar findings were reported by Boudreault et al. [51]
and Luo et al. [22] in the context of modeling heat-health relationships and predicting
thermal sensation, respectively. Specifically, Boudreault et al. [51] compared nine machine
and deep learning models and found that RF and GBM outperformed other models in terms
of prediction of heat-related mortality; Luo et al. [22] compared nine machine learning
models regarding their performance in thermal sensation prediction and indicated that
RF performed the best among the tested models. Two reasons might contribute to the
outperformance of the GBM and RF models. Firstly, they can capture complex patterns
and interactions in the data due to their ensemble nature. They can combine multiple
weak learners to form a strong predictive model [52]. On the other hand, NB and LR
models are relatively similar, which might limit their ability to capture complex patterns.
Second, RF and GBM are more flexible and can handle diverse data distributions without
any assumptions. On the other hand, LR and NB models work based on specific data
distribution assumptions. To be precise, LR assumes a linear relationship between the
features and the log odds [53]; NB assumes that all the features are independent of each
other [53,54]. These assumptions simplify the models and increase the computational
efficiency, but they also might decrease the prediction accuracies.

In terms of the performance of the SVM models, both showed poor results for predict-
ing subjective acoustic evaluations, with SVM (Sigmoid) being particularly unsuitable. This
inadequate accuracy of SVM (Sigmoid) was also identified by Wong et al. [20] in their study
on predicting indoor air quality. However, in a comparison study among seven machine
learning models conducted by Osisanwo et al. [55], SVM was the most accurate model in
predicting diabetes. The different performances of SVM models might be related to the
complex relationships between the features and the target variables. The SVM (Sigmoid)
model is usually inappropriate for high-dimensional datasets [56].

Additionally, the lower accuracies observed in SVM models in the current study
might also be due to the hyperparameter selection, which could significantly influence
the model’s accuracy. In this study, only the default settings were tested, and no further
analysis was conducted to optimize the model hyperparameters, which might impact the
model’s performance. According to Wong et al. [20], modifying the hyperparameters of the
SVM (Sigmoid) model could enhance the accuracy from 0.4 to 0.8. Therefore, it is plausible
that a more thorough exploration and tuning of the hyperparameters could improve the
SVM models’ performance in predicting students’ acoustic evaluation.

4.3. Limitations and Future Studies

There are three noteworthy limitations in this study. The first limitation pertains to the
input variables and the hyperparameters used for the machine learning models. Although
the survey considered three groups of indicators (occupants-related, room-related, and
dose-related), only a few variables in each group were investigated, and only the default
settings were applied. Numerous other variables and the impact of the hyperparameters
warrant further exploration. Secondly, this study only compared six machine learning
models commonly used in previous studies on indoor environmental quality. Future
studies should consider exploring the performance of other models, such as deep learning,
in predicting students’ acoustic evaluations. Lastly, although this study considered rooms
of varying types and sizes, all were located within a single educational building. This
setting may limit the broader implications of the current results. Therefore, future studies
are encouraged to evaluate the performance of these models in other educational buildings
as well. Furthermore, to better serve a broader range of occupants, including students,
teachers, staff, and facility managers, in understanding the acoustic quality of their learning
and working spaces, an easy-to-use device or application could be developed based on the
machine learning model established in this study.
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5. Conclusions

This study examined the acoustic quality of four rooms in a university library, including
the collection of objective and subjective variables. A series of correlation analyses identified
variables associated with acoustic evaluation as predictors for students’ acoustic acceptance
(from neutral to totally satisfied) and acoustic satisfaction (from slightly satisfied to totally
satisfied). Using these predictors as inputs, six machine learning models, i.e., Support Vector
Machine–Radial Basis Function (SVM (RBF)), SVM (Sigmoid), Gradient Boosting Machine
(GBM), Logistic Regression (LR), Random Forest (RF), and Naïve Bayes (NB), were established
to predict students’ acoustic acceptance and acoustic satisfaction. By analyzing the results and
comparing the performance of these models, the following conclusions can be drawn:

1. Personal factors (e.g., age, gender, BMI, and current feeling) significantly impact stu-
dents’ acoustic evaluations. These personal factors should be considered as essential
variables in future acoustic investigations.

2. The combination of age, gender, feeling, room type, seat location, and LAeq was used
as input variables to predict acoustic acceptance, while the combination of age, feeling,
BMI, and LAeq was applied to predict acoustic satisfaction.

3. Acoustic acceptance is more tolerant than acoustic satisfaction, as 85% of students
accepted the acoustic quality in the investigated environment, while only 58% were
satisfied. Moreover, the prediction accuracy of acoustic acceptance (0.72) was higher
than that of acoustic satisfaction (0.58). Thus, it is recommended that future acoustic
investigations prioritize acoustic acceptance as the target parameter.

4. RF and GBM models best predicted both acoustic acceptance and acoustic satisfaction,
while SVM models performed the poorest, especially the SVM (Sigmoid).

This study demonstrated the feasibility of employing machine learning techniques to
predict occupants’ acoustic evaluations in learning environments. This approach should
be applied in future acoustic studies to avoid time-consuming and labor-intensive ques-
tionnaire surveys. However, given the limited variables and machine learning models
examined in this study, there might be a more accurate prediction model that needs to
be explored. Therefore, future research is suggested to conduct a broader investigation,
including a more comprehensive range of variables and models, to improve the accuracy of
forecasting students’ acoustic evaluations within the learning environment. Additionally,
exploration of different types of learning environments, such as classrooms and lecture
halls, is recommended to investigate the generalizability of these findings.
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