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Abstract: We are examining the behavior of resonance frequencies and their response to variations
of material parameters such as thicknesses, masses, and bulk velocities for certain Rayleigh–Lamb
acoustic modes in a multilayered structure. The treatment is based on recent explicit analytic
solutions that have allowed us to explore the entire parametric space using dimensionless ratios. This
exploration has revealed a complex parametric dependence of the phase velocities and their mass
loading response. Specifically, for the fundamental flexural modes in a bilayer, we have shown that
both quantities change in a strongly non-monotonic way with thickness, density, or bulk velocity
ratios. Even in the regime of thin coating, commonly encountered in acoustic sensing applications, we
have found important differences from previously known results, e.g., that response to loading may
switch its sign multiple times when the velocity of the deposited material is increased. We have also
discovered that the fundamental dilatational modes can be highly effective in stabilizing resonant
frequencies against even large variations of the thickness or mass of the exposed layer. This property
is demonstrated in an explicit form by the derived expression for the mass coefficient of frequency
for an arbitrary number of layers.

Keywords: layered structure; vibration spectrum; Rayleigh–Lamb waves; material parameters

1. Introduction

Due to the ubiquitous nature of acoustic vibrations and a direct dependence on
the properties of the propagation medium, ability to interact with other excitations and
need to keep a low attenuation rate, they demonstrate a broad diversity of applications
ranging from the macro- to nanoscale, showing classical or quantum behavior In the
commonly encountered bounded layered structures like thin films, membranes, plates,
etc., acoustic spectra are described by the waves of the Rayleigh–Lamb (RL) type [1–5]
and consist of an involved arrangement of frequency–wavenumber dispersion curves
ωn, p(q), where q is the in-plane wavenumber, n = 0, 1, 2, . . . is the band index and p is the
polarization. At long wavelengths, the curves terminate at finite cutoff values except for
a few fundamental branches, such as n = 0 and the gapless shear horizontal, flexural (F)
and dilatational (D) modes (we have dropped the p subscript). At shorter wavelengths,
most of the curves converge towards bulk shear and longitudinal velocities and some
evolve into evanescent surface or interface-guided modes, including the famous Rayleigh
surface acoustic waves. However, knowledge of the band structure is insufficient for
applications where one also needs to know the way it changes with various parameters. For
example, consider semiconductor or metal-insulator wafers with a thickness of a few dozen
nanometers that are the main components of electronic ultra-low power detectors or on-chip
microcoolers [6,7]. One of the key processes is the transfer of heat carried by electrons and
its dissipation by the RL phonon modes of the numerous dispersion branches, which in turn
depend on a set {ξm} of material and structural parameters, consisting of thicknesses hγ of
the layers γ = 1, 2, . . ., bulk shear sγ and longitudinal ℓγ velocities, elastic constants, mass
densities ργ, etc. [8,9]. The intensity of the electron–phonon heat transfer can be increased by
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an order of magnitude by reducing layer thicknesses; however, there exists a large variation
between specimens of different materials [10]. Because any particular set of parametric values
corresponds to just a single point in a multidimensional space, there exists a fundamental
and practical interest in finding more explicit dependence of the band structure on parametric
coordinates using analytic or semi-analytic results. For instance, in [11], it has been shown
that by increasing the number of layers with an alternating ratio of elastic constants, the
rearrangement of the band structure can result in the accumulation or depletion of the density
of states in a specified spectral region. This property is relevant for, e.g., thermal transport
and for tuning of electron–phonon and magneto-acoustic coupling in microelectronics and
spintronics [12,13]. On the other hand, many applications (e.g., in acoustic sensing) spotlight
the dependence of separate RL modes on external factors due to their effect on ξm [4,14].
This principle is implemented in many types of modern microsensors on the basis of thin
layer technologies measuring mass, temperature, pressure, humidity, gas concentration,
etc. [15–20]. The relative simplicity of the layered structure gives advantages in fabrication
and ensures low power consumption, excellent interfacing with electronics, compatibility
with wireless data transmission and the ability of passive (battery-less) operation in both
harsh and biological environments. Thus, such sensors using Rayleigh or Sezawa modes
are successfully used in industry, biology, chemistry and medicine [21–23]. Analyzing
the frequency response of RL cutoff modes are instrumental in the detection of defects
or determination of the degree of corrosion in nondestructive testing [24]. The effect of
mass loading on the frequency shift generated by metallic electrodes in film bulk acoustic
resonators are used in the operation of modern 5G technology pass band filters [25]; the
high-sensitivity resonators of this kind can detect masses down to femtograms [26].

Sensitivity, the key characteristic of such devices, is quantified by the shift of resonance
frequency in response to an external factor (e.g., temperature, T) and can be defined in the
form of the temperature coefficient of frequency (TCF):

TCF =
d ln ωn

dT
. (1)

Then, the relative variation of ωn or of the phase velocity Cn is driven by the temperature
dependence of ξm:

TCF(ξ) =
∂ ln ωn(ξm)

∂ξm

dξm

dT
=

∂C
C∂ξm

dξm

dT
− α. (2)

Here, α is the linear thermal expansion coefficient due to the elongation of the device in
the direction of wave propagation, i.e., it accounts for the change in the excited wavelength.
The derivatives of ξ are related to bulk thermal coefficients of, e.g., thickness, elastic constants,
sound velocities, etc. [27,28], and similar considerations apply to pressure, humidity or other
types of sensors. Therefore, to maximize the sensitivity, one needs to know the rate ∂ωn/∂ξm
at which the acoustic band structure changes with parameters. For some applications, on the
contrary, a reduced sensitivity is required to ensure the frequency stability of the resonance
mode against a change in, e.g., temperature, pressure or mass [29]. Respectively, the condition
∂ωn/∂ξm = 0 identifies surfaces of relative stability towards variations in parameters. On
the other hand, these surfaces are closely related to the monotonicity property of the ω − ξ
dependence, i.e., the existence of a one-to-one correspondence between parameters and
resonance frequencies, a basic characteristic of measurement and sensing devices. The non-
monotonic behavior is signaled by the presence of maxima or minima of the ωn(ξm) with the
condition that the second derivative does not switch its sign on the critical surface. These
critical surfaces are therefore of significant interest both for applications exploiting the stability
of the resonance frequencies and acoustic sensing, as higher values of ∂ωn/∂ξm and higher
sensitivities are achieved in the regions further away from the surfaces. For instance, a nearly
linear behavior of resonance frequencies with temperature, pressure or gas concentration
is reported for sufficiently large working intervals in high-performance acoustic sensors
based on Rayleigh, Sezawa and some Lamb waves [16,30–32]. The monotonic dependence
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on parameters has also been found in an analytical form by the perturbative calculation of
the mass loading sensitivity in a two- and three-layer isotropic composite plate [15,33,34].
In particular, for sensors based on SH, fundamental dilatational and flexural waves, the
sensitivity increases for thinner and lighter structures or with a higher contrast between
the velocities of the layers.For a single layer, monotonic thickness dependence of the whole
spectrum is well established, e.g., the phase velocities of the symmetric modes are decreasing
functions of H, as illustrated in the Figure 1 for an iron plate.

Figure 1. Phase velocities C of the symmetric Rayleigh–Lamb modes in an Fe plate (s = 3240 m/s,
ℓ = 5950 m/s) decrease with thickness H for a fixed wavenumber q. Here, Q = qH and Sn with
n = 0, 1, etc., are the corresponding branches of the spectrum.

For a bulk medium, parametric monotonicity can be understood by considering a
transverse (or longitudinal) wave traversing a sequence of layers with respective velocities
sγ (or ℓγ ). For the normal incidence, the effective velocity is determined by considering
the total propagation time [35]:

Ce f f =
H

∑γ=1 hγ/sγ
, (3)

where H = ∑γ=1 hγ is the total thickness. Such elementary consideration turns out to be
sufficiently reliable for estimating the crossover temperature of a thermal phonon gas from
bulk to the confined (or quasi-2D) regime, even for nanometrically thin multilayers [6]. Note
that the number of relevant independent parameters can be reduced by switching to scaled
quantities, e.g., taking γ = 1, 2 in Equation (3) gives Ce f f /s1 = (1 + δ)/[1 + δ/(s2/s1)],
with just two independent parameters, s2/s1 and δ = h2/h1. This illustrates the physically
transparent relation: Ce f f unconditionally increases with sγ as a faster material of any layer
means a faster overall propagation. Also, Ce f f either increases or decreases with a layer
thickness depending on the given set of values for the other parameters (see below).

Nevertheless, the above monotonicity property can not be generally true, even for the
spectrum of an isotropic traction-free plate, as recently demonstrated in [36]. One notable
implication of the aforementioned exceptions is that acoustic plate waves can propagate
with a higher speed in a slower medium (i.e., with a lower bulk velocity). The S1 modes
of the calculated band structure in the Figure 2 are an example of such an unconventional
parametric dependence that can be compared with the totally regular one in Figure 1. It
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should also be mentioned that due to the large dimensionality of the parametric space, the
frequency–wavenumber ω(q) spectrum is known to have a number of different anomalies
in this extended space, e.g., “diabolic” and exceptional crossing points, avoided crossing
(osculation or veering) points related to degeneracy of quasi-degeneracy of the spectral
surfaces [37–40]. The latter crossings have a conical character in the vicinity of such special
points that may well involve a non-monotonic variation of frequency with ξ [36,37]. The
non-monotonicity of ω versus q dependence is also associated with anomalous zero and
negative group velocity (ZNGV) modes [41–44], which have recently attracted special
interest due to negative refraction and its application in the design of metamaterials or
ultra-resolution acoustic lenses [45,46].

Figure 2. Phase velocities C of the lowest symmetric RL spectral branches in a traction-free plate
versus bulk shear velocity s (in units of longitudinal velocity ℓ) at a fixed dimensionless wavenumber,
Q = qH = 3. The S1 branch demonstrates a non-monotonic behavior.

However, non-monotonicity is not necessarily related to singularities or degeneracy
of spectral lines and may take place in a large area of the parametric space, as has been
known from calculations and experimental studies for particular materials and parameters of
multilayer structures [41,47]. The analytical solutions considered below allow us to obtain and
analyze explicit expressions for the response functions in the multidimensional parametric
space and reveal some general properties of the RL modes relevant to sensing applications.

2. Parametric Non-Monotonicity of the RL Spectrum

In the short wavelength limit, Q = qH ≫ 1, the spectrum becomes non-dispersive,
group and phase velocities coincide, dependence on total thickness H disappears and, by
analogy with bulk media, the monotonic parametric behavior can be expected. Indeed, this
is easily verified by the asymptotic approximation in [48,49] for the velocity of the Rayleigh
SAW in a single-layer plate. Its parametric derivatives are all strictly positive and only
vanish at ν ≃ −1. 3 or ν ≃ 0.86 outside the physical domain (where ν is Poisson’s ratio).
The sensitivity (1) is then found as:

TCFR =
∂s

s∂T
+ f (ν)

∂ν

∂T
− α, (4)
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with f (ν) ≃ 0.1 − 0.2 (the lengthy explicit expression is not shown for brevity). Theoretical
arguments show that the temperature dependence of bulk parameters in many solids is
dominantly linear in sufficiently large temperature or pressure intervals [27,28] so that,
according to (4), one can expect that values of the TCF or PCF (pressure coefficient of
frequency defined by analogy with (1)) for the Rayleigh mode remain nearly constant at
sufficiently short wavelengths. However, there are limited data on the measured tempera-
ture or pressure dependence of parameters such as s and ν in the literature, and it therefore
could be possible to use similar explicit expressions for different modes in obtaining such
complementary information.

In the opposite, long wavelength, limiting the fundamental dilatational mode appears
to be the physically closest generalization of the bulk waves in multilayers (3) to finite H
because of its linear frequency–wavenumber dispersion. Then, the general expression for
the velocity of the D− mode in a traction-free multilayer [11] can be expressed in a form
reduced to dimensionless scaled quantities:

CD(N)/V1 =

(
∑N

γ=1 ϱγδγσ2
γ

∑N
γ=1 ϱγδγ

)1/2

, (5)

where
ϱγ = ργ/ρ1, δγ = hγ/h1, σγ = Vγ/V1, (6)

N is the total number of layers, Vγ = 2sγ
√

1 − Jγ is the velocity of the fundamental
symmetric S0 Lamb mode in a single free plate γ and Jγ = (sγ/ℓγ)

2. Alternatively, related
parameters can be used, s =

√
µ/ρ, ℓ = 2

√
(λ + 2µ)/ρ, m = ρh, ν−1 = 2(λ + µ)/λ =

(1 − J)/(1/2 − J), where λ and µ are the Lamé elastic constants (the γ− index is omitted
for brevity wherever confusion can be avoided). By following the arguments in the above
discussion of bulk waves, we represent (5) in a suggestive form, revealing its similarity to
the parametric dependence in (3).

C2
D(N) =

∑N
γ=1 mγV2

γ

M
, (7)

where M = ∑N
γ=1 mγ is the total mass per unit area (mN exposed as top layer). Indeed, here

we have an additive or linear superposition of mass and “kinetic energy” contributions that
demonstrates a completely monotonic behavior of the D− mode in the multidimensional
parametric space. This form is convenient for the analysis of mass loading response, and
we readily obtain a generalization of the earlier result [15] to the sensitivity function of a
structure with an arbitrary number of layers:

MCFD(N, ξ) =
∂ ln CD

∂mN
=

∑N−1
γ=1 mγ

(
V2

N − V2
γ

)
2M ∑N

γ=1 mγV2
γ

. (8)

Importantly, the condition MCF = 0 does not involve the mass of the exposed layer,
and the equation explicitly demonstrates how one can achieve a perfect mass loading
stabilization effect for the dilatational wave in a multilayer. For a bilayer, this possibility is
irrelevant because it imposes an unrealistic condition that the two materials are of the same
velocity V1 = V2. However, for a larger number of layers, this restriction is not necessary,
and mass stabilization of the resonance frequency can be achieved by an appropriate
adjustment of the thickness or mass ratios for the layers other than γ = N. Similar to bulk
waves, the physical cause of such a cancellation is that in this way, effective velocities of
the sub-sets of N layers can become equal to each other, as follows from (7) and (8). For
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example, when N = 3, the condition MCF(N = 3) = 0 can be satisfied by choosing the
masses or thicknesses of the layers 1 and 2 in such a way that:

m2/m1 =
(

V2
1 − V2

3

)
/
(

V2
3 − V2

2

)
.

Note that when such a condition is fulfilled, ∂CD(N)/∂mN = 0, all of the higher order
derivatives in mN vanish as well. The above similarity with the bulk waves can be proven
further: if the effective velocity of a double layer CD(2) is the same as CD(N − 2), then it
also equals the velocity of the composite structure CD(N).

Similarly, TCF and other coefficients can be easily obtained from (7):

TCFD(N, ξ) =
1

MC2
D

N

∑
γ=1

mγV2
γ

(
∂sγ

sγ∂T
+

1
2(1 − ν)

∂ν

∂T

)
− α. (9)

In particular, the TCFD for a single layer (when D = S0, the symmetric Lamb mode) may
provide information complementary to (4) in finding the temperature coefficients of bulk
materials:

TCFS0 =
∂s

s∂T
+

∂ν

2(1 − ν)∂T
− α, (10)

as all the derivatives remain finite. It can be shown that the rest of the long wavelength
modes follow a qualitatively different, non-monotonic behavior in the parametric space.
Here, we focus on the example where the explicit solution has been found recently.

Let us consider the fundamental flexural wave (F), the lowest velocity branch of the
RL spectrum in a bilayered traction-free plate, γ = 1, 2, of total thickness H. The analytical
expression obtained in [50] allows us to consider this issue in the full parametric range and
extend the earlier perturbative results for the response functions to, e.g., finite masses and
thicknesses:

CF/CA0 =

√√√√(
1 − ϱ(δσ)2

)2
+ 4ϱδσ2(1 + δ)2

(1 + ϱδσ2)(1 + ϱδ)
. (11)

Here, CA0 = qh1s1
√
(1 − J1)/3 is the reference velocity of the fundamental A0 an-

tisymmetric mode corresponding to a single free plate, γ = 1 of thickness h1, so that
H = h1(1 + δ) (the layer index at δ2 has been dropped; henceforth, δ2 = δ). In Equation (11),
the dimensionality of the whole set of parameters ξ has been reduced to only three indepen-
dent variables, and the parametric response functions can be calculated in an explicit form.
The result for the mass loading sensitivity MCF = ∂ ln CF/∂m2 is given in Appendix A.
We also note that due to the known restriction on Poisson’s ratio, 0 ≤ ν ≤ /2, one of
the contributing quantities has a limited variation interval, 1/2 ≤ (1 − J2)/(1 − J1) ≤ 2.
Moreover, for most of commonly used solids, their values are close to unity, 0.8 ÷ 1.2, and
we therefore assume J1 = J2. Then, examination of the expression in Appendix A of the
first derivative with respect to the σ ratio (or, essentially, with respect to shear velocity
s2 if γ = 1 is fixed as a reference layer) shows that it never crosses zero and proves that
CF is strictly monotonic in this parameter. However, dependence of the flexural mode
on the thickness or mass ratios shows a rather different behavior. Note that if the mass
densities remain constant, then mass and thickness variations are equivalent dmγ = ργdhγ.
As discussed above, the essential properties of response functions can then be understood
by considering the surfaces of the vanishing parametric derivative MCF = 0, shown in
Figure 3. To represent the full interval of thickness ratios δ, it is convenient to switch to the
scaled variable, ε = h2/H = δ/(1 + δ).

First, it can be easily shown that expression (11) confirms the known result for the thin
coating limit δ → 0 (D1 in Reference [15]):

lim
h2→0

MCFF(N = 2, ξ) =
1

m1

(
3V2

2 /V2
1 − 1

)
. (12)



Acoustics 2024, 6 811

Figure 3. Solution of the MCF2(ξ) = ∂ ln CF/∂m2 = 0, vanishing sensitivity to mass loading of the
flexural mode in a bilayer, Equation (11). The surfaces separate parametric regions with different
signs of the response function MCF. Here, the complete set of parameters ξ = (ϱ, σ, ε) is represented
by the density, bulk velocity and thickness ratios, ε = h2/(h1 + h2). Color shades correspond to the
values of ε.

In Figure 3, the term in parentheses corresponds to the straight line in the base plane
h2 = 0. The regions separated by the colored surface in this three-dimensional graph corre-
spond to a monotonic behavior (constant sign of the derivative ∂CF/∂m2). If velocity of the
F-mode would change monotonically with the thickness of the added layer [33], then the
critical surface ∂CF/∂m2 = 0 in the figure should be strictly vertical, because the solution
of this equation would not depend on h2 or m2 (Table 1 in [15]), similar to the dilatational
mode discussed earlier. However, our expression leads to a different behavior and, instead,
we obtain a strongly curved and folded 3D surface when ε > 0. In Figures 4 and 5, a few
cross-sections of this surface are shown. These results demonstrate that the response function
∂CF/∂h2 can also have multiple extrema and change its sign several times as a function of
thickness, density and bulk velocity ratios. Surprisingly, these new extrema are found even
for the thin coating regime (ε < 0.1) in a large area of (ϱ, σ) values, and they are found away
from those described by the slanted surface that crosses the ε = 0 plane in Figure 3 (also seen
as the lowest curve in the Figure 5). This crossing corresponds to the known result in (12),
V2/V1 = 1/

√
3. Note that the obtained non-trivial behavior of the critical surface does not

reveal itself in a perturbative treatment. The slanted part of the surface can be approximated
by 3σ2 ≃ 1/(1+ 4δ(1− ϱ/6)) for ϱ < 6 and ε < 0.1 (as shown in Appendix A). Moreover, to
clarify whether these extrema correspond to maxima (minima) or to the inflection points of the
CF(h2), we also show in Figure 6 the critical surface of the second derivatives ∂2CF/∂h2

2 = 0.
From these figures, it can be concluded that the mass and thickness response of the F-mode
shows a strongly non-monotonic behavior for a broad range of material parameters at small
values of ε = h2/H, while at some larger values, there exists an area of enhanced stability
of the resonance frequencies (Figure 7). The reason becomes clear if one notices that when
both first and second parametric derivatives vanish at the intersection of gray and colored
surfaces, Figure 6, the frequency of the F-wave shows the weakest sensitivity to mass or
thickness variation. As soon as the thickness of the second layer becomes sufficiently large,
ε ≳ 0.3, the frequency varies monotonically with h2, and crossing the gray surface only
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signals a change in curvature in the parametric dependence. The exception belongs to the
case when the material of the second layer has a smaller bulk velocity, σ < 1/

√
3. Then,

the vanishing of the mass or thickness response can take place at any ratio δ = h2/h1.
However, as the second derivative in δ does not cross zero in this area (see Figure 6), the
phase velocity CF behaves in a strictly non-monotonic way, i.e., it has parametric maxima
and minima, Figure 8. For the domain limited by the conditions σ > 1/

√
3 and ϱ < 3, the

resonance frequency of the F-wave varies in a monotonic way in the full range of all of its
parameters and, respectively, shows a non-vanishing response to their variation.

Figure 4. Cross-section of the critical surface in Figure 3 at a fixed value of the density ratio, ϱ = 4.
The lowest line is the continuation of the known result, Equation (12), to finite thickness ratios
ε = h2/(h1 + h2).

Figure 5. Cross-section of the critical surface in Figure 3 at a fixed small value of the thickness ratio,
ε = 0.05. The lowest quasi-constant line perfectly reproduces the known result, Equation (12), while
the upper curve demonstrates the existence of an additional solution.
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Figure 6. The critical surface ∂CF/∂h2 = 0 of Figure 3 (colored) as compared with the surface
∂2CF/∂h2

2 = 0 (gray, half-transparent). Color shades correspond to the values of ε. Their crossing
takes place at intermediate values of the thickness ratio (ε = 0.1 − 0.3) and corresponds to materials
with an enhanced stability of the resonance frequencies towards mass loading. The rest of the critical
surface corresponds to maxima or minima in the thickness dependence of the resonance frequencies.
The associated behavior of the phase velocities is illustrated in the figures below.

Figure 7. Illustration of the enhanced stability of the resonance frequency region variation of the
phase velocity CF at a fixed value of mass density ratio, ϱ = 5. Color shades correspond to the values
of CF/CA0 . To be compared with the cross-section of Figure 6, explaining the stabilization criteria for
the resonance frequency of the flexural mode.
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Figure 8. Variation of the phase velocity CF at a fixed value of the bulk ratio, σ = 0.2. Color shades
correspond to the values of CF/CA0 . To be compared with the corresponding cross-section of Figure 6,
where ε = 0.4 corresponds to extrema of the MCF.

3. Discussion and Conclusions

We have analyzed the behavior of acoustic resonance frequencies and their response
to the variation of material parameters for certain Rayleigh–Lamb modes of multilayered
structures. Based on explicit analytic expressions, we have considered the entire parametric
space in terms of dimensionless ratios, allowing us to reveal some qualitatively new
features relevant to thin-membrane acoustic sensing applications. Thus, we have found
that the flexural wave’s mass loading sensitivity depends non-monotonically on thickness,
density, or bulk velocity ratios, even in the thin coating regime. We have identified the
regions of parametric space where one can expect enhanced or reduced sensitivity to mass
loading, with purely monotonic and predictable dependence on material parameters. We
have demonstrated that the dilatational mode in multilayers offers unique possibilities in
applications that require the stabilization of acoustic resonance frequencies with respect to
thickness or mass variation and have explained the physical nature of this property. We
have also discussed the possibility of using the analytic form of the obtained expressions in
exploring the dependence of material parameters on external factors (temperature, pressure,
humidity, etc.), which can stimulate further research.
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Appendix A

The response function MCF of the flexural mode, Equation (11), describes its velocity
variation in response to a small change of mass for the γ = 2 layer, dm2 = ρ2dh2, assuming
that only its thickness changes, e.g., at constant temperature. Then, in terms of the ratios
defined in the text, we have

MCF =
∂ ln CF

∂m2
=

∂ ln CF
ϱm1∂δ

,

resulting in a rather complex behavior described by the explicit form below

2ϱm1 × MCF ={
2σ6ρ4δ5 + σ4ρ3

(
3σ2 + 7

)
δ4 + 4σ2ρ2

(
3σ2 + 2

)
δ3 − 2σ2ρ

(
2σ2ρ2 − 3σ2ρ − 3ρ − 6

)
δ2

−2
(

ρσ2
)
(ρ − 6)δ + ρ

(
3σ2 − 1

)}
/
((

1 − ϱ(δσ)2
)2

+ 4ϱδσ2(1 + δ)2
)(

1 + ϱδσ2
)
(1 + ϱδ).

The vanishing of this coefficient defines the critical surface in the multiparametric
space discussed in the paper. The linear approximation at small δ = ε/(1 − ε) (the last two
terms in the numerator) following from the above expression corresponds to the slanted
quasi-flat surface in Figures 3 and 6. However, as discussed in the text, this approximation
quickly deteriorates already at ε < 0.05 (e.g., Figures 4 and 5) as the surface becomes
strongly curved, resulting in a non-monotonous behavior of the response function in the
parametric space {ε, σ, ρ}.

By contrast, velocity of the flexural mode is completely monotonic in the ratio σ
because its σ−derivative is finite for any choice of parameters:

∂ ln CF

∂σ2 ∼ δρ
(

δ4ρ2σ4 + 2δ3ρσ2 + 4δ2 + 6δ + 3
)

.
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