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Abstract: In the realm of underwater active target detection, the presence of reverberation is an im-
portant factor that significantly impacts the efficacy of detection. This article introduces the improved
permutation entropy algorithm into the analysis of active underwater acoustic signals. Based on the
significant difference between the improved permutation entropy in the frequency domain and the
time domain, a frequency-domain-improved permutation entropy detection algorithm is proposed.
The performance of this algorithm and the energy detection algorithm are compared and analyzed
under the same conditions. The results show that the spectral entropy detector is about 2.7 dB better
than the energy detector, realized via active small target signal detection under a reverberation back-
ground. At the same time, based on the characteristics of improved permutation entropy changing
with the length of processed data, the short-time Fourier transform is integrated into frequency
domain entropy detection to obtain distance and velocity information of the target. To validate the
proposed methods, comparative analysis experiments were executed utilizing actual experiment
data. The outcomes of both simulation and actual experiment data processing demonstrated that the
sliding entropy feature detection method for signal spectrum has a small computational complexity
and can quickly determine whether there is a target echo in the receive data. The two-dimensional
entropy feature detection method for short-time signal spectra was found to effectively mitigate the
impact of reverberation intensity and while enhancing the prominence of the target signal, thereby
yielding a more robust detection outcome.

Keywords: improved permutation entropy; reverberation; underwater small target; nonlinear
characteristics

1. Introduction

Underwater acoustics is a discipline dedicated to the study of the behavior of sound
waves as they propagate, reflect, scatter, and interact with submerged objects. The process-
ing of underwater acoustic signals entails the extraction of meaningful information from
a complex aquatic milieu. Amidst escalating global interest in the capabilities of under-
water offense and defense, the detection of underwater targets has assumed a heightened
significance. As global attention towards underwater offensive and defensive capabilities
intensifies, the development and deployment of unmanned underwater vehicles, torpe-
does, and other small underwater weapons have witnessed rapid growth. Due to their
minute physical dimensions and exceptional concealment capabilities, underwater small
targets pose a significant threat to ships and submarines [1–3]. To effectively counter these
underwater small targets, ships must promptly detect threatening underwater targets and
swiftly adopt defensive measures as soon as possible to improve the survival probability of
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the ship. Consequently, the detection of underwater small targets is of great significance
for the defense of ships and other vessels.

Due to the influence of random, time-variant, space-variant, and non-uniform ocean
transmission, active echo signals exhibit strong distortion and nonlinear fluctuations [1].
Traditional nonlinear feature extraction methods for time series encompass Lyapunov
exponents and fractal dimensions, etc. [4,5]. These methods are conceptually complex,
computationally intensive, and require manual setting of numerous parameters during
computation, which does not meet the requirements of real-time and intelligent processing
for underwater acoustic detection systems. Information entropy theory, an essential branch
of nonlinear theory, was introduced by Shannon into the field of communication, where
he proposed the concept of information entropy [6]. Information entropy is a physical
quantity that describes the amount of information in a system. The higher the order of the
system, the smaller its information entropy value, and the greater the information content;
conversely, the more disordered the system, the larger its information entropy value, and
the smaller the information content. Information entropy algorithms have been widely used
in human brain signal processing [7], fault diagnosis [8], animal recognition [9], disaster
prediction, and other fields. Liu Lei and others have verified that multi-scale sample
entropy can obtain more underwater target acoustic signal information than single-scale
sample entropy [10]. Yuxing Li and others combined empirical mode decomposition with
sample entropy, proving that this method can be applied to the feature extraction of ship
radiation noise [11]. Chen Zhe empirical mode decomposition with multi-scale permutation
entropy to classify the radiation noise of various ships [12]. Y Liang investigated the use of
entropy-based techniques to achieve automatic detection of marine mammal tonal calls in
passive acoustic monitoring data [13].

In the realm of underwater acoustic signal analysis, the approach that utilizes entropy
information as a criterion for categorizing various ship-radiated noise types falls short
in capturing the temporal and frequency characteristics for detecting target signals. This
limitation renders such an approach unsuitable for the direct detection of underwater active
signals. Within the scope of underwater active target signal detection, which is inherently
complex due to the presence of reverberation, the application of entropy mainly involves
calculating the entropy value for the feature vector extracted by traditional feature extrac-
tion methods, combining information entropy with existing feature extraction methods for
underwater acoustic signal detection.

Currently, several typical information entropies [14–19] can analyze signal sequences,
but there are still many shortcomings, such as the large computational load of the sample en-
tropy algorithm, which is difficult to meet the requirements of real-time processing [20,21];
and permutation entropy, despite its utility, neglects the amplitude information of signals,
resulting in a reduced ability to discriminate between different signals—a point emphasized
in references [22–24].

In 2019, Chen et al. proposed an improved permutation entropy (IPE) algorithm [25],
which not only enhances signal discrimination ability but also reduces the computational
complexity of the algorithm. Compared with traditional information entropy algorithms,
the IPE algorithm absorbs the advantages of the sample entropy algorithm, takes into
account the signal amplitude and order information, and has good anti-noise performance.
This paper introduces the improved permutation entropy algorithm (IPE) into the research
of underwater active small target signal detection, proposing an underwater small target
active signal detection method based on STFT-IPE. This method utilizes the strong signal
discrimination ability of IPE, combined with the characteristics of STFT, to complete the
nonlinear feature extraction and detection work of the active echo signal.

2. Materials and Methods
2.1. Spatiotemporal Reverberation Model

Reverberation is essentially the superposition of signals from scattering elements,
and the method of superimposing the echo sequences of scattering elements to generate
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reverberation data can reflect many characteristics of reverberation, such as spatiotem-
poral features. With the continuous research of spatiotemporal adaptive processing data
processing methods, spatiotemporal adaptive methods can better fit the reverberation
characteristics in the actual ocean caused by the motion of the sonar platform, which has
caused the Doppler shift phenomenon of reverberation [26]. Jaffer and H. Cox have applied
spatiotemporal reverberation models to underwater target detection research, which has
better practical significance and application value [27,28].

Considering the random motion of scattering elements and adding the corresponding
amplitude and phase modulation factors, the received reverberation sequence is:

s(t) =
Nr
∑

j=1
sj(t)

=
Nr
∑

j=1
Aj(t)Pj(ω)sm

[(
1 + drj

)
t − τj

] , (1)

where Nr is the number of scattering elements contributing to the reverberation; Aj(t)
are random amplitude and phase modulation signals, reflecting the degree of random
fluctuation of the scattering elements. Pj is the echo amplitude of the j-th scattering
element, which is related to the transmitted signal strength, the scattering strength, and area
represented by the scattering element, the beam directivity of transmission and reception,
propagation expansion attenuation, and seawater absorption. drj = 2vs cos θj/c is the
Doppler spread factor caused by the motion of the array element, vs is the velocity of the
receiving transducer, θj is the angle between the direction of the receiving transducer’s
velocity and the scattering element j, c is the speed of sound, and τj = 2rj/c is the time delay
of the transmitted signal after being scattered by the j-th scattering element to the array
element, rj is the distance between the receiving transducer and the j-th scattering element.

The ocean environment is set as a shallow sea with a depth of 100 m, with a sea state
of three, and the seabed sediment is set to mud sediment. The sampling and transmission
are combined to receive the transmitted signal. The transducer is submerged to a depth of
10 m, the platform speed is 50 knots, the transmitted signal is a CW signal with a frequency
of 5000 Hz, and the transmission pulse width is 200 ms. The intensity of scattered echoes
can be calculated based on sea surface conditions and seabed categories, and random
amplitude and phase modulation can be added to the calculation. According to Formula
(1) and parameter settings, the simulated reverberation signal is shown in Figure 1a, and
the normalized reverberation signal is shown in Figure 1b. The echo signal is added with a
time of 1 s, the target and platform radial motion speed is set to 75 knots, the signal-to-noise
ratio (SNR) is 10 dB, and no background noise is added. The reverberation signal after
adding the target echo signal and time-frequency diagram are shown in Figure 1c,d.

2.2. The Improved Permutation Entropy Algorithm

The improved permutation entropy algorithm (IPE) improves upon the traditional
permutation entropy algorithm (PE) by addressing the issue of missing amplitude informa-
tion [28]. This algorithm is capable of extracting more information from complex sequences
while reducing computational complexity and enhancing signal resolution. The algorithmic
flow is as follows:

(1) Normalize the time series {x1, x2, · · · , xN} through the cumulative distribution
function shown in the following equation. Where, µ and σ2 represent the mean and variance
of the time series, respectively.

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t − µ)2

2σ2 dt, (2)

(2) Phase space reconstruction, where, τ represent represents time delay:

Yi =
[
yi, yi+τ , · · · , yi+(m−1)τ

]
1≤i≤N−m+1

, (3)
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(3) Symbolize the first column Y(:, 1) of the phase space Y using the Uniform Quantifi-
cation Operator (UQO) and calculate the corresponding symbolization result for the first
column S(:, 1) of the phase space S.

UQO(u) =


0 ymin ≤ u ≤ ∆ + ymin
1 ymin + ∆ ≤ u ≤ 2∆+min
...

...
L − 1 ymax − ∆ ≤ u ≤ ymin ,

(4)

Here, L denotes a predetermined discretization parameter, ∆ represents the discrete
interval and meets ∆ = (ymax − ymin)/L, ymax and ymin represent the maximum and
minimum values of the subsequence y, respectively.

(4) The corresponding symbolization result S(:, k) for the k column Y(:, k) (2 ≤ k ≤ m)
of the phase space Y is obtained using the following formula,

S(j, k) = S(j, 1) + f loor[(Y(j, k)− Y(j, 1))/∆]1≤i≤N−m+1, (5)

where floor indicates rounding down.
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Figure 1. Simulation results of reverberation and target echo signals. (a) Reverberation signal; (b) 
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(d) time-frequency diagram of the target echo signal and reverberation. 
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Figure 1. Simulation results of reverberation and target echo signals. (a) Reverberation signal;
(b) normalized reverberation signal; (c) normalized reverberation signal after adding target echo
signal; (d) time-frequency diagram of the target echo signal and reverberation.

IPE regards every row of the symbolized phase space S as a “pattern” πl , 1 ≤ l ≤ Lm

and utilizes the term Symbol Pattern (SP) in the algorithm. Calculate the probability pl
of each SP in symbol phase space, according to the definition of Shannon entropy, the
improved permutation entropy can finally be expressed as:

IPE(m, L) = −
Lm

∑
l=1

pl ln pl , (6)

when only one element in the probability distribution of SP is 1 and the other elements are
0, IPE takes the minimum value 0. When the probability distribution follows a uniform
distribution, IPE takes the maximum value ln(Lm). Therefore, IPE can be normalized. In
this paper, normalized entropy values are used.

After normalizing Equation (6), we obtain:

IPE(m, L) = IPE(m, L)/ln(Lm), (7)

The value of IPE(m, L) reflects the randomness of the time series. A larger choice of
the discretization parameter L makes it more sensitive to noise fluctuations, while a smaller
value of L can reduce the interference of noise to some extent.

2.3. Noise Variation Characteristics of Improved Permutation Entropy

The objective of this study is to investigate the sensitivity of IPE to noise. The dis-
cretization parameter L was set to 10, with an embedding dimension m of 3, a time delay τ

of 1, and a data length N of 1000. The variations in both IPE and permutation entropy (PE)
were examined. Simulations were conducted to generate 1000 sets of noise with normalized
bandwidth ranging from 0.1 to 0.8. The entropy values and variance calculations in the
time domain are presented in Figure 2 and Table 1, while those in the frequency domain are
shown in Figure 3 and Table 2. The center of the error bars represents the average entropy
value across 1000 trials, with the error bars indicating the standard deviation of the results.
The short error bars for both entropy measures suggest a high degree of consistency in
the estimation outcomes. As the bandwidth increases from narrow to wide, the changes
in IPE in both the time and frequency domains are more pronounced than those in PE.
Furthermore, IPE exhibits a more significant difference in the frequency domain compared
to the time domain, indicating a heightened sensitivity of IPE to variations in noise signals.
The standard deviation of IPE is larger than that of PE, which also indicates that the IPE
method is more sensitive to noise signals due to considering the amplitude characteristics
of the signal.
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Figure 2. IPE and PE values of noise with different bandwidths in the time domain.

Table 1. IPE and PE values and variances of noise with different bandwidths in the time domain.

Normalized Bandwidth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

IPE average value 0.966 0.9631 0.952 0.932 0.9026 0.8634 0.8155 0.7597
PE average value 0.9983 0.9983 0.9992 0.9997 0.9983 0.9923 0.9786 0.9537

IPE standard deviation 0.0014 0.0014 0.0016 0.0019 0.0021 0.0022 0.0023 0.0025
PE standard deviation 0.0006 0.0006 0.0004 0.0002 0.0005 0.0010 0.0014 0.0016
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3. Results
3.1. Detection Principle

The IPE is employed to quantify the complexity and sensitivity of the received signal
in the frequency domain. By leveraging the differences in frequency domain uncertainty
between the target echo pulse signal and the background and reverberation, the frequency
domain entropy features are extracted to achieve signal detection. The detection of the echo
signal is regarded as a hypothesis-testing problem, as shown in Equation (8):{

H0 :
H1 :

x(n) = r(n) + w(n)
x(n) = s(n) + r(n) + w(n)

, (8)

In the equations, x(n) represents the received data, s(n) is the signal, r(n) is the
reverberation, and w(n) is the noise. H0 indicates the situation where only reverberation
and noise are received while H1 indicates the situation where the received signal includes
the target. The purpose of signal detection is to distinguish between these two different
conditions and detect the target information.

3.2. Analysis of Spectral Entropy Detection Performance

The transmitted pulse width is set to 20 ms, the transmitted signal frequency to 5 kHz,
and the received signal duration to 400 ms. The signal-to-noise ratio (SNR) is set from
−12 dB to 2 dB. Figure 4 shows a performance comparison between two detection methods
under the same detection threshold calculation criteria. It can be observed that when the
detection probability d is 0.5, the spectral entropy detector has an SNR of approximately
−6 dB, which is 2.7 dB better than the energy detector.
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Figure 4. Spectral entropy detection and energy detection performance curve.

To investigate the impact of data length on detection effectiveness, the transmitted
pulse width is set to 20 ms, the transmitted signal frequency to 5 kHz, and the SNR to
−5 dB. The received signal duration varies from 80 ms to 1000 ms. Figure 5 shows the
variation in spectral entropy detection performance with data time length under different
SNR conditions. It can be seen that when the data time length is between 0.2 s and 0.4 s,
the detection probability is significantly higher than at other durations.

For active target signal detection, sliding segment processing is applied to the data of
the active period, followed by entropy detection, which can better utilize the advantages
of entropy detection. Sliding segment processing is similar to the characteristics of the
short-time Fourier transform (STFT); therefore, by combining the features of STFT and
entropy detection, an appropriate sliding window can be selected for the spectral entropy
detection algorithm. This not only detects the target but also provides information about
the target’s velocity and distance, forming an active detection algorithm based on STFT-IPE.
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4. Discussion
4.1. Simulation Signal Data Verification

Utilizing the reverberation signal simulation results from the space-time model in
Section 1, this study examines the entropy characteristics of data after adding target echo
signals and background noise of varying intensities to the received reverberation signals.
The influence of noise and reverberation on the performance of the entropy feature detection
algorithm is investigated.

4.1.1. Improved Permutation Entropy Detection Algorithm under
Reverberation Background

At the end of an active detection cycle, a preliminary judgment is made on the presence
or absence of detection targets within the cycle. Therefore, the entire cycle signal is selected
for IPE detection calculation. Assuming a moving small target’s relative velocity to the
sonar platform is 75 knots, after adding target signals and noise of different intensities to the
reverberation simulation signal, the spectral entropy of the simulation signal is calculated.
A sliding window is applied to the spectral signal, and the IPE of each window’s spectral
sequence is calculated. A short-time Fourier transform (STFT) is then performed on the
improved permutation entropy sequence to obtain a pseudo-time-frequency diagram of
the IPE. The entropy characteristics of the signal spectrum under different signal-to-noise
ratio (SNR) and signal-to-reverberation ratio (SRR) conditions are analyzed based on the
processing results.

(1) Under the reverberation background, target signals and background noise are
added to achieve an SRR of 5 dB and an SNR of 0 dB. The simulation results are shown
in Figure 6.

From Figure 6, it is evident that reverberation and target signals can be distinctly
differentiated, proving that the algorithm can be applied to target signal detection under
noisy conditions.

(2) Under the reverberation background, target signals and background noise are
added to achieve an SRR of 5 dB and an SNR of −15 dB. The simulation results are shown
in Figure 7.

From Figure 7a, it can be observed that the IPE algorithm struggles to effectively detect
the target signal under conditions of excessively low SNR, where the entropy features
are completely submerged in the noise environment, making it impossible to distinguish
between target signals and noise.
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4.1.2. STFT-IPE Active Detection Algorithm under Reverberation Background

After the preliminary judgment is completed, a detailed analysis is conducted on the
active cycle that may contain target signals. The sliding window method is employed,
and the STFT-IPE active detection algorithm is used to detect signals within the cycle,
determining the time and frequency information of the target.

(1) Only Gaussian white noise is added to the simulated reverberation signal. The
time-frequency analysis diagram of the signal is shown in Figure 8, and the entropy features
of the power spectrum at different time and frequency frames are shown in Figure 9.

From Figure 9, it can be seen that there are no significant peaks in the entropy features
of the power spectrum at the time frame, and there are only minor fluctuations at the
reverberation frequency in the frequency frame, with no significant peaks. In the time-
frequency diagram, there are clear peaks due to reverberation, while in the frequency
domain entropy, there are only minor fluctuations. Therefore, entropy feature detection
in the frequency domain can effectively resist the interference caused by reverberation,
thereby suppressing reverberation.
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Figure 8. The time-frequency analysis diagram of reverberation with noise.
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Figure 9. Entropy characteristics of the power spectrum in different time and frequency frames when
only Gaussian white noise is added. (a) Entropy characteristics of the power spectrum in time frames;
(b) entropy characteristics of the power spectrum in frequency frames.

(2) Under the reverberation background, noise and signals are added to achieve an
SNR of 0 dB. The entropy characteristics of the power spectrum in different time and
frequency frames are shown in Figure 10.

From Figure 10a, it can be observed that there are significant continuous changes in
the entropy value of the power spectrum at the time frame within the time range of the
target echo. From Figure 10b, it can be seen that there is a clear peak in the frequency range
of the target echo when a target is present. Applying the IPE algorithm to the short-time
power spectrum of the signal can effectively detect the time and frequency of the target
signal and suppress the reverberation signal characteristics while highlighting the target
signal characteristics.

Through simulation signal verification, it can be seen that the sliding entropy feature
detection method for time series can detect the frequency of the target, and the computa-
tional load is small, making it suitable for rapid judgment of whether there is a target echo
in the echo. The STFT-IPE based active detection algorithm can detect information such as
the target’s distance and speed, and the frequency detection can suppress the intensity of
reverberation and highlight the target signal, making the effect more robust.
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Figure 10. Entropy characteristics of the power spectrum in different time and frequency frames
when the signal-to-noise ratio is 0 dB. (a) Entropy characteristics of the power spectrum in time
frames; (b) entropy characteristics of the power spectrum in frequency frames.

4.2. Experimental Data Verification

Data collected from the actual experiment is selected for verification. The active sonar
signal is a CW signal with a transmission pulse width of 50 ms and an active cycle duration
of 600 ms.

4.2.1. Comparison and Validation of Experimental Data with and without Targets

To compare the target detection effects, two sets of data are processed: one without
targets in the cycle and the other with target echoes in the cycle. When there is a target, the
platform is approximately 350 m from the target. After excluding the transmission and
control time within the working cycle, the active acquisition of time-domain waveforms
and time-frequency maps are shown in Figures 11 and 12. Comparing Figures 11 and 12, it
can be seen that the data with target signals clearly have bright lines.
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Figure 11. Active acquisition of time-domain waveforms and time-frequency maps without
target signals.

Analyzing the active sampling data without target signals, the entropy feature detec-
tion results of the time frame and frequency frame are shown in Figure 13. The IPE value
of the power spectrum at the time frame has a clear peak at 0.1 s, which is analyzed to
be due to reverberation extension. The IPE value of the power spectrum at the frequency
frame fluctuates within the reverberation frequency range and is relatively uniform in other
frequency bands. Combining the results of the time frame and frequency frame, it can be
judged that there is no target.
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Figure 12. Active acquisition of time-domain waveforms and time-frequency maps when there is a
target signal.
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Figure 13. Detection result without target signal. (a) Entropy characteristics of the power spectrum in
time frames; (b) entropy characteristics of the power spectrum in frequency frames.

Analyzing the active sampling data with target signals, the entropy feature detection
results of the time frame and frequency frame are shown in Figure 14. The improved
permutation entropy of the power spectrum at the time frame has a clear peak at 0.445
s, consistent with the appearance of the target. The IPE of the power spectrum at the
frequency frame, apart from minor fluctuations at the reverberation position, has a clear
peak at the normalized frequency of 0.4941.

Comparing Figures 13 and 14, it can be seen that when there is no target, the entropy
feature at the time frame has significant fluctuations near 0.1 s, and the entropy feature in the
frequency frame fluctuates within the reverberation frequency range, with no significant
fluctuations in other frequency bands. Combining the results of the time frame and
frequency frame processing, it can be judged that there is no target appearance. Selecting
the cycle data with target signals for analysis, the results are shown in Figure 14. The IPE
value of the power spectrum at the time frame has a clear peak at 0.445 s, due to the absence
of amplitude modulation of the target echo in the simulation signal, and the echo amplitude
in the actual experimental is not an ideal CW signal due to the influence of channels and
other factors. Therefore, in the actual experimental data time frame processing results, there
is no continuous low entropy value feature as in the simulation signal processing results,
only a lower peak can be seen. Here, the zero moment of time is the start of sampling,
and after adding the transmission time and control time, it is basically consistent with
the moment corresponding to the target distance. Apart from minor fluctuations at the
reverberation position in the frequency frame power spectrum’s IPE value, there is a clear
peak at the normalized frequency of 0.4941. Combining the results of the time frame and
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frequency frame, it can be judged that there is a target, and the target’s distance and speed
information can be obtained.
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Figure 14. Detection results with a target signal. (a) Entropy characteristics of the power spectrum in
time frames; (b) entropy characteristics of the power spectrum in frequency frames.

4.2.2. Comparison of Experimental Data at Different Distances

To compare the effects of target detection at different distances and signal-to-noise
ratios (SNRs), experimental data for target distances of 432 m, 349 m, and 292 m were
analyzed. The entropy feature detection results obtained for time frames and frequency
frames at different distances are illustrated in Figure 15. It is evident that as the proximity
to the target increases, the entropy value peaks in the time frames occur increasingly earlier.
In the frequency frames, the entropy values in the reverberation frequency bands exhibit
a relatively stable trend across different distances, while the entropy values in the target
frequency bands decrease progressively with decreasing distance. This trend corroborates
the effectiveness of the small target detection algorithm based on the STFT-IPE in accurately
detecting targets.
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5. Conclusions

Based on the characteristic that IPE has more significant differences in the frequency
domain than in the time domain, the IPE algorithm is introduced into active underwater
signal analysis, proposing a frequency domain IPE detection algorithm. Under the same
conditions, the spectral entropy-based detector outperforms the traditional energy detector
by a margin of approximately 2.7 dB. This enhancement facilitates the reliable detection of
active small target signals amidst a challenging reverberation background. Moreover, in
light of the observation that IPE values are sensitive to the length of the processed data,
STFT is introduced into the frequency domain entropy detection to obtain the target’s
distance and speed information. The robustness and efficacy of the proposed algorithm
have been rigorously validated through a series of simulations and actual experiment data.
Our findings demonstrate that the sliding window-based entropy feature detection method
for signal spectra is computationally efficient and can swiftly ascertain the presence of target
echoes within the acquired data. The two-dimensional entropy feature detection approach
for the signal’s short-time power spectrum effectively mitigates the impact of reverberation
intensity while enhancing the salience of the target signal, thereby rendering the detection
process more robust. The results show that the sliding entropy feature detection method
for signal spectrum has a small computational load and can quickly determine whether
there is a target echo in the received data. The two-dimensional entropy feature detection
method for signal short-time power spectrum can suppress the intensity of reverberation
and highlight the target signal, making the effect more robust.

The proposed method in this paper significantly enhances the detection capabilities
of underwater targets, aiding naval vessels and submarines in promptly identifying and
responding to potential threats within underwater operational environments. The swift
and precise detection of enemy submarines or unmanned underwater vehicles (UUVs) is
paramount for defensive strategies, thereby enhancing the survival capabilities of naval
craft. Furthermore, in the context of marine ecological monitoring, this methodology
can be harnessed to observe biological activities within the ocean, such as fish schooling
and dolphin migrations, providing valuable insights for scientists to comprehend the
dynamic changes within oceanic ecosystems. However, the present study focuses on
underwater small-target signal detection without considering the characteristic variations
of reverberation across diverse acoustic channels. For instance, a comparison of entropy
characteristics of reverberation signals under varying underwater acoustic environmental
conditions could offer insights into the impact of marine environments on reverberation
complexity, warranting further investigation.
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