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Abstract: In this paper, we utilise optimization methods to determine a frequency-independent phase
shift such that two phase-shifted versions of a signal can be summed and the resulting amplitude
spectrum is unchanged. A phase difference between two signals is thus defined, which remains
constant for all frequencies within a given range. For the intended purpose of this study, we set the
frequency range to the audible human hearing range of 16 Hz–20 kHz. We found that a new 3-stage
filter method provides a variable phase shifter (i.e., ϕ = 0–360◦) without the need for additional
amplifiers. In addition, we present a new method that reduces the number of filters necessary,
improving both the accuracy and efficiency of current techniques.

Keywords: band filter; signal processing; sound transformation; phase shifter; time delayer;
frequency independence

1. Introduction

Phase shifters change the output phase angle of an input signal and are thus utilised
in many areas of electronics, instrumentation, and signal processing [1–6].

The most commonly used types of phase shifters are, in fact, time delayers, which
introduce a frequency-independent time delay. Depending on the intended application of
the phase shifter, it is important to consider how the amplitude response is affected. For
example, when controlling variable response angles in a spatially distributed microphone
array, microphone signals are combined and phase-shifted [7–10]. It is therefore important
that the phase shift is independent of the frequency, such that the amplitude response is
equal for all frequencies and the resulting amplitude spectrum of the signal is unchanged.
However, such frequency-independent phase shifters are more complex in their technical
design and have yet to be optimally developed. For example, a traditional phase shifter in
which the phase shift is changed manually can be used to achieve a frequency-independent
phase shift [1,11,12]. These methods can then be automated with the use of a programmable
variable resistor [13–18]. However, they are only operational either at single frequencies [16]
or specific frequency ranges, but at a lower accuracy [17]. They can also require multiple
stages [18].

For a frequency-independent phase shift of 90◦ (π/2 in radians), a comprehensive
analytical solution is given by the Hilbert Transform. The Hilbert Transform can be un-
derstood as first transforming into the frequency domain by applying a FFT and then
phase-shifting all positive frequency spectral components by −90◦ and all negative fre-
quency spectral components by +90◦. Then, by applying the inverse FFT, a time domain
phase-shifted spectrum is obtained where the amplitude spectrum is unchanged. However,
this solution is purely analytical, and no straightforward implementation exists analogously
in signal processing. Implementation is thus carried out by passing the signal through
various stages of filters, i.e., band-pass filters and all-pass filters. Various strategies for
implementation can be found that may differ greatly based on the intended application,
and each has their own limitations and drawbacks. For example, [18] implements the
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Hilbert transform via a two-stage filter and a five-stage filter. In both cases, a flat response
was achieved for a specific frequency range of ω = 55 Hz–2 kHz and a phase angle of
ϕ = 34◦, as well as for ω = 100 Hz–20 kHz, ϕ = −30◦, respectively. This approach works
well, but is costly in terms of implementation and only allows fixed phase shifts for a limited
frequency range. Another approach allows for a variable phase shift, i.e., ω = 16 Hz–20 kHz,
ϕ = 0–360◦, by implementing a Hilbert transform via a 2 × 3-stage filter and three addi-
tional amplifiers [10]. In this approach, the added functionality and range come at further
added computational costs.

It is evident that the current methods utilised to achieve frequency-independent phase
shifts require substantial complexity in the technical design and involve multiple filters,
thus limiting efficiency. In this paper, we utilise optimization methods to determine a
frequency-independent phase shift. We describe a three-stage filter that provides a variable
phase shifter, i.e., ϕ = 0–360◦, without the need for additional amplifiers. In addition, we
present a new method that reduces the number of filters necessary, improving on both the
accuracy and efficiency of current techniques.

2. Materials and Methods

An all-pass filter is a filter that introduces a phase shift while not affecting the ampli-
tude response of a signal. They are typically designed using operational amplifiers and
discrete resistors and capacitors. See Figure 1a for an example of a first-order all-pass filter
and Figure 1b for an example of a second-order all-pass filter. Note that both examples
are for a phase shift variation from −180◦ (at 0 Hz) to 0◦ (at higher frequencies), where, at
ω = 1/RC, the value of the phase shift is −90◦.
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Figure 1. Implementation of (a) a first-order and (b) a second-order all-pass filter.

These circuits are only operational at a single frequency, where each component is
chosen specifically for a phase shift at a given frequency. If we want to adapt such a system
to a phase shift for variable frequency, we have to make the circuit frequency-independent
using variable components, e.g., programmable resistors and capacitors; voltage control
resistors (VCR); and Junction-gate Field Effect Transistors (JFET). For an example, see
Figure 2.
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Figure 2. Implementation of a frequency-independent phase shifter.

An all-pass filter can also be implemented digitally; see Figure 3 for an example of a
digitally implemented (Figure 3a) first-order and (Figure 3b) second-order all-pass filter.
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Figure 3. Digital implementation of a (a) first-order and (b) second-order all-pass filter, where x[n]
is the input signal; y[n] is the output signal; v[n] is the difference equation; Z−1 is the signal in the
complex domain; and a, c, and d are parameters that control the break frequency, bandwidth, and
cutoff frequency.

We can then use an all-pass filter to achieve a band-stop filter where the frequency
range is determined by a centre frequency, ω0, and a bandwidth, BW, defined by the
Q-factor:

Q =
ω0

BW
. (1)

The band-stop filter is a combination of a low-pass filter and a high-pass filter with
identical cut-off frequencies, corresponding to ω0 above (see Figure 4).
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are the higher and lower cutoff frequencies, respectively.

A first-order all-pass band-stop filter can be used to achieve a signal with a uniform
amplitude response and a phase response ϕ as a function of frequency ω, expressed as

ϕ(ω) = −4·atan(ω/ω0) (2)

Note that the addition of the low-pass and high-pass filters results in a maximum
phase shift range of 360◦ (i.e., −4atan).

The second-order filter allows a variable bandwidth with a phase response by intro-
ducing the Q-factor as a new parameter:

ϕ(ω) = −4·atan[ (ω/ω0)
−Q

]
(3)

See Figure 5 for the resulting phase shifts for ω0 = 500 Hz and Q = 0.5–2.0.
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A combination of several such phase shifters can also be utilised. For example, one
can take a phase shifter (A) of three components:

ϕA(ω) = −4·atan
[
(ω/ω0,1,A)

−Q1,A
]
−4·atan

[
(ω/ω0,2,A)

−Q2,A
]

−4·atan
[
(ω/ω0,3,A)

−Q3,A
] (4)

with parameters

ω0,1,A = 16 Hz, ω0,2,A = 320 Hz, ω0,3,A = 6400 Hz,

and
Q1,A = Q2,A = Q3,A = 0.707
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and another phase shifter (B):

ϕB(ω) = −4·atan
[
(ω/ω0,1,B)

−Q1,B ]−4·atan[ (ω/ω0,2,B)
−Q2,B

]
−4·atan

[
(ω/ω0,3,B)

−Q3,B
]

,
(5)

with parameters

ω0,1,B = 35 Hz, ω0,2,B = 700 Hz, ω0,3,B = 14, 000 Hz,

and
Q1,B = Q2,B = Q3,B = 0.707,

and obtain the total phase shift as

ϕ(ω) = ϕA(ω)− ϕB(ω). (6)

The individual ϕA(ω) and ϕB(ω) phase shifts are shown in Figure 6.
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The difference in these phase shifts, ϕ(ω), is more or less constant in the 30 Hz to 6 kHz
range, but exhibits substantial variation even within that range. Outside that range, the
phase shift changes even more (see Figure 7).
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In the following section, we describe the optimization of such filters with one or more
stages, with parameters optimised numerically and analytically as well. The former method
usually yields more accurate results, while the latter helps in guiding the analysis and
obtaining a more detailed qualitative understanding.
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3. Results
3.1. Numerical Optimization of a Single-Stage Filter

To achieve a more constant phase shift as compared to the default version discussed
above, we can numerically optimise the parameters by minimising the deviation from a
constant ϕ(ω) = ϕ0, where ϕ0 is the desired phase shift. This can be achieved by defining
a penalty function and then finding its minimum as a function of the parameters. As
an example, we investigated ϕ(ω) with parameters optimised for ϕ0 = −π/2 when the
central frequencies are unmodified and only the Q-factor parameters are optimised. This
was achieved by utilising the ROOT Minuit2 framework (version 6.28), where a penalty
function χ2 was defined as the squared relative deviation of ϕ(ω) and ϕ0, integrated over
the relevant frequency range:

χ2 =
∫ ωmax

ωmin

(ΦA(ω)− Φ0)
2

Φ0
2 dω

The minimal deviation (i.e., the optimal χ2) in the range defined via ωmin = 1 Hz and
ωmax = 100 kHz was achieved with the following set of values:

Q1,A = 0.913, Q2,A = 0.721, Q3,A = 0.819

Q1,B = 0.807, Q2,B = 0.683, Q3.B = 0.802

As expected, a flatter, but still substantially oscillating ϕ(ω) was achieved compared to
the previous unoptimized case, as shown in Figure 8 (focused on the important frequency
range from 15 Hz to 16,000 Hz).
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In contrast to this, e.g., for ϕ0 = −0.259, an even flatter ϕ(ω) can be achieved (see
Figure 9) with

Q1,A = 0.0449, Q2,A = 0.172, Q3,A = 0.169,

Q1,B = 0.0638, Q2,B = 0.189, Q3.B = 0.131.

One may note, however, that the parameters listed above have huge uncertainties.
The uncertainty here means that the given parameter can be varied within an interval
corresponding to the uncertainty, and the resulting χ2 value, defined in terms of the
variance of the relative deviation from the desired constant phase shift, will change only by
up to one unit. Hence, an equally constant phase shift can be achieved with significantly
different parameters, but these need to be co-varied. Thus, it is clear that the parameters can
be varied in broad intervals to obtain a similar level of constantness of the phase shift. In
other words, one can fix some of the parameters to almost arbitrary values, and then fit just
the remaining ones. At the same time, a filter with fewer than three stages might be possible
if its parameters are optimised. This suggests that instead of numerical optimization, an
analytical calculation might also be feasible.
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3.2. Analytic Calculations for the Single Stage Filter

To analytically investigate the form utilised in the previous section, we set two single-
stage filters with the following frequency-dependent phase-shifts:

ϕ(ω) = −4·atan
[
(ω/ω0,A)

−Q
]
− 4·atan

[
(ω/ω0,B)

−Q
]

(7)

where the central frequencies are different, but the Q exponents are identical. Utilising a
series expansion technique, we found a good approximation of the above function in the
following form:

ϕ(ω) ≈ ϕA(δ) = ϕmin + D · δ2 (8)

with
δ = ln(

ω
√

ω0,Aω0,B
),

ϕmin = 4·atan
1
2

{
(

ω0,B

ω0,A
)
−Q

2 − (
ω0,A

ω0,B
)
−Q

2

}
,

and

D =
4(ω0,Aω0,B)

Q/2(ω0,B
Q − ω0,A

Q)Q2

ω0,A
2Q + ω0,B2Q + 2ω0,A

Qω0,BQ

This approximation reflects that the ϕ(ω) function above has an exact minimum, ϕmin
at ω = ωmin ≡ √

ω0,Aω0,B, while the second derivative is related to D, defined above. This
can be used to estimate the level of constantness of ϕ(ω) near the minimum: the smaller
the value of D, the more constant ϕ(ω) is within a given vicinity of ωmin.

3.3. Analytical Optimization for the Single-Stage Filter

To optimise ϕ(ω) in such a way that χ2, quantifying the difference of ϕ(ω) and ϕ0, is
minimised, we can define χ2 by the following integral:

∫ ωmax

ωmin

(Φ(ω)− Φ0)
2

Φ0
2 dω (9)

However, given the approximative shape (see Figure 8), this leads to a complex result.
We instead define χ2 via an integral on δ, defined in Equation (8), instead of ω:

χ2 =
∫ δmax

δmin

(ΦA(δ)− Φ0)
2

Φ0
2 dδ (10)

where
δmin/max = ln(

ωmin/max√
ω0,Aω0,B

).
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We find that χ2 can be readily expressed in terms of the integration range ωmin and
ωmax and the original parameters Q, ω0, A, and ω0, B (‘hidden’ in D and ϕmin), as:

χ2 =
3D2(δmax

5 − δmin
5)− 10D(δmax

3 − δmin
3)(Φ0 − Φmin)− 15(δmax − δmin)(Φ0 − Φmin)

2

Φ0
2 (11)

However, this expression is still complex, especially when D and ϕmin are substituted
back into it.

In addition, one may observe that there is no unique minimum of this χ2 even if one
of the variables is fixed (see Figure 10).
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Figure 10. Plots showing χ2 as (a) a function of ω0,A and ω0,B with Q = 0.09 and (b) a function of Q
and ω0,B with ω0,A= 3.5 Hz. The deep blue ‘valleys’ on both plots represent the set of minima.

These plots illustrate that there is no single strong minimum on the χ2 map; instead,
a valley of minima is present, and no single best set of parameters can be found. This
also implies that some combinations of the parameters represent weak modes of the χ2,
while other combinations represent strong modes, i.e., significant parameter combinations.
Further exploration into these parameter combinations is thus required.

3.4. Approximative Method for the Analytical Solution of the Single-Stage Filter

Instead of numerically minimising the above-defined χ2, we explore analytical possi-
bilities as well. Equation (8) introduces an approximate formula for ϕ(ω), expressed via
auxiliary variables δ, ϕmin, and D, which allows us to, both directly and analytically, explore
the deviation of ϕ(ω) from a given ϕ0. On the other hand, its average can be assessed easily
if the desired interval is logarithmically centred around δ = 0, i.e., ωmin ωmax= ω0,A ω0,B,
and hence, δmin = −δmax= ln

√
ωmin/ωmax. In this case, the average of ϕ(δ) (defined as

⟨ϕ⟩) can be set to be equal to the desired ϕ0, and this relation can be expressed as:

ϕ0 = ⟨ϕ⟩ = ϕmin +
D
3
(δmin

2 + δminδmax + δmax
2) = ϕmin +

D
3
· (ln

√
ωmin/ωmax)

2
(12)

Furthermore, the deviation from this average is determined by D, since the function
is quadratic in δ, and its second derivative in δ is 2D. We can quantify the non-flatness of
ϕ(ω) as the difference of ϕA(δ) and ϕmin at δmin (or equivalently at δmax). This difference
can be analytically expressed with ωmin and ωmax as:

∆ϕ = D · (ln
√

ωmax/ωmin)
2

(13)

Note that, because ωmin and ωmax are constants, the minimum ∆ϕ is achieved when D
is also minimal, and due to the squared logarithm, ωmin/ωmax is equivalent to its inverse
in this formula.
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Furthermore, the above-mentioned centring around δ = 0 allows us to declare two
auxiliary variables, ω0 and ξ, and express ω0,A and ω0,B in terms of them:

ω0 =
√

ωminωmax =
√

ω0,Aω0,B (14)

with
ω0,A =

1
ξ
· ω0,

ω0,B = ξ · ω0, i.e., ξ =

√
ω0,B

ω0,A
.

The quantities ϕmin, D and δ can therefore be expressed as

ϕmin = 4·atan
[

1
2

{
ξ−Q − ξQ

}]
(15)

D = 4Q2 ξQ − ξ−Q

2 + ξ2Q + ξ−2Q (16)

δ = ln
ω

ω0
(17)

Hence, the approximate formula becomes

ϕ(ω) ≈ 4·atan
[

1
2

{
ξ−Q − ξQ

}]
+ 4Q2 ξQ − ξ−Q

2 + ξ2Q + ξ−2Q · (ln ω

ω0
)

2
(18)

and the level of constantness is controlled by ∆ϕ, as defined above, and can now be
expressed as:

∆ϕ = 4Q2 ξQ − ξ−Q

2 + ξ2Q + ξ−2Q · (ln
√

ωmax

ωmin
)

2

= Q2 ξQ − ξ−Q

2 + ξ2Q + ξ−2Q · (ln ωmax

ωmin
)

2
. (19)

From these equations, it is apparent that there is no single optimal solution. Instead, a
sufficiently flat phase shift can be found along the constant values of D as a function of Q
and ξ, as shown in Figure 11 for Q ∈ [0.04, 0.10] and ξ ∈ [1, 100].
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It can be seen from Figure 11 that the range of minimal ∆ϕ is found when either Q or
ξ is very small (note that here, Q goes from 0.04 to 0.10 and ξ goes from 1 to 100), and the
actual minimum is at the edge of these boundaries and would be even smaller if Q or ξ
were smaller.

However, we first need to determine the average phase shift as a function of Q and ξ,
as the goal is not just a flat phase-shift (small ∆ϕ in general), so ϕ(ω) should also be centred
around a given ϕ0 value. This average is given in Equation (12) and can be expressed
utilising the expressions of Equations (15) and (16), as follows:

ϕ0 = 4·atan
[

1
2

{
ξ−Q − ξQ

}]
+

1
3

Q2 ξQ − ξ−Q

2 + ξ2Q + ξ−2Q · (ln ωmax

ωmin
)

2
. (20)

The above formula of Equation (20) is shown in Figure 12 for ωmax/ωmin = 1200 (true
if the range is, e.g., 15 Hz to 18 kHz) as a function of Q and ξ, similarly to Figure 11.
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To obtain a flat phase shift, a given line of constant ϕ0 is chosen on Figure 12, represent-
ing a set of (ξ, Q) points. The minimal deviation is then found based on the ∆ϕ map shown
in Figure 11. However, as already mentioned above, the optimal (ξ , Q) values are such
that one of them is extremely small and, therefore, not practically feasible. Thus, instead of
the smallest possible ∆ϕ, the smallest practically achievable ∆ϕ is found.

These steps require us to solve Equation (20), for example, for ξ and then ∆ϕ, as
expressed in Equation (19), resulting in the desired (ξ , Q) point. This is very easy to do
numerically, but less so analytically. Therefore, we explore numerical calculations.

3.5. Numerical Solution of the Approximative Case for the Single-Stage Filter

As mentioned above, to obtain the necessary (ξ, Q) points that result in ⟨ϕ(ω)⟩ = ϕ0,
we needed to solve Equation (20) in the case of a fixed ϕ0, for an arbitrary Q value. Given
[ωmin, ωmax] = [15 Hz, 20 kHz] as the optimization range, ξ values providing this solution
for Q ∈ [0.1, 0.5] and ϕ0 ∈ [5◦, 90◦] in the form of a ξ(Q) function are shown in Figure 13
(and the values are given in Appendix A).
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This gives us the required ξ value for any Q to have ⟨ϕ(ω)⟩ = ϕ0. It is immedi-
ately apparent that, for small Q values, the required ξ becomes very large. Recall that
ξ is used to calculate the central frequencies as ω0,A = ω0/ξ and ω0,B = ξω0, where
ω0 =

√
ωminωmax ≈ 548 Hz in this case. Hence, ξ above a few hundred leads to ω0,B

in the MHz range, and these ξ values are not feasible in a digital implementation, which
limits the possible Q range depending on ϕ0. For example, in the case of ϕ0 = −90◦, ξ
becomes unfeasibly high at Q = 0.1 or below, while for ϕ0 = −10◦, even Q = 0.1 yields
usable ξ values. Regardless of this, with the required ξ values given for any Q, we can
investigate the optimal Q.

Recall that the level of constantness is controlled by ∆ϕ, expressed in Equation (19),
and this can now be evaluated as a function of Q only (with the ξ(Q) value of the above
plot for the given Q). Let us also recall that ∆ϕ is the difference of ϕ(ω) from ϕmin at
ωmin and at ωmax, so it is more meaningful in this case to plot ∆ϕ/ϕ0, as this represents
the amplitude of the oscillations within the interval. Furthermore, recall that ∆ϕ is the
amplitude of ϕ(ω), so the average deviation from ϕ0 is lower than that.
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In Figure 14, for [ωmax, ωmin] = [15 Hz, 20 kHz], the relative amplitudes ∆ϕ/ϕ0 are
shown as a function of Q (utilizing the ξ(Q) shown in Figure 13) for various ϕ0 values.
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There is an approximate quadratic increase in the ∆ϕ/ϕ0 of Q, which is evident if one
plots the above data on a log–log plot. However, the important conclusion appears to be
that there is no single optimal Q, but the smaller the value of Q, the more constant ϕ(ω)
becomes. If we aim to have a maximum deviation of 5%, then we can choose Q values
up to 0.1, depending on ϕ0. So, although we can choose the value of Q, it is important
to note that the choice of Q determines the level of constantness. To obtain the desired
⟨ϕ(ω)⟩ = ϕ0, the ξ(Q) values need to be determined from Figure 13. We can therefore
select a given Q value and then calculate the required ξ(Q) values to obtain a mean equal
to ϕ0. This is shown for a few Q values in Figure 15.
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For example, in the case where ϕ0 = −90◦, a choice of Q = 0.1 requires that we use
ξ ≈ 61.3 (the exact value is known from the above detailed calculation), and this will
lead to an amplitude of ∆ϕ/ϕ0 ≈ 5%. To give more examples for ϕ0 = −90◦, in the case
of three concrete Q choices, one finds the following ξ values, corresponding to central
frequencies based on Equations (15) and (16) (with ω0 ≈ 548 Hz, as mentioned above) and
relative amplitudes:

Q = 0.05, ξ ≈ 3312, ω0,A ≈ 0.16 Hz, ω0,B ≈ 1814 kHz and ∆ϕ/ϕ0≈ 1.5%

Q = 0.10, ξ ≈ 61.3, ω0,A ≈ 8.93 Hz, ω0,B ≈ 33.58 kHz and ∆ϕ/ϕ0≈ 5.9%

Q = 0.15, ξ ≈ 16.7, ω0,A ≈ 32.8 Hz, ω0,B ≈ 9.158 kHz and ∆ϕ/ϕ0≈ 13.0%

These are illustrated in Figure 16, confirming our calculations. In particular, it is
important to note how the amplitude decreases with decreasing Q. This procedure can be
repeated with any Q value, and the above calculations show the obtained ω0,A and ω0,B
parameters and the resulting ϕ(ω) amplitude ∆ϕ/ϕ0.

It is important to keep in mind that the smaller the value of Q is, the larger ξ has to be,
but also the smaller ∆ϕ/ϕ0 becomes. Furthermore, the definition of ∆ϕ/ϕ0 corresponds to
the deviation of ϕ(ω) from its minimal value (reached when ω =

√
ωminωmax ) at the edges

of the [ωmin, ωmax] interval. The maximal deviation from ϕ0 is actually smaller than that.
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3.6. Numerical Solution for the Three-Stage Filter

As detailed above, the single-stage filter case around ϕ0 =−90◦ requires very small
Q values and very large ξ values and central frequencies. This motivates us to utilise
more stages. It turns out that a two-stage filter yields equivalent results to the single-stage
filter: the numerically optimal two-stage filter is obtained when the two central frequencies
coincide. If these central frequencies do not coincide, then one needs a third filter to ‘flatten
out’ the phase shift. Motivated by this, we try to solve the three-stage filter case, where:

ϕ(ω) = ϕ1(ω) + ϕ2(ω) + ϕ3(ω) (21)

Utilising the approximative formula of Equation (20) for each of the filters as follows

ϕi(ω) ≈ 4·atan
[

1
2

{
ξi
−Qi − ξi

Qi
}]

+ 4Q2
i

ξi
Qi − ξi

−Qi

2 + ξi
2Qi + ξi

−2Qi
· (ln ω

ω0i
)

2
(22)

leaves us with the following nine parameters: Q1, Q2, Q3, ξ1 , ξ2 , ξ3 and ω0,1, ω0,2, ω0,3. The
central frequencies ω0,A,i and ω0,B,i can be calculated similarly to Equations (15) and (16).

Further investigation of the amplitude of ϕ(ω) defined in Equation (21) reveals that
many of the parameters are highly correlated. To achieve a symmetric ϕ(ω) in the desired
frequency range, it can be empirically found that the optimal choice (in terms of the
simplicity of the formulas and symmetry of ϕ(ω)) is to set the following constraints
as follows:

Q3 = Q1, ξ3 = ξ1, ω0,2 = ω0,1
ξ2

ξ1
, ω0,3 = ω0,1ξ2

2.

This leaves us with five free parameters: Q1, Q2, ξ1, ξ2, ω0,1, which are still correlated.
Further empirical investigation of the level of constantness of ϕ(ω) finds that three of these
(Q1, ξ2, ω0,1) can be fixed to almost arbitrary values (i.e., these represent weak modes), as
long as the remaining two (Q2, ξ1, representing strong modes) are set appropriately. These
remaining two have to be set such that the desired ϕ(ω) ≈ ϕ0 is reached. When the original
formula of Equation (7) is utilised (not the above approximation of Equation (22)), the
optimal choice of parameters is as follows (with ϕ understood in radians):

Q1 = P1, Q2 = P2 · Φ0, ω0,1 = O1,

ξ1 = 1 + X1 · ϕ0 + X2 · ϕ2
0 − X3 · ϕ3

0, ξ2 = X4,

where:
P1 = 0.873, P2 = −0.06661, O1 = 10.668 Hz,

X1 = 0.00063792, X2 = 0.0023086, X3 = 0.0066800, X4 = 44.595
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The original central frequencies can thus be calculated from these parameters based
on Equations (15) and (16). Furthermore, we find that the best result can be achieved if
a small residual correction is applied, i.e., for Q2 and ξ1, a slightly modified ϕ0 value is
substituted. This correction can be expressed (with ϕ0 in radians) as:

ϕ
(corr)
0 = 0.0054919 · ϕ3

0 − 0.0030961 · ϕ2
0+0.98601 · ϕ0 − 0.00044568 (23)

With this choice, a relatively constant ϕ(ω) can be achieved for several ϕ0 values, as
illustrated in Figure 17. The absolute deviation from the desired ϕ0 value is also shown
in Figure 17. Clearly, deviations increase as ϕ0 increases, but they are always below 0.5◦.
Most probably, the parameter values and functions can be numerically optimised further if
required by the application.
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Values for the parameters Qi, ξi, ω0,i, as well as ω0,A,i and ω0,B,i, for several ϕ0 choices
are given in Appendix B. One may note here that ξ1 (and with that ξ3) is extremely close
to 1 for |ϕ0|< 20◦ . In fact, ξ1 is even slightly lower than 1, but this is a numerical artefact.
In fact, for these cases, it can be understood that ξ1 = ξ3 = 1. This also means that filters
number 1 and 3 are effectively cancelled, and only filter number 2 remains in use. At
this point, we can recall from the previous section that the single-stage filter was quite
effective for smaller absolute values of ϕ0. Here, it turns out that even with three filters, the
above-described, partly intuitive numerical optimization does cancel two of them. They
become important for |ϕ0| values above approximately 20◦, and especially near 90◦.

4. Discussion

We now have the optimal parameters for a single-stage and a three-stage filter as well,
so it is adequate to investigate their performances in terms of the constancy of the phase
shift. A comparison of the single-stage and three-stage filters for ϕ0 = −π/2 is shown in
Figure 18. Here, the single-stage filter parameters were calculated based on the previous
section, with Q = 0.1 and Q = 0.05, and the interpolator was used to find the correct value
for ξ (which is ξ = 61.31 in the former case, ξ = 3312 in the latter one) corresponding to
ω0,B of 33.6 kHz and 1.814 MHz, i.e., quite large values which are potentially unattainable
in a digital implementation. On the other hand, for the three-stage filter, central frequencies
are always <22 kHz. This underlines that, for ϕ0 = −π/2, the three-stage filter provides a
much better solution than the single-stage one.

The codes implementing the above are given in [19] and can be readily used to
implement the optimised three-stage filter.
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5. Conclusions

In this paper, we present a new, frequency-independent phase shift technique that
reduces the number of stages needed, and instead, we introduce the Q-factor as a variable
which can be adjusted accordingly for the desired outcome. The accuracy of the technique
presented here is dependent on both the frequency and the desired phase shift, with both
higher and lower frequencies giving less accurate results. We find a relatively simple
analytical formula for the single-stage filter, for which the optimal parameters are found
numerically for the range of desired phase shifts [0–90◦]. However, for the single-stage
filter to be adequately uniform, unfeasibly large central frequencies have to be utilised
for phase shifts above approximately 20◦. In order to overcome this, a three-stage filter is
introduced, and its optimal parameters are provided. In this case, the central frequencies
for each of the filters are always below 22 kHz, providing a feasible possibility to implement
a frequency-independent phase shift. We find that the three-stage filter is the best choice
and that the numerical solution is adequate.
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Appendix A

Table A1. The following table, corresponding to the Φ0 = −π/2 case, lists the ξ values for various Q
values obtained from Equation (15) and plotted on Figure 11. Values for other Φ0 mean phase shifts
with a finer binning in Q are available as a text file in [19].

Q ξ Q ξ Q ξ Q ξ Q ξ Q ξ

0.01 3.27·1017 0.11 42.868 0.21 8.2220 0.31 4.9613 0.41 4.1762 0.01 3.27·1017

0.02 5.79·108 0.12 31.865 0.22 7.6131 0.32 4.8259 0.42 4.1470 0.02 5.79·108

0.03 7.04·105 0.13 24.828 0.23 7.1045 0.33 4.7072 0.43 4.1238 0.03 7.04·105
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Table A1. Cont.

Q ξ Q ξ Q ξ Q ξ Q ξ Q ξ

0.04 24,664 0.14 20.075 0.24 6.6755 0.34 4.6033 0.44 4.1062 0.04 24,664

0.05 3312.5 0.15 16.720 0.25 6.3107 0.35 4.5126 0.45 4.0938 0.05 3312.5

0.06 871.16 0.16 14.267 0.26 5.9982 0.36 4.4334 0.46 4.0861 0.06 871.16

0.07 336.39 0.17 12.418 0.27 5.7289 0.37 4.3647 0.47 4.0828 0.07 336.39

0.08 165.13 0.18 10.990 0.28 5.4957 0.38 4.3055 0.48 4.0836 0.08 165.13

0.09 95.137 0.19 9.8635 0.29 5.2929 0.39 4.2548 0.49 4.0881 0.09 95.137

0.1 61.311 0.2 8.9592 0.3 5.1160 0.4 4.2119 0.5 4.0960 0.1 61.311

Appendix B

Table A2. The following table lists the numerically optimized parameters of the three-stage filter for
various Φ0 values. These parameters are also available as a text file in [19], along with values for
central frequencies ω0,A,i and ω0,A,i for i = 1, 2, 3, calculable from ω0,i and ξi based on Equation (13).

Φ0
Φ0

[rad] Φ(corr)
0 Q1 Q2 Q3 ξ1 ξ2 ξ3

ω0,1
[Hz]

ω0,2
[Hz]

ω0,3
[Hz]

−5◦ −0.08727 −0.08652 0.87347 0.00576 0.87347 1.0000 44.5951 1.0000 10.668 475.75 21,215

−10◦ −0.17453 −0.17266 0.87347 0.01150 0.87347 1.0000 44.5951 1.0000 10.668 475.74 21,215

−15◦ −0.26180 −0.25889 0.87347 0.01724 0.87347 1.0001 44.5951 1.0001 10.668 475.68 21,215

−20◦ −0.34907 −0.34524 0.87347 0.02300 0.87347 1.0003 44.5951 1.0003 10.668 475.57 21,215

−25◦ −0.43633 −0.43172 0.87347 0.02876 0.87347 1.0007 44.5951 1.0007 10.668 475.40 21,215

−30◦ −0.52360 −0.51836 0.87347 0.03453 0.87347 1.0012 44.5951 1.0013 10.668 475.14 21,215

−35◦ −0.61087 −0.60518 0.87347 0.04031 0.87347 1.0019 44.5951 1.0020 10.668 474.79 21,215

−40◦ −0.69813 −0.69219 0.87347 0.04610 0.87347 1.0029 44.5951 1.0030 10.668 474.34 21,215

−45◦ −0.78540 −0.77943 0.87347 0.05192 0.87347 1.0041 44.5951 1.0042 10.668 473.77 21,215

−50◦ −0.87267 −0.86691 0.87347 0.05774 0.87347 1.0055 44.5951 1.0056 10.668 473.07 21,215

−55◦ −0.95993 −0.95466 0.87347 0.06359 0.87347 1.0073 44.5951 1.0074 10.668 472.23 21,215

−60◦ −1.04720 −1.04270 0.87347 0.06945 0.87347 1.0094 44.5951 1.0095 10.668 471.24 21,215

−65◦ −1.13446 −1.13104 0.87347 0.07534 0.87347 1.0119 44.5951 1.0120 10.668 470.09 21,215

−70◦ −1.22173 −1.21972 0.87347 0.08124 0.87347 1.0148 44.5951 1.0148 10.668 468.78 21,215

−75◦ −1.30900 −1.30876 0.87347 0.08717 0.87347 1.0181 44.5951 1.0181 10.668 467.28 21,215

−80◦ −1.39626 −1.39816 0.87347 0.09313 0.87347 1.0219 44.5951 1.0218 10.668 465.59 21,215

−85◦ −1.48353 −1.48797 0.87347 0.09911 0.87347 1.0262 44.5951 1.0259 10.668 463.71 21,215

−90◦ −1.57080 −1.57820 0.87347 0.10512 0.87347 1.0310 44.5951 1.0306 10.668 461.62 21,215

−95◦ −1.65806 −1.66885 0.87347 0.11116 0.87347 1.0364 44.5951 1.0357 10.668 459.32 21,215
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