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Abstract: Nonlinear acoustic effects become prominent when acoustic waves propagate through an
orifice, particularly at higher pressure amplitudes, potentially generating vortex rings and transferring
acoustic energy into the flow. This study develops and validates a predictive theoretical model for
acoustic behaviour both within and outside an orifice under linear conditions. Using transfer
matrices, the model predicts the external acoustic field, while finite element numerical simulations
are employed to validate the theoretical predictions in the linear regime. The experimental setup
includes an impedance tube with a plate and orifice, supported by a custom-built system, where a
loudspeaker generates acoustic waves. A single microphone is used to measure acoustic particle
velocity and characterize the phenomenon, enabling the identification of the onset of nonlinearity. The
experimental data show good agreement with the linear theoretical predictions. This work represents
the first observation of nonlinear effects in a free-field environment within a semi-anechoic chamber,
eliminating reflections from external surfaces, and demonstrates the efficacy of a purely acoustic-
based system (speaker and two microphones) for evaluating speaker velocity and the resulting
velocity within the orifice.

Keywords: acoustic streaming; nonlinear resistance; synthetic jets

1. Introduction

Acoustic streaming is a phenomenon where acoustic energy is converted into steady
fluid flow due to the viscosity and inertia of the medium, resulting in dissipation during
sound wave propagation. This dissipation causes a pressure gradient along the direction of
wave propagation, which leads to mass flow. Various types of acoustic streaming have been
studied, including Rayleigh streaming (largely diffused in thermoacoustic devices) [1–3],
Eckert streaming [4], and Gedeon streaming [5–8]. Each of these phenomena arises from
different simplifications of the Navier–Stokes equations, making the underlying processes
complex to interpret. For instance, Rayleigh’s theory is limited to low-power sources and
slow-speed streaming, while higher-power sources introduce significant inertial effects [9].
A particularly relevant phenomenon in this context is synthetic jets (or Jet-Driven Stream-
ing), which occurs when an acoustic wave interacts with an orifice [10,11]. Synthetic jets
are created by the motion of a diaphragm, piston, or loudspeaker, generating vortex trains
without the need for mass flux from an external source. This characteristic differentiates
synthetic jets from conventional jets and has led to increased interest in their application
for aerodynamic flow control. Recent advancements highlight their potential for drag
reduction, lift enhancement, mixing augmentation, flow-induced noise suppression, and
propulsion systems for small vehicles, particularly in underwater environments [12–22].

Research in the field has provided valuable insights into acoustic behaviour in ducts
with orifice plates. Horner and Hu [23] explored higher-order mode propagation in ducts
using a hybrid decomposition approach to address complexities arising when wavelengths
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are comparable to the duct dimensions. Gaeta and Ahuja [24] investigated the effect
of non-circular orifice shapes on acoustic impedance, noting deviations from circular
orifices that impact resonant liner performance. Han et al. [25] used computational fluid
dynamics to derive nonlinear acoustic impedance of circular orifices, presenting fitting
formulas validated by experimental data. Komkin, Bykov, and Moskalenko [26] provided
measurements of jet parameters in nonlinear regimes, offering insights into variations in jet
velocity with distance from the orifice.

This study introduces a theoretical model to predict acoustic behaviour both within
and outside an orifice under linear conditions, utilizing transfer matrices. The model
is validated through extensive numerical simulations and experimental analysis. An
impedance tube with a plate and orifice, supported by a custom-built system, is used
for experiments. Acoustic waves are generated by a loudspeaker within the tube, and
particle velocity is measured using a single-microphone method to characterize the acoustic
phenomena. This setup allows for a detailed comparison of theoretical predictions with
experimental data and facilitates the identification of nonlinear behaviour. Notably, this
study provides the first observation of nonlinear effects in a free-field environment within
a semi-anechoic chamber, ensuring minimal influence from external reflections.

This paper is structured as follows: Section 2 presents the theoretical background,
including Ingård’s formulation for deriving critical velocities for the onset of nonlinear
phenomena. Section 3 describes the experimental setup, the modelling approach using
transfer matrices, and validation through finite element simulations. Section 4 discusses the
experimental results obtained in the semi-anechoic chamber. Finally, Section 5 concludes
the study with key findings and implications.

2. Theoretical Background

In 1950, Ingård [27] utilized standing waves in an acoustically driven circular tube to
induce an oscillating velocity field on a holed plate positioned near a pressure node. This
setup allowed him to observe the formation of jets from trains of vortex rings on both sides
of the orifice. Ingård’s experimental setup consisted of a steel plate with a circular orifice,
placed between two cylindrical sections of tubing with an interior diameter of 7.62 cm
(3 inches). These tubes were connected to an impedance tube of the same diameter. The
acoustic impedance of the orifice was determined using the conventional standing-wave
measurement technique within the tube. To visualize the streaming around the orifice,
smoke particles were introduced into the cylindrical section immediately following the
impedance tube. The study encompassed 25 orifices, varying in thickness from 0.5 mm to
20 mm and in diameter from 3.5 mm to 20 mm. The frequency range of the experiments
spanned from 100 Hz to 1000 Hz, with particle velocities through the orifice ranging from
a few centimeters per second to 700 cm/s. From these observations, Ingård developed
detailed phase diagrams that characterized the behaviour of the vortex-induced jets. The
phase diagrams reveal four distinct types of circulation based on sound amplitude and
frequency for a fixed orifice diameter and thickness. Figure 1a,b report the phase diagrams
for two orifices characterized by a thickness of 0.05 cm and a diameter of 0.5 cm and 1.0 cm,
respectively. It is worth noticing that at very low frequencies or minimal thicknesses,
the fluid behaviour can transition directly from Region 1 to Region 4. It is particularly
noteworthy that the ’eutectic point’ approaches the origin as the orifice diameter increases,
making direct transitions from Region 1 to Region 4 possible only for very small orifices,
specifically those with a radius much smaller than the viscous boundary layer, which
depends on the frequency. In Region 1, two centers of circulation are visible just outside
the edges of the orifice at very low sound intensities.

In Region 2, the outflow gradually disappears, and the inflow becomes pure as sound
intensity increases sufficiently. This type of flow generates very high stream velocities,
resulting in turbulence at the orifice edges.
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The turbulence marks the beginning of Region 3, characterized by an exchange of
particles between the streams on either side of the orifice. Pulsatory effects start to overlay
the streams but are not yet predominant. In Region 3, streaming occurs at higher inten-
sity levels, and pulsations become increasingly significant. When the intensity reaches
a sufficiently high level, a true pulsatory jet forms, causing complete turbulence within
the tube.

As the sound level continues to rise, a continuous jet emerges on one side of the orifice.
With further increases, the jet appears on the other side as well. When symmetry is achieved,
Region 4 is reached. Therefore, the device generating the vortex rings is essentially an
orifice. When a steady flow pass through the orifice, it experiences a pressure drop. Due to
flow separation and turbulence, this pressure loss is proportional to the kinetic energy in
the orifice u2

0/2, where u0 is the acoustic particle velocity in the orifice. The orifice acts as
an equivalent acoustic resistance for sound waves, leading to a quasi-static modulation of
speed and corresponding pressure loss when acoustic nonlinearity arises. To accurately
predict this phenomenon, the transition between linear and nonlinear acoustic conditions
needs to be identified. Ingård developed an empirical correlation for this purpose, defining
a critical velocity uc computed as follows [28]:

uc =

(
1 +

t
d

)√
8ων (1)

Here, ω = 2π f is the angular frequency of the sound wave; ν is the kinematic viscosity
[m2/s]. t and d are the thickness and the diameter of the orifice, respectively. Additional
considerations made by Ingård are reported in Appendix A.

Figure 1. Frequency Phase diagrams developed by Ingård [27] for an orifice with 0.05 cm thickness
and a diameter of (a) 0.5 cm and (b) 1.0 cm.

3. Materials and Methods

The following section introduces the innovative experimental setup designed to ob-
serve acoustic nonlinearities arising from propagation within a pore. A predictive theoreti-
cal model of the external acoustic field under linear conditions was then developed using
transfer matrices. Finite element numerical simulations were conducted to validate the
theoretical model in the linear regime. This approach allows for a comparison between the
experimental data and the linear theoretical predictions, enabling the identification of the
onset of nonlinear behaviour.
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3.1. Experimental Setup

The experimental setup consists of an impedance tube with a diameter of 100 mm and
a length of 410 mm (Figure 2). The sound pressure in the tube is generated by a loudspeaker
Hertz HV100 of 100 mm diameter and a max power of 100 W. At the end of the impedance
tube is a holed plate of 3 mm thickness with a diameter of 3 mm.The plate and flange are
made of 3 mm thick aluminium and are held together by 8 M4 stainless steel threaded
bars, as shown in Figure 3. Particular attention was given to ensuring that the orifice
maintained a sharp edge during the fabrication process, as this is a crucial parameter for
studying the onset of nonlinearities. The sharp discontinuity in the cross-section caused by
the orifice played a key role in triggering nonlinear acoustic effects, while a smooth-edged
orifice could introduce additional variables, such as an altered surface-to-fluid volume
ratio, potentially leading to uncontrolled nonlinear phenomena. For the measurements, the
tube was placed in a semi-anechoic chamber to avoid external interference and to replicate
free-field conditions (Figure 4).

Figure 2. Schematic representation of the experimental setup in a semi-anechoic chamber. The setup
includes a speaker emitting sound waves into a plane wave tube with a perforated plate at the end.
Two microphones are positioned within the setup: one for measuring the volume velocity of the
speaker and the other for detecting acoustic pressure at a specific point in the external field.

Figure 3. The flange and plate with the orifice.
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Figure 4. Experimental setup placed in the semi-anechoic chamber; microphone placed 45 cm from
the orifice.

The measurement system was based on a National Instruments ADC NI PXIe-1073,
Austin, TX, USA, Stati Uniti controlled by a LabView® VI, which commands the input
voltage of the MESA® Power Booster V11 amplifier that feeds the speaker. A precise
PCB Piezoelectronic® Model 377C20 condenser microphone, connected to the Microphone
Preamplifier Model 426E01, was used for the measurements. Before each test cycle, the
calibration of the ½-inch microphone was verified using a G.R.A.S. calibrator (114 dB @
1000 Hz). This procedure allowed for precise determination of the microphone’s sensitivity,
enabling accurate assessment of the acoustic pressure from the signal as picked up. The
speaker velocity was derived from the acoustic pressure measured in the speaker back
cavity [29,30]. Thanks to this method, the speaker volume velocity could be carried out
with the measurement of the acoustic pressure in the back cavity of the speaker (Figure 5).

Uspeaker =
−i2π f Vback pback

γPatm
, (2)

where Vback and pback are the volume of the speaker back cavity and the acoustic pressure
in the back cavity, respectively. γ and Patm are the specific heat ratio and the static pressure.
i =

√
−1 is the imaginary unit.

Figure 5. Loudspeaker setup including its back cavity and an internal microphone. The microphone
is positioned inside the back cavity to measure the acoustic pressure necessary for determining the
speaker’s velocity.
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3.2. The Transfer Matrix Method

The transfer matrix methodformulation implies the hypothesis of plain wave prop-
agation, so it is suitable to describe the acoustic linear behaviour inside the device if
the frequency remains under the frequency of the first transversal mode of the tube
( f < 0.25c0/RT , and c0 the sound speed). Therefore, the transfer matrix method links
the acoustic state variables, such as the acoustic pressure p and the acoustic volume velocity
U, between the inlet and outlet of a certain element of the domain where the fluid properties
are uniform, as in the following equation [31]:[

p
U

]
L
=

[
cos(kL) −i Zc

A sin(k̃L)
−i A

Zc
sin(kL) cos(kL)

][
p
U

]
0
. (3)

Here, L and A are the length and the cross-sectional area of the considered element, k
is the acoustic wavenumber, and Zc is the characteristic impedance of the medium. The
propagation within the tube can be considered inviscid and therefore lossless because the
tube radius RT is much larger than the thermal δκ and viscous δν boundary layers [32],
defined, respectively, as

δκ =

√
2κ

ωρ0
, (4)

δν =

√
2µ

ωρ0
. (5)

Here, κ, µ, and ρ0 are the thermal conductivity, the dynamic viscosity, and the static density
of the fluid, respectively (in this study, air at ambient pressure and temperature were used
as fluid media). Consequently, in the tube the acoustic wavenumber and the characteristic
impedance are equal to the ones in free air:

k = k0 =
ω

c0
, Zc = Z0 = ρ0c0. (6)

On the other hand, thermal and viscous losses are far from negligible inside the orifice.
Therefore, using Equivalent Gas modelling, the losses can be taken into account by using
appropriate complex quantities for the equivalent medium, such as the complex density

ρ̃ and bulk modulus K̃ (or the complex wavenumber k̃ = ω
√

ρ̃/K̃ and the complex

characteristic impedance Z̃c =
√

ρ̃K̃ ) [33]. In the case of circular pore geometry, they
can be written as

ρ̃ = ρ0

[
1 − 2J1[(i − 1)RP/δν]

J0[(i − 1)RP/δν](i − 1)RP/δν

]−1

, (7)

K̃ = γp0

[
1 + (γ − 1)

2J1[(i − 1)RP/δκ ]

J0[(i − 1)RP/δκ ](i − 1)RP/δκ

]−1

, (8)

where J1 and J0 are the Bessel function of first and zero order, respectively.
Furthermore, due to the section discontinuity between the tube and the hole (RT ≫ RP),

an end correction matrix between the tube and the hole matrix has to be added,[
p
U

]
o
=

[
cos(k̃∆l) −i Z̃c

AP
sin(k̃∆l)

−i AP
Z̃c

sin(k̃∆l) cos(k̃∆l)

][
p
U

]
i
, (9)
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with ∆l = 0.82
[

1 − 1.35 RP
RT

+ 0.31
(

RP
RT

)3
]

RP and AP = πR2
P. Therefore, the Total Transfer

Matrix is evaluated as follows:

TTOT = TT · TEC · TP. (10)

Here, TT , TEC, and TP are the transfer matrix of the tube, end correction, and the orifice, as
seen, respectively, in Equations (3) and (9). Furthermore, at the outlet section of the hole,
the Radiation Impedance Zrad = p/U can be assessed though the Levine and Schwinger
relation [10]

Zrad =
Z0

AP

[
1
4
(kRP)

2 + ikδ0

]
, (11)

where δ0 = 0.6133RP. Therefore, this setup is characterized by two boundary conditions
(the origin of the reference system is fixed to the representative surface of the acoustic
source as in Figure 6):

• U(x = 0) = US, where US is the acoustic volume velocity fixed by the acoustic source
(i.e., the loudspeaker);

•
p
U

∣∣∣∣∣
x=LT+LP

= Zrad, due to Radiation Impedance, which fixes the values of the ratio

between the acoustic pressure and volume velocity at the outlet section of the hole.

This latter condition allows one to assess the acoustic pressure ps = p(x = 0) at the
beginning section of the tube as follows:

ps = Us
TTOT,22Zrad − TTOT,12

TTOT,11 − TTOT,21Zrad
, (12)

TTOT,ij are the elements of the Total Transfer Matrix, Equation (10). Once the acoustic fields
at the outlet section of the hole pP, UP are known, it is possible to compute the acoustic
pressure in the external domain using the Radiating Piston Model. When kr ≪ 1, it can be
proved that the Radiating Piston Model reduces itself to a simple monopole source [34].
More details of the mathematical derivation are reported in Appendix B. Therefore, in this
case the sound field outside the orifice can be assessed by applying the follow formulation:

p(r) = iωρ0
UP
4πr

e−ikr, (13)

where r is the distance between the orifice and the field point. To ensure the reliability of
the theoretical model, numerical simulations of the same device were carried out.

Figure 6. Computational Domain: in light blue, the lossless region, in red the thermoviscous region
corresponding to the orifice and its inlet and outlet near region (zoomed section on the left), in light
orange the Perfectly Matched Layer non-reflecting domain.
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3.3. Numerical Simulations

The numerical simulations were conducted using a finite element method to verify
and validate the theoretical model developed based on the transfer matrix method. These
simulations solve the wave equation in a coupled manner (neglecting thermal and viscous
dissipative effects) within the fluid domain, which includes the tube and the external
volume outside the hole, alongside the linearized Navier–Stokes equations within the fluid
domain of the pore where thermoviscous losses are considered non-negligible (in Figure 6,
the blue and the red domain, respectively). The axial symmetry of the problem was
exploited to scale the geometry into a 2D axisymmetric model, significantly reducing the
number of mesh elements and, consequently, the number of degrees of freedom (DoFs) to be
solved compared to a 3D model [35,36]. At the boundary of the external domain, sufficiently
far from the outlet hole (approximately 20 times the tube radius, R ≈ 20RT), a domain layer
known as a Perfectly Matched Layer (PML) was implemented. This absorbing domain
approximates the condition of the free field outside the hole, preventing any contribution
from reflections of potential confining walls of the global domain.

In meshing the fluid domain, particular attention was given to the orifice zone, where
the thermoviscous losses cannot be neglected. In this region, a mesh refinement near the
wall to catch the boundary layer was applied. It consists of 20 layers of thickness based
on 1/10 times the viscous boundary layer thickness δν, as reported in Figure 7. Mesh
parameters for thermoviscous physics have been thoroughly explored and validated in the
literature, as highlighted by Zielinski et al. [36].

Figure 7. Mesh used in the numerical simulations. On the left, the refined grid of the narrow region
of the orifice is highlighted.

At the boundary where the acoustic source is located, the boundary condition was set
to an acoustic volume velocity with a unit value. In Figure 8, the colormap of the acoustic
pressure and acoustic velocity are reported for an operating frequency of 400 Hz. From the
analyses of the velocity field near the wall region of the orifice, we can highlight the region
of greatest viscous stress for the fluid which will be responsible for triggering the nonlinear
phenomena (Figure 8, left). Meanwhile, the right panel of Figure 8 highlights the spherical
shape of the acoustic pressure field, providing a clear indication of monopole-like radiation
outside the hole. This behaviour becomes more pronounced at lower frequencies.

Figures 9 and 10 report a comparison of the sound pressure outside the orifice in more
than one point of the external domain placed on a different angle and radius. One can also
note a perfect spherical wave shape (Figure 9). The theoretical–numerical agreement is also
evident in the spreading of a spherical wave with distance r, which follows the well-known
1/r decay law, as in Figure 10. These results prove that the assumption of a point monopole
made above well suits the problem without suffering losses in accuracy.
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Figure 11 highlights the differences between theoretical and numerical trends for the
Sound Pressure Level evaluated in dB (Lp = 20log p

prif
, with prif = 20µ Pa) whereby the

theoretical model was developed and validated. This is especially important because it
allows us to predict the linear behaviour of the acoustic fields through an orifice, and, as a
consequence, to verify when the linearity no longer maintained.

Figure 8. On the (left), the colormap of the acoustic velocity near the orifice region. On the (right),
the colormap of the acoustic pressure all over the fluid domain.

Figure 9. Comparison between numerical simulations and the Transfer Matrix Approach reported in
terms of polar plot of the acoustic pressure at a distance of 1 m from the orifice.
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Figure 10. Comparison between numerical simulations and the Transfer Matrix Approach reported
in terms of acoustic pressure for the same angle (90◦) at different distances from the orifice.

Figure 11. Comparison between numerical simulations and the Transfer Matrix Approach reported
in terms of Sound Pressure Level (1 m, 90◦) against the frequency axis.
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4. Results and Discussion

The experimental campaign began by setting the frequency to the resonance fre-
quency of the speaker’s back cavity (189 Hz) to maximize the volume velocity output. In
Appendix C, the procedure to assess the resonance frequency is reported. Subsequently,
additional tests were conducted at 100 Hz to demonstrate the effective functionality of
the model. The amplifier gain was then adjusted to enable the speaker to output a pure
tone at the set operating frequency, varying between 0.1 and 54 mV. The two microphones
detected the pressure within the speaker cavity, allowing the volume velocity and the
acoustic pressure in the external field to be determined, as shown in Equation (2). The
latter measurement was crucial for analyzing and observing nonlinear phenomena induced
by the interaction between the increasingly intense acoustic field (as the amplifier gain
increased) and the narrow region created by the presence of the hole. In the first cycle of
the test, the pressure in the back cavity was measured to check if nonlinear effects related
to the speaker (such as possible distortion) occur when the pressure amplitude increases.
As reported in Figure 12, a perfect linear behaviour of the speaker with the supply voltage
was found. The high level of acoustic pressure achieved is justified by the fact that the back
cavity of the speaker is characterized by a volume of V = 6.65 × 10−4 m3. Therefore, impor-
tant considerations can be made looking to the graph in Figure 13. Here, the experimental
acoustic pressure is reported against the acoustic particle velocity uP = UP/AP. This latter
parameter was assessed through the Transfer Matrix Approach once the boundary condi-
tions of the system were known (Uspeaker, Zrad). This parameter serves as a reference for
assessing the onset of nonlinear phenomena. As highlighted by Ingård, when the velocity
within the hole becomes significantly higher (up ≈ 25uc), nonlinear effects begin to play
a substantial role. The aim of this work has been to develop a setup that allows for the
experimental evaluation of the speaker velocity and the resulting velocity within the hole
using a completely acoustic-based system (a speaker and two microphones, without PIV
or other instruments). Additionally, nonlinearities are observed here for the first time in
a free-field environment within a semi-anechoic chamber, thus eliminating the influence
of reflections from external surfaces. As demonstrated in numerical simulations, it is also
possible to rule out the contribution of reflections from the metal plate surrounding the
hole, since the predicted acoustic field exhibits a monopole distribution, supporting the
validity of this assumption. As it can be seen from Figure 13, good agreement was found
between experimental data and the prediction in the linear regime. Furthermore, Ingård’s
formulation of the velocity threshold, Equation (2), was verified through the experiments
for both the selected frequencies, 100 Hz and 189 Hz. The measurements were repeated
four times for each frequency, allowing the experimental data to be represented with error
plots that account for both the mean and the standard deviation of the four measurements.
Notably, in the nonlinear regime, the data dispersion shows greater deviation. This in-
creased variability is attributed to the high sensitivity to fluid dynamic conditions, such as
local vortex formation and unidirectional flow, which can vary stochastically. In contrast,
in the linear regime, where no phenomena alter the wave propagation in the free field, the
data dispersion is considerably more controlled, as expected. Therefore, the discrepancy
between the theoretical model and the experimental results in the nonlinear regime can
provide an indication of the acoustic energy that is partially converted into rotational ki-
netic energy, forming vortices exiting the orifice and partially entering translational kinetic
energy associated with the flow velocity, which will be referred to as a synthetic jet.
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Figure 12. Experimental acoustic pressure in the speaker back cavity against the Voltage Gain.

Figure 13. Error plot showing the mean and standard deviation of measurements repeated four times
for each frequency. The experimental results report the acoustic pressure against the acoustic velocity
in the orifice.

5. Conclusions

In this study, a comprehensive theoretical model to predict the acoustic behaviour both
within and outside an orifice under linear conditions was developed. By integrating numer-
ical simulations and experimental analysis, the model effectively characterizes the complex
interactions of synthetic jets, specifically the nonlinear acoustic effects generated when
sound waves traverse an orifice. The experimental setup, which included an impedance
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tube with a plate and orifice, allowed for precise measurements using a single-microphone
acoustic method. This setup validated the theoretical model and demonstrated a strong
correlation between the predicted and observed data in linear regime. The ability to predict
wave velocity and the onset of nonlinear phenomena using Ingård’s formulation further
strengthens the model’s robustness. Future work could explore the impact of different
orifice geometries and varying acoustic source conditions to further refine the model. Ad-
ditionally, investigating the integration of synthetic jets into more complex systems could
provide valuable insights into their broader applicability and efficiency. In conclusion, this
study provides a robust framework for observing, characterizing nonlinear acoustic effects
in orifices, and predicting the onset conditions.
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Appendix A. Ingård’s Considerations on Critical Velocity in Acoustic Orifices

The critical velocity equation, given by Equation (2), can be derived from Ingard’s
assumption that, at high amplitudes, the Sound Pressure Level and the volume velocity in
the orifice are approximately [28]

p ≈ ρ0u2
0, (A1)

with a corresponding orifice resistance:

R ≈ ρ0u0. (A2)

This relationship is based on Bernoulli’s Law and the assumption that the sound pressure
in the orifice is a fraction of the sound pressure p1 in the cavity. Thus,

(1 − q)p1 =
ρu2

0
2

(1 − σ2), (A3)

where σ = AP
AT

and q = 1
2 since the pressure in the orifice will be nearly the average of the

sound pressure on both sides of the orifice. This yields

p1 ≈ ρ0u2
0(1 − σ2), (A4)

and

R =
p1

u0
≈ ρ0u0(1 − σ2). (A5)

This result aligns with the case where σ ≪ 1. However, for a more general expression of the
resistance, R should be multiplied by (1 − σ2). Experimentally, it is observed that u0 ≫ uc
is valid when u0 > 25uc, which corresponds to approximately 103 cm/s at 200 Hz. From
a physical perspective, this relation can be interpreted as the condition under which the
kinetic force dominates over the viscous force.
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Appendix B. Radiating Piston Model

The sound radiation propagating in the free field is modelled in spherical coordinates
by the following relation [34]:

p(r, θ, ω) ≈ iωρ0ṽne−ikr

2πr

∫ a

0
ydy

∫ 2π

0
e(−ikysinθcosψ)dψ. (A6)

In the limit ka → 0, J1(ka sin θ)/(ka sin θ) → 1/2, and the result corresponds to

p(r) = iωρ0
Ũp

4πr
e−ikr, (A7)

with Ũp = 2πa2ṽn. The term containing the Bessel function is a far-field directivity factor,
which can be physically explained as interference between the fields radiated by the
distributed elementary sources. Briefly, when ka ≪ 1, the sound pressure p(r) is nearly
independent of θ, and the radiation is omnidirectional; for ka ≫ 1, the sound field is much
stronger along and near the polar axis, with minimal radiation in the lateral direction.

Appendix C. Assessment of Back Cavity Resonance in a Speaker System

The cavity resonance of the speaker’s back cavity refers to the volume of the speaker’s
enclosure (Figure 5). To determine this resonance, a measurement was performed using
a logarithmic sweep signal. The acoustic pressure inside the cavity was recorded by a
microphone synchronized with the signal generated by the speaker. By applying an FFT to
the recorded signal, the resonance frequency of this coupled cavity–speaker system was
identified. As shown in Figure A1, the frequency corresponding to the highest acoustic
pressure within the cavity is 189 Hz. Consequently, according to Equation (2), at this
frequency, the volumetric velocity generated by the speaker reaches its maximum.

Figure A1. Frequency response of the speaker’s back cavity showing the resonance peak.
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