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Abstract: Unmanned aerial systems (UAS), commonly known as drones, have gained widespread
use due to their affordability and versatility across various domains, including military, commercial,
and recreational sectors. Applications such as remote sensing, aerial imaging, agriculture, firefight-
ing, search and rescue, infrastructure inspection, and public safety have extensively adopted this
technology. However, environmental impacts, particularly noise, have raised concerns among the
public and local communities. Unlike traditional crewed aircraft, drones typically operate in low-
altitude airspace (below 400 feet or 122 m), making their noise impact more significant when they are
closer to houses, people, and livestock. Numerous studies have explored methods for monitoring,
assessing, and predicting the noise footprint of drones. This study employs a bibliometric analysis
of relevant scholarly works in the Web of Science Core Collection, published from 2015 to 2024,
following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) data
collection and screening procedures. The International Journal of Environmental Research and Public
Health, Aerospace Science and Technology, and the Journal of the Acoustical Society of America are the top
three preferred outlets for publications in this area. This review unveils trends, topics, key authors
and institutions, and national contributions in the field through co-authorship analysis, co-citation
analysis, and other statistical methods. By addressing the identified challenges, leveraging emerging
technologies, and fostering collaborations, the field can move towards more effective noise abatement
strategies, ultimately contributing to the broader acceptance and sustainable integration of UASs into
various aspects of society.

Keywords: unmanned aerial systems (UASs); noise assessment; bibliometric analysis; literature review

1. Introduction

Aircraft-induced noise has garnered significant attention due to its negative impact
on local communities. The considerable noise disturbance from manned aircraft during
traffic patterns adversely affects nearby residents’ mental and physical well-being, which
includes health impairment, annoyance, and learning disorders [1,2]. This environmental
effect often leads to annoyance and complaints about airport operations, management,
planning, and expansion [3,4]. The U.S. Federal Aviation Administration (FAA) regulates
airports to develop noise abatement and mitigation plans to comply with compatible land
planning [5,6]. The International Civil Aviation Organization (ICAO) identifies mitigating
and reducing aircraft noise as top initiatives, following up on possible environmental
issues from the operation of Emerging Technology Aircraft (ETA), including urban air
mobility concepts, unmanned aircraft, and remotely piloted aircraft [7,8]. However, the
current FAA’s noise certification standards that apply to individual UASs were still under
development due to the unavailability of applicable noise certification standards when
aircraft were presented for certification [9].
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Unmanned aerial systems (UASs), commonly known as drones, have gained widespread
use across various sectors due to their flexibility and affordability. Fields such as aerial imaging,
agriculture, firefighting, search and rescue, infrastructure inspection, wildlife monitoring,
and public safety have widely adopted various UAS platforms. With the rise of consumer-
level UASs in recent decades, including propeller and fixed-wing UASs, there has been a
notable change in fleet sizes and operational altitudes. UAS platforms are much smaller than
manned aircraft and typically operate in low-altitude airspace (below 400 ft), bringing them
closer to ground-level individuals [10–13]. This proximity highlights the need for innovative
noise monitoring and assessment methodologies to better understand the aeroacoustic and
psychoacoustic impact of UAS noise on local communities. On the other hand, effective and
accurate acoustic monitoring is crucial for drone detection and classification, emphasizing the
importance of active drone noise monitoring, assessment, and prediction [14,15]. Therefore, as
UAS noise has been identified as a critical concern for public acceptance [15,16], it is essential
for stakeholders to monitor and assess UAS noise effects to ensure effective noise abatement
and control.

Acoustic engineering is the primary field used to monitor UAS noise. Most UAS noise
monitoring and assessment approaches can be traced back several decades to when propeller-
and fixed-wing-induced noise was extensively investigated [17,18]. There are significant
differences between UAS noise and traditional manned aircraft noise, including the design of
the propeller [19–22], operational modes [23,24], and traffic patterns [11,12,16,25–27].

However, there is a lack of an in-depth understanding of synergetic studies on UAS
noise monitoring, assessment, and predictions. Therefore, three research questions are
developed as follows:

1. What is the current state of scientific studies on UAS noise monitoring, assessment,
and predictions?

2. What are the trends regarding topics, active researchers, and collaborations of
these studies?

3. What are the challenges and future opportunities of scientific studies on UAS noise
monitoring, assessment, and predictions?

This review aims to contribute to the existing body of knowledge by addressing the
aforementioned research questions. Methodologically, bibliometric analysis and biblio-
graphic coupling were employed to summarize the current state of relevant studies, identify
co-authorship and co-citation patterns, unveil collaboration links across institutions and
nations, and analyze emerging trends and topics [28]. A systematic literature review fo-
cused on a curated selection of literature refined through specific inclusion and exclusion
criteria. Key methods, topics, limitations, and challenges within the reviewed studies were
synthesized to highlight opportunities and future directions [29]. The Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, which was
designed to help systematic reviewers transparently report the purpose, procedures, and
findings of their reviews, was utilized as a standardized protocol to ensure a rigorous and
scientific approach to conducting systematic literature reviews [30,31].

Therefore, this study applied bibliometric analysis, bibliographic coupling, and cita-
tion analysis, following the PRISMA method, to systematically examine scientific literature
on UAS noise monitoring from 2015 to 2024 [32]. Co-citation analysis and collaboration
mapping revealed this field’s current state and trends. VOSviewer was used for data visu-
alization [33]. Additionally, this study illuminates the challenges and future opportunities
in UAS noise monitoring.

This study is organized as follows: Section 2 details the materials and methods used,
and Section 3 presents the results. Section 4 discusses the limitations and potential directions
for future UAS noise prediction studies. Finally, Section 5 concludes the review with several
critical remarks.
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2. Materials and Methods

PRISMA guidelines only apply to data collection and screening procedures in this
review. This project was registered in the Open Science Framework (OSF) with the identifier
DOI 10.17605/OSF.IO/MKN7R and is fully open access.

2.1. Identify Keywords and Initial Search

This review uses the Boolean search method on a set of keywords, and set of “UAS”,
“Drone”, “Uncrewed Aerial Vehicles”, and “Unmanned Aerial Vehicles”, and “Noise” and
“Monitoring”, “Evaluation”, “Assessment”, and “Prediction”. is considered. Therefore,
the search syntax for the full-content search from the Web of Science Core Collection is
“(ALL = (UAS) OR ALL = (Drone) OR ALL = (Uncrewed Aerial Vehicles) OR
ALL = (Unmanned Aerial Vehicles)) AND ALL = (Noise) AND (ALL = (Monitoring)
OR ALL = (Evaluation) OR ALL = (Assessment) OR ALL = (Prediction))”.

2.2. Configure Exclusion and Inclusion Criteria

This review establishes essential exclusion and inclusion criteria throughout multiple
rounds of the screening process. First, the timestamps of selected studies were limited to
those published between 1 January 2015 and 1 January 2024. Additionally, only English-
written, peer-reviewed journal articles were included. From the first round to the third
round, the authors selected studies relevant to drone noise monitoring, evaluation, assess-
ment, and prediction, considering different levels of completeness. In the first round, the
authors examined only the titles. In the second round, they reviewed the abstracts. The
final round of screening involved a full-text review.

2.3. Preliminary Most Local Cited References Examination

One innovative strategy employed by the authors in this study was the preliminary
examination of the most locally cited (LC) references from the final screening results.
This strategy aimed to complement relevant studies missing in the original search. This
process identifies highly cited studies from 2015 to 2024. After thoroughly reviewing these
studies with the same exclusion and inclusion criteria, eligible articles were added to the
final dataset.

2.4. Assessment of Full Bibliometric Information for Eligibility

The final step was to review the full paper from the combined, filtered datasets from
2.2. and add a dataset from 2.3. The eligibility of studies was assessed based on the
relevance of UAS noise monitoring, assessment, and prediction. The eligible literature was
included in this study’s final bibliometric and citation analysis dataset.

2.5. Limitations

One limitation of this review is the exclusion of conference proceedings, book chapters,
and other resources outside the Web of Science Core Collection database. Given the lengthy
review, revision, and resubmission process typical of peer-reviewed journals, these sources
might contain more current information. Future studies might consider incorporating
additional databases, such as Scopus and ProQuest, to enhance the breadth and diversity
of the reviewed literature.

Another limitation is the scope of this review regarding the distinction between
UAS, Vertical Takeoff and Landing (VTOL), and electric Vertical Takeoff and Landing
(eVTOL) aircraft. While VTOL and eVTOL are emerging components of urban air mobility
(UAM), their noise generation and propagation mechanisms, often involving propeller-
driven systems, are complex [9]. For future studies, a more refined and expanded review
addressing the impact of UAM noise on low-altitude airspace is recommended.

The table in Section 3 shows that studies on UAS noise often parallel those on tradi-
tional propeller and fixed-wing aircraft noise. This suggests that future systematic literature
reviews should refine and include these relevant studies for a more comprehensive analysis.
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One limitation of the bibliometric analysis software is that there is a lack of flexibility
in modifying the features of the labels, such as the capital letters of country and university
names in visualization charts.

3. Results

The authors conducted a literature search following previously described procedures,
adhering to the PRISMA methodology. Figure 1 elaborates on the overall procedure and
the number of studies obtained in each round of screening.
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Figure 1. PRISMA flow diagram, adapted from [30].

The initial search in the Web of Science Core Collection yielded 591 articles after
applying keywords and time period filters. The first round of screening, based on titles and
using the established exclusion and inclusion criteria, reduced this number to 146 articles.
The second round, involving a careful review of the abstracts, further narrowed the selection
to 87 articles. The third round consisted of a full-text screening, resulting in 45 articles, with
an additional twelve relevant articles from the preliminary examination of the most locally
cited references. Consequently, the final dataset includes 57 English-written, peer-reviewed
journal articles indexed in the Web of Science Core Collection Database between 2015
and 2024.

Table 1 presents the top 10 most local-cited (LC) references after adding 12 relevant
studies to the final dataset for review. Five articles are excluded at the screening stage
due to the time period (Williams and Hawkings, 1969; Brentner and Farassat, 2003; and
Sinibaldi and Marino, 2013) and conference proceedings (Intaratep et al., 2016; Christian
and Cabell, 2017).
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Table 1. Most local-cited (LC) references on UAS noise monitoring, assessment, and prediction.

Title Author, Year Journal Total LCS

Sound generation by turbulence
and surfaces in arbitrary motion

Williams and Hawkings, 1969
[17]

Philosophical Transactions of the
Royal Society of London. Series A,

Mathematical and Physical Sciences
18

Multirotor drone noise at
static thrust

Tinney and Sirohi, 2018
[23] AIAA Journal 16

Experimental analysis on the noise
of propellers for small UAV

Sinibaldi and Marino, 2013
[34] Applied Acoustics 15

Sound quality factors influencing
annoyance from hovering UAV

Gwak et al., 2020
[35] Journal of Sound and Vibration 11

Effects of flow recirculation on
Unmanned Aircraft System (UAS)
acoustic measurements in closed

anechoic chambers

Stephenson et al., 2019
[36]

The Journal of the Acoustical Society
of America 11

Acoustic signature measurement
of small multi-rotor Unmanned

Aircraft Systems

Kloet et al., 2017
[37]

International Journal of Micro
Air Vehicles 10

Modeling aerodynamically
generated sound of

helicopter rotors

Brentner and Farassat, 2003
[18] Progress in Aerospace Sciences 9

Psychoacoustic modelling of
rotor noise

Torija et al., 2022
[38]

The Journal of the Acoustical Society
of America 9

Experimental study of quadcopter
acoustics and performance at static

thrust conditions

Intaratep et al., 2016
[39]

22nd AIAA/CEAS
Aeroacoustics Conference 9

Effects of a hovering Unmanned
Aerial Vehicle on urban
soundscapes perception

Torija et al., 2020
[10]

Transportation Research Part D:
Transport and Environment 8

Initial investigation into the
psychoacoustic properties of small

Unmanned Aerial System noise

Christian and Cabell, 2017
[40]

23rd AIAA/CEAS
Aeroacoustics Conference 8

3.1. Bibliometric and Citation Analysis

This review first examined several standard statistics, including the most relevant
authors, sources, and institutions involved in UAS noise monitoring, assessment, and
prediction studies (Tables 2–4). Antonio J. Torija stands out, with six pertinent research
articles over the past ten years, and holds the highest number of fractionalized articles at
1.92. The International Journal of Environmental Research and Public Health, Aerospace Science
and Technology, and the Journal of the Acoustical Society of America are the top three most
productive journals, with seven, six, and five relevant publications.

Local citations (LCS) are good indicators of the overall quality, relevance, trends,
credibility, and impact within a community. The Journal of the Acoustical Society of America,
the Journal of Sound and Vibration, and the AIAA Journal are the top three journals, with 134,
107 and 94 LCS, respectively.

Table 4 presents the most significant affiliations in UAS noise problem studies. The
Hong Kong University of Science and Technology (HKUST, China), the University of
Auckland (New Zealand), and the University of Salford (United Kingdom) are the top
three institutions with the highest research output, featuring 24, 15 and 14 relevant articles,
respectively. Notably, HKUST Shenzhen Research Institute (China) and Shenzhen Research
Institute (China) have six and four relevant publications, respectively. This suggests
possible collaborations with HKUST, which are explored further in Section 3.1.4.



Acoustics 2024, 6 1002

Table 2. Most relevant authors on UAS noise monitoring, assessment, and prediction.

Authors Articles Articles Fractionalized
(Rank)

Antonio J. Torija 6 1.92 (1)
Xin Zhang 6 1.13 (2)

Siyang Zhong 5 1.02 (4)
Michael J. Kingan 5 1.04 (3)

Hanbo Jiang 4 0.84 (7)
Damiano Casalino 3 0.62 (14)

Tyaek Go Sung 3 0.83 (8)
Nathan Green 3 0.67 (9)

Riul Jung 3 0.53
Soogab Lee 3 0.92 (6)

Table 3. Most relevant sources on UAS noise monitoring, assessment, and prediction.

Sources Articles LCS (Rank)

International Journal of Environmental Research and Public Health 7 42 (6)
Aerospace Science and Technology 6 49 (5)

Journal of the Acoustical Society of America 5 134 (1)
Physics of Fluids 5 28 (8)
Applied Acoustics 4 60 (4)

Journal of Sound and Vibration 4 107 (2)
AIAA Journal 3 94 (3)

Drones 3 4 (69)
International Journal of Aeronautical and Space Sciences 2 3 (97)

Transportation Research Part D: Transport and Environment 2 23 (10)

Table 4. Most relevant affiliations on UAS noise monitoring, assessment, and prediction.

Affiliation (Region) Articles

Hong Kong University of Science and Technology (China) 24

The University of Auckland (New Zealand) 15

University of Salford (United Kingdom) 14

Seoul National University (South Korea) 9

HKUST-Shenzhen Research Institute (China) 6

Korea Advanced Institute of Science and Technology (South Korea) 5

Dassault Systemes Deutschland GmbH (Germany), Shenzhen Research Institute (China) 4

RMIT University (Australia), University of Southampton (UK), University of Texas Austin (USA), University
of Zagreb (Croatia), U.S. Air Force Academy (USA), Zhejiang University of Science and Technology (China) 3

Table 5 presents the studies receiving the highest global citations, using the Global
Citations per Year (GCS per year) indicator to account for publication duration bias. Chris-
tiansen et al. [41] conducted the most globally cited study, “Noise Levels of Multi-Rotor
Unmanned Aerial Vehicles with Implications for Potential Underwater Impacts on Marine
Mammals”, with a total of 107 citations. In addition, the studies by Lee, Hakjin and Lee;
Duck-Joo [42]; and Casalino et al. [43] demonstrate the highest average annual citations,
each achieving 12 citations per year.
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Table 5. Most global-cited (GC) articles on UAS noise assessment.

Title Author, Year Journal Total
GCS Mean GCS per Year

Noise levels of multi-rotor
Unmanned Aerial Vehicles with

implications for potential
underwater impacts on

marine mammals

Christiansen et al., 2016
[41] Frontiers in Marine Science 107 11.89

Multirotor drone noise at
static thrust

Tinney and Sirohi, 2018
[23] AIAA Journal 79 11.29

Rotor interactional effects on
aerodynamic and noise
characteristics of a small

multirotor unmanned
aerial vehicle

Lee, Hakjin and Lee,
Duck-Joo, 2020

[42]
Physics of Fluids 60 12.00

Acoustic signature measurement
of small multi-rotor unmanned

aircraft systems

Kloet et al., 2017
[37]

International Journal of Micro
Air Vehicles 51 6.38

Definition of a benchmark for
low Reynolds number
propeller aeroacoustics

Casalino et al., 2021
[43]

Aerospace Science
and Technology 48 12.00

Effects of a hovering Unmanned
Aerial Vehicle on urban
soundscapes perception

Torija et al., 2020
[10]

Transportation Research Part
D: Transport and Environment 47 9.40

Drone noise emission
characteristics and noise effects

on humans—A systematic review

Schäffer et al., 2021
[44]

International Journal of
Environmental Research and

Public Health
43 10.75

Assessing the disturbance
potential of small Unoccupied

Aircraft Systems (UAS) on gray
seals (Halichoerus grypus) at

breeding colonies in Nova
Scotia, Canada

Arona et al., 2018
[45] PeerJ 36 5.14

Sound quality factors
influencing annoyance from

hovering UAV

Gwak et al., 2020
[35] Journal of Sound and Vibration 35 7.0

A psychoacoustic approach to
building knowledge about
human response to noise of
Unmanned Aerial Vehicles

Torija and Clark, 2021
[46]

International Journal of
Environmental Research and

Public Health
31 7.75

Table 6 presents studies with the highest local citations (LCS), highlighting the value
and recognition these studies have received from local peers. The most locally cited article
is by Tinney and Sirohi [23], with a local citation (LC) to global citation (GC) ratio of 20.25%.
This LC/GC ratio is an effective indicator of how well a study aligns with the main trends
within a targeted group in specific domains. Although Christiansen et al. [41] holds the
highest number of global citations, its relatively low LC/GC ratio indicates that it is more
frequently cited by subjects outside the UAS noise domain.
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Table 6. Most local-cited (LC) articles on UAS noise assessment.

Title Author, Year Journal Total
LCS LC/GC (%)

Multirotor drone noise at
static thrust

Tinney and Sirohi, 2018
[23] AIAA Journal 16 20.25

Effects of flow recirculation on
Unmanned Aircraft System

(UAS) acoustic measurements in
closed anechoic chambers

Stephenson et al., 2019
[36]

The Journal of the Acoustical
Society of America 11 36.67

Acoustic signature measurement
of small multi-rotor Unmanned

Aircraft Systems

Kloet et al., 2017
[37]

International Journal of Micro
Air Vehicles 10 19.61

Psychoacoustic analysis of
contra-rotating propeller noise
for Unmanned Aerial Vehicles

Torija et al., 2021
[47]

The Journal of the Acoustical
Society of America 9 30.00

Rotor interactional effects on
aerodynamic and noise
characteristics of a small
multirotor Unmanned

Aerial Vehicle

Lee, Hakjin and Lee,
Duck-Joo, 2020

[42]
Physics of Fluids 7 11.67

Lattice-Boltzmann calculations
of rotor aeroacoustics in
transitional boundary

layer regime

Casalino et al., 2022
[48]

Aerospace Science
and Technology 5 10.42

Experimental and analytical
investigation of contra-rotating
multi-rotor UAV propeller noise

McKay et al., 2021
[49]

The Journal of the
Applied Acoustics 5 20.00

Noise prediction of multi-rotor
UAV by RPM fluctuation

correction method

Han et al., 2020
[50]

Journal of Mechanical Science
and Technology 3 25.00

Psychoacoustic modelling of
rotor noise

Torija et al., 2022
[38]

The Journal of the Acoustical
Society of America 3 30.00

Noise levels of multi-rotor
Unmanned Aerial Vehicles with

implications for potential
underwater impacts on

marine mammals

Christiansen et al., 2016
[41] Frontiers in Marine Science 2 1.87

3.1.1. Co-Occurrence Analysis (Title and Abstract)

To conduct the co-occurrence network analysis at the Title and Abstract level, the
minimum number of keyword occurrences was set to 5, considering the limited studies in
UAS noise monitoring, assessment, and prediction. For each of the 34 keywords, the total
strength of co-occurrence links with other keywords was calculated. Keywords with the
highest total link strength were selected. Figure A1 in Appendix A presents two clusters:
Cluster 1 includes topics such as ‘measurement’, ‘sound pressure level’, ‘simulation’,
‘thrust’, ‘tonal noise’, ‘aerodynamic’, and ‘propeller’. Cluster 2 comprises ‘impact’, ‘drone’,
‘operation’, ‘assessment’, ‘framework’, and ‘annoyance’. These clusters indicate that the
relevant noise problem studies can be categorized into aeroacoustics and psychoacoustics.

3.1.2. Co-Authorship and Author Citation Analysis

Figure 2 presents a density visualization of co-authorship using fractional counting.
The minimum number of documents per author was set to 3, and the weight of the links
was fractionalized based on the number of co-authors of each study. Some nodes in this
network are not connected to each other. Five clusters are identified in Figure 2 based on



Acoustics 2024, 6 1005

the predefined threshold. For example, two groups led by Zhang, X. and Torija, A. are
disconnected, indicating no direct collaboration or relevance between their studies.
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3.1.3. Co-Citation Analysis (Literature)

A co-citation relationship is established if two or more papers are cited concurrently
by one or more subsequent articles. A network visualization of co-citation is presented in
Figure A2. This indicator presents the strength of the interconnection among the literature
referred to in a primary article [51]. The minimum number of citations of a cited reference
was set as five. In addition, Table 1, with the most local-cited references, has good agreement
with the co-citation analysis.

“Multirotor Drone Noise at Static Thrust”, with 16 local citations, gained the most
local citations during the past decade. “Sound generation by turbulence and surfaces in
arbitrary motion”, with 18 local citations, gained the second most local citations and was
included in the reviewed dataset.

3.1.4. Collaboration Analysis (Country and Institution)

Figure 3 presents six clusters of countries. The first cluster comprises China, the
United Kingdom, and Spain. The second cluster includes the United States, South Korea,
Kazakhstan, Canada, Denmark, Australia, and the United Arab Emirates. The third cluster
consists of Germany, Italy, Switzerland, and Belgium. Notably, Clusters 2 and 3 are the only
groups that show collaboration between groups of countries. Similarly, Figure 4 presents a
collaboration network by institutions. The largest cluster is centered on the Hong Kong
University of Science and Technology (China), consistent with Table 4.
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3.2. The Recent Progress of UAS Noise Monitoring, Assessment, and Prediction

The UAS noise problem framework, presented in Figure 5, was formalized based on
our bibliometric analysis and literature review. The UAS noise problem studies, focusing on
noise monitoring, assessment, and prediction, are categorized as aeroacoustics and psychoa-
coustics. Table 5 presents a detailed review of the literature from a macroscopic perspective.
In addition, the completed list of final screened datasets is presented with identified features
such as region, problem-solving and innovation, and methods (see Table 7).
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Table 7. Review of the literature from a macroscopic perspective.

Literature (Ref.)
Region Problem Solving and Innovation Method

CN EU Others US

Casalino et al., 2022 [48] × ×
A recently developed variant of

PowerFlow VLES model is validated to
predict trailing edge noise radiation.

Simulation

Casalino et al., 2021 [43] ×
A preliminary step towards defining a

benchmark configuration for low Reynolds
number propeller aeroacoustics.

Force and noise measurements
carried out in a low-speed

semi-anechoic wind tunnel were
compared to scale-resolved

CFD simulations.

Wunderli et al., 2022 [52] ×
A modeling approach in combination with
a measurement concept is validated using

three different multi-copter models.
A multiple regression approach.

Jiang et al., 2022 [53] ×

Numerical simulations, including RANS
and DDES computations, were conducted
to evaluate the designed high-efficiency,
low-noise propellers’ aerodynamic and

acoustic performance.

Both field experiments
and simulation

Ramos-Romero et al., 2023 [54] ×

A measurement and analysis framework
for the acoustic characterization of sUAS
through calculating conventional noise

metrics, frequency, and directivity features.

Field experiment based on a
multi-channel approach, and
back-propagating the sound

from ground microphone
to source.

Casalino et al., 2023 [20] ×

The effects of flow confinement on the
noise generated by a sUAS rotor were
measured and simulated in a partially

closed test room.

Both field experiments and
simulations were conducted.

Fruncillo et al., 2022 [55] ×
The experimental–numerical comparisons

on the simulation model combine flight
dynamics and aeroacoustics.

Experimental flight data were
used to validate the
simulation model.

Wu et al., 2022 [56] ×
A detailed investigation of tonal noise

produced by a UAS rotor operating with a
circular strut mounted downstream.

Experiment measurement and
CFD simulations

Yu et al., 2023 [24] × ×
Aeroacoustics attributes of fixed- and

variable-pitch control drones
were compared.

Simulation-based on the
multirotor noise

assessment framework
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Table 7. Cont.

Literature (Ref.)
Region Problem Solving and Innovation Method

CN EU Others US

Torija et al., 2022 [38] × ×
A psychoacoustic annoyance model

optimized for rotor noise to account for the
perceptual effect of impulsiveness.

A listening experiment was
conducted in which participants

assessed a series of sound
stimuli with various
design parameters.

Stalnov et al., 2022 [25] ×
A framework for estimating rotor-based

UAV auditory detection probability on the
ground for a listener in a real-life scenario.

Outdoor soundscape recordings
and measurement of propeller

acoustic signature in
anechoic chamber.

Jiang et al., 2021 [57] ×

The thickness noise and loading noise
model of rotors has been formulated in
spherical coordinates, simplifying the
numerical evaluation of the integral

noise source.

CFD and experiment show that
the noise prediction model’s

performance is reliable.

Utebayeva et al., 2023 [58] × ×

Machine learning models (SimpleRNN,
LSTM, BiLSTM, and GRU) recurrent

network models for real-time UAS sound
recognition systems based on

Mel-spectrogram using Kapre layers

Training data are collected from
field experiments. Models are

tested in simulation.

Ahuja et al., 2022 [59] ×
Integrate established acoustic prediction

techniques directly into a surface–vorticity
solver.

Embed metrics into a simple
and user-friendly

simulation-based flow solver.

Zhou et al., 2022 [60] ×

Noise source features of multi-rotor
systems are experimentally studied using
microphone arrays and the conventional

beamforming algorithm.

Dual-propeller measurement
and flight test in anechoic

chamber.

Dbouk and Drikakis, 2021 [61] ×

A high-resolution computation
methodology for predicting aeroacoustic

footprints emitted from a swarm of
multi-rotor drones.

A virtual blade model is
integrated into the CFD solver

to impose the propeller’s
downwash and upwash effects.

Bu et al., 2021 [62] ×

The influence of the propeller separation
distance for various propellers at different
rotation speeds and rotational directions

was studied.

Field experiments in an anechoic
chamber and

numerical simulations.

Guo et al., 2020 [15] ×

A monitoring system that identifies and
tracks illegal UAS based on acoustic
features using a microphone array, a
hidden Markov model (HMM), and

adaptive beamforming.

Field experiments scan the sky,
find sound sources, and identify

illegal drones. Performance is
evaluated through simulations.

Bbouk & Drikakis, 2022 [63] × ×

A CFD study of quadcopter aeroacoustics,
which is integrated in the framework of

Reynolds–Averaged Navier–Strokes with
the Ffowcs Williams–Hawkings

(FW-H) model.

Simulation results agree with
experimental data at a moderate

computational cost.

Go et al., 2023 [64] ×
The effect of an acoustically rigid shroud

on the tonal noise produced by a UAS
propeller is studied.

CFD simulations showed good
agreement with measurements

of the time-average rotating
pressure field made by a probe

microphone on the inner surface
of the shroud.

Gwak et al., 2020 [35] × Psychoacoustic aspects of the noise of
multi-rotor UAS are studied.

The first experiment collected
field UAS noise data and

generated new stimuli; the
second was a psychoacoustic

experiment.

Ghoreyshi et al., 2023 [19] ×

Two different computational setups are
used to study the performance and

aeroacoustics of twelve different UAS
propeller designs.

Two experiments were
conducted in the wind tunnel

with microphones (one
fixed-position and another

radially traversing).
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Table 7. Cont.

Literature (Ref.)
Region Problem Solving and Innovation Method

CN EU Others US

Alkmim et al., 2022 [65] ×
An experimental setup for measuring the
sound radiation of a quadrotor UAS using

a hemispherical microphone array.

A hemi-anechoic chamber was
used for the field experiment.

Kim et al., 2019 [66] ×

The unsteady Reynolds-averaged
Navier–Stokes (uRANS) equations were

solved to investigate the steady and
unsteady loading noise sources around the
blades with a radius of 17 cm rotating at

5000 rpm.

The three-dimensional uRANS
simulation result was compared

with data from
NASA’s experiment.

Lotinga et al., 2023 [67] ×
Review and discuss the current state of

UAS noise measurement and
assessment practices.

Review

Langen et al., 2022 [26] ×
A conceptual framework for UAS noise in

U-Space architecture with a use case
scenario and verification method.

Simulation

Jung et al., 2024 [22] × An investigation on blade skew effect on
interaction tones by a contra-rotating UAS.

CFD simulation and experiment
in an anechoic chamber.

Arona et al., 2018 [45] ×

The acoustic properties of sUAS with low
ambient noise conditions are assessed

using sound equivalent level (Leq) with a
calibrated U-MIK 1 and a 1/3 octave band

soundscape approach.

Field experiment recorded
acoustic data using a

calibratedUMIK-1 and
connected to an Apple iPad
running Faber Acoustical

SoundMeter Pro.

Jiang et al., 2021 [21] ×
A boundary element method (BEM)-based

solver is employed to evaluate the
scattering of rotor noise of UAS fuselage.

Simulation

Liu et al., 2021 [16] ×

A remolded acoustic energy decay model
preserved in acoustic energy attenuation

inverse of distance square was used to
generate training data for

UAS localization.

Simulation

Ramos-Romero et al., 2022 [13] ×
A modeling framework for setting

recommendations for UAS operations to
minimize community noise impact.

An acoustics database is referred
from Volpe [68].

Bian et al., 2021 [69] ×

An in-house solver, Environmental
Acoustic Ray-Tracing Code (EnvARC), was

used to investigate noise UAS
noise impact.

Simulation

Tan et al., 2023 [27] ×
The noise impact of delivery drones in an

urban community is assessed using an
efficient Gaussian bean tracing method.

Simulation

Choi et al., 2023 [70] ×
A method for predicting rotor UAV

aeroacoustic noise considering
bending–torsion coupling.

Simulation

Mankbadi et al., 2021 [71] ×

High-fidelity simulations of unsteady flow
and radiated rotor UAS noise were

conducted to capture the broad-band noise
associated with the propeller and its wake.

Computational simulations on
the dilatation field, the

Lighthill’s stress tensor, and
each term in the Ffowcs

Williams–Hawking’s integral
solution of the far field.

Ren and Cheng, 2020 [11] ×
Noise impact was assessed and integrated

into a comprehensive third-party risk
index model of UAS urban logistics.

Field experiments
and simulations.

Ivoševi’c et al., 2021 [72] ×
UAS noise measurement and survey were
conducted for a comparative analysis of

two UAS’s different performances.

Field experiments and surveys
on human subjects.
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Literature (Ref.)
Region Problem Solving and Innovation Method

CN EU Others US

Jung et al., 2023 [73] ×

The interaction tones produced by the
periodic unsteadying loading on the

blades of two different contra-rotating
UAS were studied.

CFD simulations and
experimental measurements

showed generally
good agreement.

Škultéty et al., 2023 [12] ×
An assessment of psychoacoustic UAS noise

impact in several weight categories
concerning the urban environment.

Field experiments
and simulations.

Han et al., 2020 [50] ×

An innovative rotation per minute (RPM)
fluctuation correction method considering

the frequency modulation effects was
developed.

Field experiments
and simulations.

Kapoor et al., 2021 [74] ×
A review of current state of manned and
unmanned aircraft noise assessment and

mitigation approaches.
Review

Christiansen et al., 2020 [75] × × × UAS noise impact on marine mammals
was examined.

Acoustic cue perceptibility of
UAS noise was examined by
measuring the received UAS

underwater noise level on
whales equipped with acoustic

tags (DTAGs).

Christiansen et al., 2016 [41] × ×
UAS noise underwater levels on marine

mammals were measured to assess
potential impact on marine mammals.

In-air and in-water noise from
two common UAS

were measured.

Hui et al., 2021 [76] × An evaluation on human perception of
four rotor UAS.

Field experiments and surveys
on human subjects.

Augustine and Burchfield, 2022
[77] × A preliminary study of rotor UAS noise

impact on wildlife. Field experiments.

Park et al., 2017 [78] × A noise prediction method for a ducted fan
UAS with complicated geometry.

Experiments and simulations for
aerodynamic analysis and

noise prediction.

Lee and Lee, 2020 [42] ×

A study on mutual rotor-to-rotor
interactional effects on the aerodynamic

performance, wake structure,
and aeroacoustics.

CFD simulation results were
compared to the NASA

experimental data.

Schäffer et al., 2021 [44] × A systematic review on drone noise
emissions and noise effects on humans. Review

Stephenson et al., 2019 [36] ×
Identifying effects of flow recirculation on
an isolated rotor’s acoustic emissions in a

closed anechoic chamber.
Indoor experiment

Tinney and Sirohi, 2018 [23] ×
A first-principles understanding of the
sound field produced by UAS in hover

was presented.
Indoor experiment

Torija et al., 2021 [47] × ×
Investigating the optimal rotor spacing

distance configuration to minimize
noise annoyance

Indoor experiment

Torija and Clark, 2021 [46] ×
The state-of-the-art evidence on human
response to aircraft noise was reviewed,

and its application for UAS was discussed.
Review

Torija et al., 2020 [10] × ×

A series of audiovisual scenarios was
created to investigate the effects of UAS

noise on the reported psychoacoustic
metrics of seven different types of urban

soundscapes.

The outdoor field recorded
audio-visual data, generating

stimuli used for the experiment.

Zhong et al., 2020 [79] ×
An asymptotic analysis of the

frequency-domain formulation to compute
the tonal noise of UAS

Indoor experiments and
simulations

Kloet et al., 2017 [37] × An acoustic signature profile of a sUAS
was generated.

Outdoor field experiments and
indoor laboratory testing
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3.2.1. Aeroacoustics

Aeroacoustics is commonly associated with aerodynamic analysis, which considers
various types of rotor/propeller design, control, and operation of UAS platforms. These
analyses are usually conducted in outdoor/indoor experiments or computational fluid
dynamics simulations.

The noise a rotor emits in the transitional boundary layer regime is similar to the airfoil
case. The Lattice–Boltzmann method (LBM) is the most common approach to statistically
tracking the advection and collision of fluid particles [48].

The majority of the reviewed studies specifically investigate UAS aeroacoustic noise
measurement, considering different types of UASs [19,52,65], certain UASs with different
RPM [62] and pitch controls [24], and plenty of studies focused on hovering and static
thrust only [23,78]. Specifically, Han et al. [73], Jung et al. [22,72], Wu et al. [56], Casalino
et al. [20,43,48], Jiang et al., [21,57], Kim et al. [66], Mankbadi et al. [71], Choi et al. [70], Lee
and Lee [42], Stephenson et al. [36], and Zhong et al. [79] investigate aerodynamics and
aeroacoustics of rotor UAS, considering different designs and conditions of the propeller.
Go et al. [64] and Park et al. [78] investigate the tonal noise from a rigid shroud-equipped
UAS. The prediction of aeroacoustic noise effects from UAS swarms is studied by Dbouk
and Drikakis [61]. Notably, measuring UAS noise also facilitates the detection, identification,
classification [15], and localization [16] of illegal UAS operations.

3.2.2. Psychoacoustics

In many cases, aeroacoustic metrics, such as sound pressure levels (SPLs), might not
reflect all features of the radiated noise, especially when human perception is of interest [65].
Therefore, psychoacoustic surveys from UAS operations, considering hovering [67], takeoff
and landing [46,47], etc., have become common trends in studying the human response
to UAS noise. The annoyance caused by UAS can be influenced by loudness, tonality,
sharpness, fluctuation strength, and roughness [35]. Psychoacoustics metrics computed
using the reconstructed sound pressure field indicated good agreement between the target
and propagated signal [65].

Human subjects are recruited and involved in experiencing various types of UAS
sounds, depending on the purpose of the study. Gwak et al. [35] unveil the correlation be-
tween the annoyance level and the size of drones, emphasizing the significant contributing
factors, including sharpness, loudness, and fluctuation.

Several studies integrate the noise impact into a comprehensive framework to assess
the overall community impact [10,11,46,47]. For instance, Torija et al. [10] discussed the
effect of ambient road traffic noise in masking UAS noise, as it might shed light on strategies
to optimize UAS path planning in UAM.

3.2.3. Other Findings

Notably, the issue of UAS noise has garnered significant attention from various in-
terdisciplinary domains. Wildlife biologists, for instance, use UASs to monitor wildlife,
leading to numerous studies on the impact of UAS noise on wildlife. These studies docu-
ment birds’ reactions to UASs [77], compare UAS noise with ambient sounds [77], analyze
underwater aeroacoustic metrics [41], and investigate changes in horizontal behavior and
surfacing patterns [75].

The predominant focus in the reviewed literature has been on rotor UAS, though Arona
et al. [45] have conducted assessments of fixed-wing UAS noise. Field experiments include
outdoor testing and recording with selected UAS, while indoor experiments are typically
performed in closed anechoic chambers. Zhou et al. [60] concentrated on rotor noise
features using microphone arrays and conventional beamforming algorithms. Tan et al. [27]
developed an economical approach for UAS flight simulation and noise assessment for
delivery drones in urban communities, utilizing the Gaussian beam tracing method to
compute sound propagation in complex environments accurately and efficiently.
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An innovative study by Utebayeva et al. [58] employs a range of machine learning
(ML) models, such as Simple Recurrent Neural Networks (SimpleRNNs), Long short-term
Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), and Gated Recurrent
Unit (GRU) architectures. This study suggests that ML algorithms could offer a promising
pathway for assessing and predicting UAS noise.

Figure 6 presents an author keyword cloud generated based on the frequency of author
keywords. There are a total of 116 occurrences of 50 different keywords. The top ten author
keywords by frequency are ‘aeroacoustics’ (7), ‘drone noise’ (7), ‘drones’ (7), ‘propeller
noise’ (7), ‘noise’ (6), ‘unmanned aerial vehicle’ (6), ‘drone’ (5), and ‘rotor noise’ (5).
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4. Discussion
4.1. General

One notable feature is the lack of international collaborations in UAS noise-related
studies, as evidenced in Figures 3 and 4. This can be attributed to the relative immaturity
and ongoing growth of the UAS industry compared to the manned aircraft industry. The
level of maturity, market size, and policies and regulations vary and are still evolving
across different countries. Nonetheless, fostering such connections should be a priority of
individual governments and international organizations, such as the International Civil
Aviation Organization (ICAO) and the Association for Uncrewed Vehicle Systems Interna-
tional (AUVSI), as the mission and vision of UAS are integrated into Advanced Air Mobility
(AAM) initiatives [9].

Utebayeva et al. [58] highlight the need to expand the audio dataset of loaded UAS and
explore distance-based detection challenges. Furthermore, developing a publicly available
benchmark UAS dataset would enhance simulation-based noise assessment and prediction,
akin to the Aircraft Noise and Performance (ANP) database developed and maintained by
EASA [80].

Extensive research has demonstrated the feasibility and cost-effectiveness of a data-
fusion-based approach in traditional manned aircraft noise prediction [81–83]. Similarly,
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this approach could benefit UAS noise impact assessment by leveraging telemetry data
broadcasted by UAS. For instance, the FAA mandates that sUAS operating in the USA
must be equipped with remote identification, also known as Remote ID, which includes
time-location and fleet information [84]. Despite the limitations in current UAS surveillance
capabilities, these advancements will highlight the potential for data-fusion applications in
future active UAS noise monitoring, assessment, and prediction. A roadmap is presented
in Figure 7.
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4.2. Aeroacoustics

This review covers the past ten years of literature, aligning with the rapid develop-
ment and penetration of UASs. The aeroacoustic-related studies reviewed heavily focus
on traditional aerodynamics and aeroacoustics fields, typically based on the foundations
of conventional manned helicopters [18]. This suggests a more expansive search window
could capture more relevant literature and unveil additional insights. Despite the limita-
tions of this review, UAS aeroacoustics measurement has been extensively studied through
laboratory and field experiments, considering sound level, frequency, and directivity.
Section 3.1.3. suggests that enhanced collaboration across countries, institutions, and
research groups could facilitate the development of a benchmark UAS noise-to-operation-
to-distance dataset, thereby benefiting stakeholders’ decision-making in regulatory and
certification development, active UAS noise abatement policies, etc.

4.3. Psychoacoustics

Compared to aeroacoustics studies, there are limited studies on psychoacoustic analysis
regarding human responses to UAS noise [10,12,72], which can be enhanced when mul-
tidisciplinary methodologies are well-designed in specific scenarios. On the other hand,
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innovative techniques, such as machine learning and data-fusion techniques, might facili-
tate active UAS noise monitoring, assessment, and prediction from a practical standpoint.
Since UAS fleet mix and performance directly correlate with psychoacoustic metrics, further
research could provide deeper insights and reveal correlations between community annoy-
ance and UAS fleet characteristics and performance. Such insights are crucial for planning
low-altitude flights in urban environments and supporting stakeholders’ decision-making.
Beyond the scientific rigor of traditional acoustic measures reviewed in this literature, an
emerging area that leverages data science and multisensory approaches shows promising
short-term applications [58].

5. Conclusions

Aircraft noise has long been a concern for various stakeholders, as its negative envi-
ronmental impact can lead to adverse attitudes from local communities toward airport
operations and planning. With the increasing use of unmanned aerial systems (UAS) in civil
and commercial domains, it is essential to study UAS-induced noise. This study applies
bibliometric and citation analysis to related literature from 2015 to 2024, sourced from the
Web of Science Core Collection database. The current progress in UAS noise monitoring,
assessment, and prediction has been systematically reviewed and presented through a
comprehensive visualized framework. This review also highlighted the critical limitations
and challenges in the field, such as the gap in a comprehensive benchmark UAS noise
database, the need for advanced data-fusion techniques, and the integration of diverse data
sources. These insights unveil significant opportunities for future research, particularly in
developing more sophisticated noise prediction models, real-time monitoring systems, and
realistic exposure–response assessment frameworks [67].

As UASs proliferate across civil and commercial sectors, understanding and mitigating
their noise impact becomes increasingly vital. Integrating remote identification (Remote
ID) data and other telemetry information presents a promising avenue for enhancing UAS
noise assessment. Furthermore, enhancing international collaboration among academic
institutions, industry stakeholders, and regulatory bodies will be essential in driving
innovations and establishing robust noise management frameworks.

This review serves as a cornerstone for UAS noise research, providing a foundational
understanding and a roadmap for future investigations. By addressing the identified
challenges, leveraging emerging technologies, and fostering collaborations, the field can
move towards more effective noise abatement strategies, ultimately contributing to the
broader acceptance and sustainable integration of UAS into various aspects of society.
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The following abbreviations are used in this manuscript:

AAM Advanced Air Mobility
ADS-B Automatic Dependent Surveillance-Broadcast
AUVSI Association for Uncrewed Vehicle Systems International
BiLSTM Bidirectional Long Short-Term Memory
CAA Computational Aeroacoustics
CFD Computational fluid dynamics
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DDES Detached eddy simulation
FAA Federal Aviation Administration (USA)
GA General Aviation
GRU Gated Recurrent Unit
ICAO International Civil Aviation Organization
LBM Lattice Boltzmann Method
LSTM Long Short-Term Memory
NASA National Aeronautics and Space Administration
RANS Reynolds-averaged Navier–Stokes models
RPM Rotation per minute
SimpleRNN Simple Recurrent Neural Networks
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis
UAM Urban Air Mobility
UAS Unmanned Aerial System/ Unmanned Aircraft System
UAV Unmanned Aerial Vehicle/Uncrewed Aerial Vehicle
VTOL Vertical Takeoff and Landing Aircraft
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