Underwater Small Target Detection Method Based on the Short-Time Fourier Transform and the Improved Permutation Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatiotemporal Reverberation Model
2.2. The Improved Permutation Entropy Algorithm
2.3. Noise Variation Characteristics of Improved Permutation Entropy
3. Results
3.1. Detection Principle
3.2. Analysis of Spectral Entropy Detection Performance
4. Discussion
4.1. Simulation Signal Data Verification
4.1.1. Improved Permutation Entropy Detection Algorithm under Reverberation Background
4.1.2. STFT-IPE Active Detection Algorithm under Reverberation Background
4.2. Experimental Data Verification
4.2.1. Comparison and Validation of Experimental Data with and without Targets
4.2.2. Comparison of Experimental Data at Different Distances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, B. Status and development of the surface ship torpedo defense technology. Tech. Acoust. 2015, 2, 180–183. [Google Scholar]
- Huang, H.; Li, Y. Underwater acoustic detection: Current Status and future trends. Bull. Chin. Acad. Sci. 2019, 34, 264–271. [Google Scholar]
- Cui, G. Foreign anti-torpedo torpedo development and trend analysis. Ship Sci. Technol. 2013, 35, 138–141. [Google Scholar]
- Yang, S.; Li, Z.; Wang, X. Ship recognition via its radiated sound: The fractal based approaches. J. Acoust. Soc. Am. 2002, 112, 172–177. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z. Classification of ship-radiated signals via chaotic features. Electron. Lett. 2003, 39, 395–397. [Google Scholar] [CrossRef]
- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Yao, W.; Liu, T.; Dai, J.; Wang, J. Multiscale Permutation Entropy analysis of electroencephalogram. Acta Phys. Sin. 2014, 7, 427–433. [Google Scholar]
- Han, M.; Pan, J. A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings. Measurement 2015, 76, 7–19. [Google Scholar] [CrossRef]
- Nielsen, L.R.; Tervo, O.M.; Blackwell, S.B.; Heide-Jørgensen, M.P.; Ditlevsen, S. Using quantile regression and relative entropy to assess the period of anomalous behavior of marine mammals following tagging. Ecol. Evol. 2023, 13, e9967. [Google Scholar] [CrossRef]
- Liu, L.; Bao, X.; Chen, X. A Study of surface vessel recognition based on multi-scale sample entropy. J. Netw. New Media 2014, 3, 28–31. [Google Scholar]
- Li, Y.X.; Li, Y.; Chen, X. A Feature Extraction Method of Ship-Radiated Noise Based on Sample Entropy and Ensemble Empirical Mode Decomposition. J. Unmanned Undersea Syst. 2018, 26, 28–34. [Google Scholar]
- Chen, Z.; Li, Y. A study on complexity feature extraction of ship radiated signals based on a multi-scale permutation entropy method. J. Vib. Shock 2019, 38, 225–230. [Google Scholar]
- Liang, Y.; Kerri, D.; Nicholas, J. Entropy-Based Automatic Detection of Marine Mammal Tonal Calls. IEEE J. Ocean. Eng. 2024, 9, 1558–1691. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 74–102. [Google Scholar] [CrossRef] [PubMed]
- Aziz, W.; Arif, M. Multiscale Permutation Entropy of Physiological Time Series. In Proceedings of the IEEE 2005 Pakistan Section Multitopic Conference, Karachi, Pakistan, 24–25 December 2005. [Google Scholar]
- Renyi, A. Title of the article on measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, California, CA, USA, 20 June–30 July 1960; Volume 1961, pp. 547–561. [Google Scholar]
- Pincus, S. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Bian, C.; Qin, C.; Ma, Q. Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 2012, 85, 021906. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, H. Modified multiscale permutation entropy algorithm and its application for multiscroll chaotic systems. Complexity 2016, 21, 52–58. [Google Scholar]
- Richman, J.; Moorman, J. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Acad. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 39–49. [Google Scholar] [CrossRef]
- George, M.; Md, A.; Roberto, S. Low Computational Cost for Sample Entropy. Entropy 2018, 20, 61. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Scholkmann, F.; Rosso, O.A. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Phys. Lett. A 2017, 381, 1883–1892. [Google Scholar] [CrossRef]
- Fadlallah, B.; Chen, B.; Keil, A. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E Stattistical Nonlinear Soft Matter Phys. 2013, 87, 022911. [Google Scholar] [CrossRef] [PubMed]
- Cuesta–Frau, D.; Varela–Entrecanales, M.; Molina–Picó, A. Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity 2018, 2018, 1324696. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liang, H. Improved permutation entropy for measuring complexity of time series under noisy condition. Complexity 2019, 2019, 1403829. [Google Scholar] [CrossRef]
- Zhan, H.; Cai, Z.; Yuan, B. Space-Time adaptive Reverberation Suppression in active sonar of torpedo. J. Wuhan Univ. Technol. 2007, 31, 947–950. [Google Scholar]
- Jaffer, A.G. Constrained partially adaptive space-time processing for clutter suppression. In Proceedings of the 1994 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 1994. [Google Scholar]
- Cox, H. Space-time processing for suppression of bottom reverberation. In Proceedings of the Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 30 October–1 November 1995. [Google Scholar]
Normalized Bandwidth | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|---|---|
IPE average value | 0.966 | 0.9631 | 0.952 | 0.932 | 0.9026 | 0.8634 | 0.8155 | 0.7597 |
PE average value | 0.9983 | 0.9983 | 0.9992 | 0.9997 | 0.9983 | 0.9923 | 0.9786 | 0.9537 |
IPE standard deviation | 0.0014 | 0.0014 | 0.0016 | 0.0019 | 0.0021 | 0.0022 | 0.0023 | 0.0025 |
PE standard deviation | 0.0006 | 0.0006 | 0.0004 | 0.0002 | 0.0005 | 0.0010 | 0.0014 | 0.0016 |
Normalized Bandwidth | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|---|---|
IPE average value | 0.8493 | 0.7833 | 0.7093 | 0.6262 | 0.5317 | 0.4233 | 0.2994 | 0.1611 |
PE average value | 0.9993 | 0.9992 | 0.999 | 0.9986 | 0.998 | 0.9965 | 0.9923 | 0.9684 |
IPE standard deviation | 0.0029 | 0.0031 | 0.0035 | 0.0038 | 0.0040 | 0.0044 | 0.0044 | 0.0043 |
PE standard deviation | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0012 | 0.0017 | 0.0032 | 0.0115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Hao, B.; Li, Y.; Yang, X. Underwater Small Target Detection Method Based on the Short-Time Fourier Transform and the Improved Permutation Entropy. Acoustics 2024, 6, 870-884. https://doi.org/10.3390/acoustics6040048
Zhou J, Hao B, Li Y, Yang X. Underwater Small Target Detection Method Based on the Short-Time Fourier Transform and the Improved Permutation Entropy. Acoustics. 2024; 6(4):870-884. https://doi.org/10.3390/acoustics6040048
Chicago/Turabian StyleZhou, Jing, Baoan Hao, Yaan Li, and Xiangfeng Yang. 2024. "Underwater Small Target Detection Method Based on the Short-Time Fourier Transform and the Improved Permutation Entropy" Acoustics 6, no. 4: 870-884. https://doi.org/10.3390/acoustics6040048
APA StyleZhou, J., Hao, B., Li, Y., & Yang, X. (2024). Underwater Small Target Detection Method Based on the Short-Time Fourier Transform and the Improved Permutation Entropy. Acoustics, 6(4), 870-884. https://doi.org/10.3390/acoustics6040048