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Abstract: Aims: The aim was to assess the agreement between microphone-derived and
neck accelerometer-derived voice acoustic parameters and their associations with recording
moments and speech types. Methods: Using simultaneous recordings, a 7-week study
on a single individual was conducted to reduce intersubject variability. Agreement was
assessed using Bland–Altman plots, and associations were examined with generalized
estimating equations. Results: Bland–Altman plots showed no significant bias between
microphone (MIC) and accelerometer (ACC) measurements for alpha ratio, CPP, PPE, SPL
SD, fundamental frequency (fo) mean, and SD. Speech type and measurement timing
were significantly associated with alpha ratio, while the instrument was not. Microphone
measurements resulted in slightly lower CPP compared to the accelerometer, while reading
samples yielded higher CPP compared to vowel productions. PPE, SPL SD, and fo mean
showed significant associations with speech type, based on univariate analysis. Microphone
measurements yielded a statistically smaller fo SD compared to the accelerometer, while
reading productions had a larger fo SD than vowel productions. Conclusions: Fundamental
frequency, alpha ratio, PPE, and SPL SD values were robust, regardless of the instrument
used, suggesting the potential use of accelerometers in less-controlled environments. These
findings are crucial for enhancing confidence in voice metrics and exploring efficient clinical
assessment protocols.

Keywords: voice; voice acoustic parameters; microphone; accelerometer; repeated measures

1. Introduction
During voice therapy assessments, vocal health practitioners use a wide range of

in-clinic instrumentation, protocols, and metrics to determine the efficiency of intervention
strategies. These tools include speech materials, like sustained vowel productions and
readings [1,2], which may not represent real-life voice use. This can hinder a comprehensive
understanding of voice performance. To address this, “ecological voice assessments”
emerged as a valuable complement [3,4]. These assessments involve recording actual voice
use in daily contexts, like an occupational setting, offering a more holistic and realistic
picture of vocal demands. Moreover, with the latter in particular, clinicians gain the
ability to not only track actual vocal use but also to sample the impact of therapy on an
individual’s daily communicative environment. This capability extends to remote therapy
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and assessment, scenarios beyond the scope of isolated simulated vocal tasks employed in
traditional clinical settings. Nevertheless, moving towards more ecologically valid voice
assessments introduces additional uncertainty and variability that already exist in assessing
voice production.

Speech and voice acoustic parameters can exhibit significant variability due to numer-
ous influencing factors. The natural inter- and intrasubject variabilities in voice parameters
are commonly mitigated by controlling the vocal demand (e.g., communication partner,
environment noise, vocal goal, voice content) and/or by increasing the number of samples
and repetitions [5,6]. For example, the voice or speech content, such as reading passages
versus vowel production, has an impact on parameters, even for the same individual [7,8].
The context or time of day of voice production, such as capturing voice use before and
after specific interventions or daily activities, also illustrates the dynamic nature of vocal
production and vocal health [5]. Understanding the sources of variability, which acoustic
parameters are less sensitive to variability, and how to mitigate such variability, when
possible, are important for a holistic understanding of voice use and ecological voice
assessment [9,10].

In pursuit of capturing authentic voice use outside clinical settings while trying to
mitigate variability, technological advancements have led to integrating various types of
transducers in ambulatory voice monitoring devices. These instruments are key in surpass-
ing the limitations of traditional in-clinic assessments, offering a window into more natural
vocalization patterns within the clinic and in more ecologically relevant environments.
Nonetheless, while ambulatory voice monitoring, or voice dosimetry, has been used in var-
ious research studies in real-world situations, it has not yet become clinically viable. Using
more ecologically valid conditions for vocal assessment requires a different approach to
vocal recording and quantification [11,12]. Where most clinical assessments call for highly
prescribed vocal production instructions or controlled communication settings, ecological
monitoring of the voice inherently has much less control and should be sensitive to patient
privacy, capable of recording longer samples, clinically sustainable and efficient, and robust
to a variety of situations (e.g., communication partners and environmental noises). To
address these requirements, previous attempts [13,14] have used some combination of
open-air microphones (MIC, both omnidirectional and directional), neck-attached contact
microphones (MIC), and neck-attached accelerometers (ACC).

In ecological voice monitoring, the primary value of contact microphones and ACCs
is that their response to physical vibrations at the sampling site makes them less sensitive
to environmental noise artifacts [15,16]. However, this feature comes with the liability of
reduced spectral sensitivity [17,18], which may affect derived voice and speech acoustic
parameters. In contrast, open-air microphones have a better spectral response for recording
voice and speech, but the voice and speech of interest will be contaminated with a variety of
acoustic artifacts (e.g., voice of other talkers, reverberation, static, and transient background
noise), which can also significantly impact derived acoustic parameters.

Accelerometers, microphones, and contact microphones have been compared for
their ability to measure vocal fundamental frequency and other vocal parameters [13,19].
As mentioned above, each type of sensor has its advantages and drawbacks; neverthe-
less, transducers like the neck-worn ACC have been shown to be effective complements
to acoustic recordings in the assessment and monitoring of vocal function. This effec-
tiveness, however, is nuanced by the inherent limitations of each sensor type, especially
when considering the environmental impacts affecting acoustic measurements [20,21]. For
example, the transducer characteristics of the ACC, affecting spectral sensitivity, have
traditionally limited such devices to measuring a narrow set of voice parameters, focused
on voice fundamental frequency, and estimated vocal sound pressure levels and their
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derivatives [22–24]. These reduced parameters have limited the adoption of devices like
the ACC in the natural environment or in a noisy clinic, which impacts their usefulness in
supporting clinical decision-making. Considering factors such as intrasubject variability,
differences in transducers, environmental impacts, and types of vocal content all affect
the reliability and validity of voice acoustic measurements [25,26]. This information is
needed to better understand the evolution of voice disorders, as well as the effectiveness of
intervention strategies.

To address these issues, we conducted a 7-week follow-up study of one occupational
voice user with current voice complaints with two aims: [1] to assess the agreement between
microphone-derived and neck accelerometer-derived voice acoustic parameters and [2] to
evaluate whether the microphone-derived and neck accelerometer-derived voice acoustic
parameters show similar associations with the moment of the recording (pre vs. post)
and type of speech production (reading vs. vowel). This study aims to test two specific
hypotheses. First, we hypothesize that there will be a significant correlation between
acoustic parameters derived from microphones and those derived from neck accelerometers.
Second, we hypothesize that both microphone-derived and neck accelerometer-derived
parameters will exhibit similar associations with the timing of the recording (pre- vs. post-
intervention) and the type of speech production (reading vs. vowel). These hypotheses
are designed to evaluate the reliability and applicability of neck-worn accelerometers in
capturing voice data in real-world settings, thereby informing their potential use in clinical
voice assessments. The results will enable a more informed selection of acoustic parameters
in voice care and promote the intentional use of accelerometers in voice assessment.

2. Materials and Methods
These procedures were designed to simulate a clinically useful vocal monitoring

situation with greater ecological validity than common protocols. The device used was
portable for clients, instructions were simple for most voice clients to follow, and recordings
were conducted by clients in a natural, repeatable setting.

2.1. Participant and Study Design

A male college professor (48 years) who possessed experience and knowledge in voice
production was recruited. The participant disclosed current moderate hoarseness with a
history of voice disorders, laryngopharyngeal reflux, and a high occupational vocal load.
Additionally, the participant indicated generally good vocal hygiene practices, with no
reported use of tobacco or alcohol. This study was conducted with the approval of the
Michigan State University Human Research Protection Program (IRB 13-1149).

For this longitudinal/test–retest study, following the diagnosis of the bilateral sulcus,
the male participant was enrolled in a 7-week voice observation program, where there was
regular use of water resistance therapy (WRT), a form of semi-occluded phonation. Further
details of the WRT and its results may be found in a previously published paper [5].

2.2. Instrument and Procedures

Recordings were performed in a private office (220 sf) with low background noise
levels (Leq 27.2 dbA) and short reverberation time (T20 = 0.21 s), with minimal external
noise and consistent acoustics. This controlled setting helped to maintain a stable recording
environment. In addition, both the microphone and accelerometer were placed according
to standardized procedures to ensure consistent data collection. This included maintaining
a fixed distance from the sound source and using calibrated equipment. By implementing
these measures, we ensured that environmental variables were effectively controlled or
accounted for, thereby enhancing the validity of our findings. As shown in Figure 1,
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all recordings were conducted using the neck collar from the VoxLog (SonVox) voice
monitoring system, along with a digital recorder (Roland R-05, Roland Corporation, Los
Angeles, CA, USA) at common voice/speech recording parameters (41,000 Hz, 16-bit,
wav). The VoxLog neck collar, which is worn about the neck (Figure 1), consisted of
an accelerometer and a factory-calibrated air microphone [14,27]. All voice recordings
included a steady sustained vowel [a:] produced three times at a comfortable pitch and
loudness and the first paragraph of the “Rainbow Passage” (reading) [28]. These were
performed twice each session, before and after the WRT, at various times of the day [5].
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(ACC) and microphone (MIC) positioned on the anterior region of the neck, connected to a Roland
R-05 digital recorder.

We selected the Rainbow Passage and the sustained vowel [a:] as our speech samples,
due to their widespread use and acceptance in voice research and clinical assessments.
The Rainbow Passage is a phonetically balanced text that provides a comprehensive rep-
resentation of various speech sounds, making it an ideal choice for assessing voice and
speech parameters. However, to ensure consistency and manageability in our analysis,
we focused on the first two sentences of that text. This decision was based on the need to
balance the richness of the speech sample with the practical constraints of data processing
and analysis. The sustained vowel [a:] provides a stable and consistent phonatory task that
allows for the reliable measurement of fundamental frequency and other acoustic parame-
ters. The simplicity and consistency of the sustained phonation make it a valuable tool for
comparing voice parameters across different conditions and devices. Further, by nature
of the reading sample, there would be more high-frequency energy from consonants (e.g.,
fricatives, sibilance, plosives), voice onset and offset instability and noise, and more change
in the speech fundamental frequency due to common linguistic variabilities. By selecting
these speech samples, we aimed to leverage their established validity and reliability in
voice research while ensuring that our analysis remained focused and manageable.
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2.3. Acoustic Analysis

In total, 340 audio recordings were made during thirty-two non-consecutive days over
7 weeks. Among these 340 speech samples, 168 were recordings of the three sustained
vowels [a:], and 172 were recordings of the first two sentences of the Rainbow Passage
(40 syllables). Six voice acoustic parameters were analyzed, representing a combination
of traditional and contemporary metrics: alpha ratio, cepstral peak prominence (CPP),
fundamental frequency (fo) mean, fo standard deviation (SD), pitch period entropy (PPE),
and sound pressure levels SD. All acoustic analyses were performed using custom MATLAB
scripts primarily for file handling and integrated Praat scripts (v.6.4.01, www.fon.hum.uva.
nl/praat, accessed on 5 December 2023) [29]. Prior to analysis with Praat, samples were
normalized but were otherwise unaltered. Within Praat are several methods of parameter
extraction, along with variables that will affect the calculation. In this case, for repeatability,
only default parameters and extraction variables were used. All parameters except the PPE
and alpha ratio were obtained from the built-in Praat “Voice” function [30]. The alpha ratio
was calculated as the energy between 1000 Hz and 5000 Hz divided by the energy between
50 Hz and 1000 Hz [31,32].

2.4. Statistical Analysis

First, we calculated mean values and assessed differences in voice acoustic param-
eters, depending on the recording instrument. Second, we assessed the agreement [33]
between microphone-derived and accelerometer-derived voice acoustic parameters from
the reading and vowel productions using the Bland–Altman plot [34,35]. Third, we used
generalized estimating equations (GEEs) to examine the associations between the voice
acoustic parameters with the moment of the recording (pre vs. post WRT) and the type of
speech production (reading vs. vowel).

In addition to Bland–Altman plots, we employed generalized estimating equations
(GEEs) to analyze the data. GEEs were chosen because they are particularly suitable for
analyzing repeated measures or clustered data, where observations within the same subject
or cluster are likely to be correlated. In our study, multiple voice recordings were taken from
the same subject, leading to correlated data that GEEs can effectively manage. In addition,
GEEs allow for the specification of different correlation structures, providing flexibility to
model the within-subject correlation appropriately. This flexibility was crucial in accurately
capturing the correlation patterns in our data. By employing GEEs, we ensured that the
analysis appropriately accounted for the correlated nature of the data, providing reliable
and valid estimates of the effects of interest.

We employed several methods to control potential confounding variables, ensuring
the validity of our results. First, potential confounding variables (speech production
and moment of the recording) were identified based on prior research and theoretical
considerations. Then, we used multivariate models to statistically adjust for identified
confounding variables. By including these variables as covariates in our models, we were
able to isolate the effect of the recording method on the voice acoustic parameters.

3. Results
3.1. Differences in Parameters Obtained from the MIC Signal and the ACC Signal

Table 1 shows the results of the mean values and assessed differences for voice acoustic
parameters depending on the recording instrument. As shown in the Table, the alpha
ratio was statistically higher when recorded with the microphone in the reading sample
(rainbow passage); however, when recorded from the vowel sample, it was higher when
acquired with the accelerometer. Sound pressure levels standard deviations (SPL SDs)
were statistically smaller for both reading and vowel production when recorded with the

www.fon.hum.uva.nl/praat
www.fon.hum.uva.nl/praat
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microphone, compared with the accelerometer. Cepstral peak prominence was statistically
smaller when recorded with the microphone from the reading sample. Pitch period entropy
was significantly bigger when acquired from the microphone signal, compared with the
accelerometer signal, in the vowel sample.

Table 1. Mean values of voice acoustic parameters per speech sample and recording transducer.

Parameter
Reading Sample Vowel Sample

ACC MIC ACC MIC

Alpha Ratio * −30.33 −23.19 −19.05 −29.90
Cepstral Peak Prominence ¥ 16.62 15.97 12.83 12.63
Pitch Period Entropy ± 0.61 0.61 0.24 0.25
Sound Pressure Level SDs * 11.58 9.62 13.12 12.51
Fundamental Frequency mean 140.65 140.86 153.52 153.52
Fundamental Frequency SD 18.74 18.48 2.15 2.11

SD = Standard deviation; * statistically significant differences in both reading and vowel samples; ¥ statistically
significant differences in reading samples; ± statistically significant differences in vowel samples.

3.2. Agreement Between Parameters Obtained from the MIC Signal and the ACC Signal

Figure 2 presents Bland–Altman (B&A) plots assessing the agreement between the
microphone (MIC) and accelerometer (ACC) in measuring the alpha ratio during vowel
production (panel A) and reading (panel B). During reading, the average alpha ratio from
the accelerometer signal was slightly lower (−30.33), compared to the microphone signal
(−23.19). On the contrary, during vowel production, the average alpha ratio from the
accelerometer signal was slightly higher (−19.05), compared to the microphone signal
(−29.90). The B&A plots indicate mean differences of 10.86 (SD = 3.72) in vowel production
and −7.15 (SD = 2.91) during reading between the microphone and accelerometer signals.
These results suggest no systematic bias (ACC-MIC).

Acoustics 2025, 7, x FOR PEER REVIEW 6 of 16 
 

 

microphone, compared with the accelerometer. Cepstral peak prominence was statisti-
cally smaller when recorded with the microphone from the reading sample. Pitch period 
entropy was significantly bigger when acquired from the microphone signal, compared 
with the accelerometer signal, in the vowel sample. 

Table 1. Mean values of voice acoustic parameters per speech sample and recording transducer. 

Parameter 
Reading Sample Vowel Sample 

ACC MIC ACC MIC 
Alpha Ratio * −30.33 −23.19 −19.05 −29.90 
Cepstral Peak Prominence ¥ 16.62 15.97 12.83 12.63 
Pitch Period Entropy ± 0.61 0.61 0.24 0.25 
Sound Pressure Level SDs * 11.58 9.62 13.12 12.51 
Fundamental Frequency mean 140.65 140.86 153.52 153.52 
Fundamental Frequency SD 18.74 18.48 2.15 2.11 
SD = Standard deviation; * statistically significant differences in both reading and vowel samples; ¥ 
statistically significant differences in reading samples; ± statistically significant differences in vowel 
samples. 

3.2. Agreement Between Parameters Obtained from the MIC Signal and the ACC Signal 

Figure 2 presents Bland–Altman (B&A) plots assessing the agreement between the 
microphone (MIC) and accelerometer (ACC) in measuring the alpha ratio during vowel 
production (panel A) and reading (panel B). During reading, the average alpha ratio from 
the accelerometer signal was slightly lower (−30.33), compared to the microphone signal 
(−23.19). On the contrary, during vowel production, the average alpha ratio from the ac-
celerometer signal was slightly higher (−19.05), compared to the microphone signal 
(−29.90). The B&A plots indicate mean differences of 10.86 (SD = 3.72) in vowel production 
and −7.15 (SD = 2.91) during reading between the microphone and accelerometer signals. 
These results suggest no systematic bias (ACC-MIC). 

 

Figure 2. Bland–Altman plot. Data indicate that the alpha ratios obtained from the microphone sig-
nal and the accelerometer signal in the vowel production (Panel A) and the reading (Panel B) show 
no systematic difference in the mean scores. 

The B&A plots used to assess agreement between the CPP determined by the micro-
phone and accelerometer in vowel production (Figure 3A) and reading (Figure 3B) indi-
cated that although the mean CPP calculated from the accelerometer signal was slightly 

Figure 2. Bland–Altman plot. Data indicate that the alpha ratios obtained from the microphone signal
and the accelerometer signal in the vowel production (Panel A) and the reading (Panel B) show no
systematic difference in the mean scores.

The B&A plots used to assess agreement between the CPP determined by the mi-
crophone and accelerometer in vowel production (Figure 3A) and reading (Figure 3B)
indicated that although the mean CPP calculated from the accelerometer signal was slightly
bigger (16.62 for reading and 12.83 in vowel) than the CPP calculated from the microphone
signal (15.97 in reading and 12.63 in vowel), there was not a systematic effect of the mean
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values (ACC-MIC) on the difference (ACC-MIC). The mean CPP differences between the
microphone and accelerometer were 0.65 (SD = 2.70) for reading and 0.20 (SD = 3.84) for
vowel production.
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difference in the mean scores.

Figure 4 shows the B&A plots used to assess the agreement between the pitch period
entropy (PPE) determined by the microphone and the accelerometer signals in the vowel
production (panel A) and the reading (panel B). In the reading, the mean PPEs calculated
from the accelerometer and the microphone signal were the same (0.61), and for the vowel,
the accelerometer was slightly smaller, 80.249, than the microphone (0.25). The B&A
plot suggests that there was not a systematic effect of the mean values (ACC-MIC) on
the difference (ACC-MIC). The averages of the differences between the microphone and
accelerometer were 0.00 for the reading and −0.01 for the vowel (SD = 0.01 and 0.02,
respectively).
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Figure 5 shows the B&A plot used to assess the agreement between the sound pressure
levels standard deviation (SPL SD) determined by the microphone and the accelerometer
signals in the vowel production (Panel A) and the reading (Panel B). While the mean SPL
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SD calculated from the accelerometer signal was slightly bigger (11.58 for reading, and
13.12 for vowel) than the one calculated from the microphone signal (9.62 for reading,
and 12.51 for vowel), the B&A plots suggest that there was not a systematic effect of the
mean values (ACC-MIC) on the difference (ACC-MIC). Therefore, any systematic bias (for
instance, due to the calibration of the instruments) was constant across all measurement
values and not systematic. The averages of the differences between the microphone and
accelerometer were 0.61 (SD = 1.23) for vowel production and 1.96 for reading (SD = 0.81).
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For the fo mean, the averages of the differences between the microphone and ac-
celerometer signals were −0.21 (SD = 0.61) for reading and −0.01 (SD = 0.06) for vowel
production, being marginally higher in the microphone signal (140.86Hz, SD = 10Hz) than
the one from the accelerometer signal (140.65, SD of 9.89). The B&A plots show a good
agreement across the complete range of observed values without a systematic effect of the
mean values (ACC-MIC) on the difference (ACC-MIC) in the vowel productions (Figure 6A)
and reading (Figure 6B).
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Figure 7 shows that, for fundamental frequency standard deviation (fo SD), the de-
crease in the difference between the two instruments was not associated with an increase
in the average mean (ACC-MIC). Therefore, any systematic bias (for instance, due to the
calibration of the instruments) was constant across all measurement values. The mean fo
SD calculated from the accelerometer signal was slightly higher (18.87 in reading and 2.15
in vowel), compared with the microphone signal (18.48 for reading and 2.11 for vowel
production). The averages of the differences between the microphone and accelerometer
signals were 0.26 (SD = 0.58) for reading and 0.04 (SD = 0.17) for vowel production.

Acoustics 2025, 7, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 6. Bland–Altman plot. Data indicate that the fo means obtained from the microphone signal 
and the accelerometer signal in the vowel (Panel A) and the reading (Panel B) show no systematic 
differences in the mean scores. 

Figure 7 shows that, for fundamental frequency standard deviation (fo SD), the de-
crease in the difference between the two instruments was not associated with an increase 
in the average mean (ACC-MIC). Therefore, any systematic bias (for instance, due to the 
calibration of the instruments) was constant across all measurement values. The mean fo 
SD calculated from the accelerometer signal was slightly higher (18.87 in reading and 2.15 
in vowel), compared with the microphone signal (18.48 for reading and 2.11 for vowel 
production). The averages of the differences between the microphone and accelerometer 
signals were 0.26 (SD = 0.58) for reading and 0.04 (SD = 0.17) for vowel production. 

 

Figure 7. Bland–Altman plot. Data indicate that the fo SDs obtained from the microphone signal 
and the accelerometer signal in the vowel (Panel A) and the reading (Panel B) show a systematic 
difference in the mean scores. 

3.3. Associations Between the Parameters Obtained from the MIC Signal and the ACC Signal 
with the Moment of the Recording and the Type of Speech Production 

Table 2 shows the betas and standard errors from the GEE analysis used to examine 
the relationship between voice acoustic parameters obtained from the microphone signal 
and the accelerometer signal with those factors that were found to be associated with the 
voice acoustic parameters measured using the microphone and the accelerometer signals. 

Figure 7. Bland–Altman plot. Data indicate that the fo SDs obtained from the microphone signal
and the accelerometer signal in the vowel (Panel A) and the reading (Panel B) show a systematic
difference in the mean scores.

3.3. Associations Between the Parameters Obtained from the MIC Signal and the ACC Signal with
the Moment of the Recording and the Type of Speech Production

Table 2 shows the betas and standard errors from the GEE analysis used to examine
the relationship between voice acoustic parameters obtained from the microphone signal
and the accelerometer signal with those factors that were found to be associated with the
voice acoustic parameters measured using the microphone and the accelerometer signals.

For the alpha ratio, multivariate analysis indicated that the type of speech (reading vs.
vowel) and the moment of measurement (pre vs. post WRT) were statistically significant
factors associated with this parameter. However, no effect was observed based on the
instrument used (accelerometer vs. microphone). The results of the multivariate analysis
suggested that the CPP was slightly smaller when calculated from the signal acquired from
the microphone (B= −0.06) but larger when calculated from the reading sample (B = 0.34),
compared to measurements obtained from the accelerometer and vowel production.

Fundamental frequency standard deviation was statistically smaller (B= −0.01) when
calculated from the signal acquired from the microphone and larger when calculated
from reading production (B = 2.08), compared to the accelerometer signal and vowel
production. Three voice acoustic parameters (PPE, SPL SD, and fo mean) showed statistical
associations at the univariate level with speech type, but no association was observed with
the instrument (accelerometer vs. microphone).
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Table 2. Generalized estimating equations (GEEs) to investigate associations between the voice
acoustic parameters with the type of instrument (microphone vs. accelerometer), type of speech
(vowel vs. reading), and moment of the measurement (pre vs. post).

Univariate Analysis Multivariate Analysis

CPP Beta SE p-value Beta SE p-value

Accelerometer Reference Category Reference Category
Microphone −0.11 0.06 0.05 −0.06 0.03 0.05

Sustained vowel Reference Category Reference Category
Rainbow passage 0.32 0.06 0.00 0.34 0.07 0.00

Measure before the WRT Reference Category Reference Category
Measure after the WRT 0.19 0.12 0.10 0.05 0.04 0.29

Alpha Ratio Beta SE p-value Beta SE p-value

Accelerometer Reference Category Reference Category
Microphone 2.99 1.50 0.05 1.45 0.79 0.07

Sustained vowel Reference Category Reference Category
Rainbow passage −3.90 0.79 0.00 −3.42 0.54 0.00

Measure before the WRT Reference Category Reference Category
Measure after the WRT 1.30 0.30 0.00 1.09 0.15 0.00

fo SD Beta SE p-value Beta SE p-value

Accelerometer Reference Category Reference Category
Microphone −0.01 0.00 0.00 −0.01 0.00 0.00

Sustained vowel Reference Category Reference Category
Rainbow passage 2.08 0.06 0.00 2.08 0.06 0.00

Measure before the WRT Reference Category
Measure after the WRT −0.02 0.02 0.32

SPL SD Beta SE p-value Beta SE p-value

Accelerometer Reference Category
Microphone −0.03 0.07 0.65

Sustained vowel Reference Category
Rainbow passage 1.10 0.02 0.00

Measure before the WRT Reference Category
Measure after the WRT 0.01 0.07 0.85

Fo Beta SE p-value Beta SE p-value

Accelerometer Reference Category
Microphone 0.04 0.04 0.41

Sustained vowel Reference Category
Rainbow passage −0.23 0.06 0.00

Measure before the WRT Reference Category
Measure after the WRT 0.00 0.03 0.93

PPE Beta SE p-value Beta SE p-value

Accelerometer Reference Category
Microphone 0.03 0.03 0.33

Sustained vowel Reference Category
Rainbow passage 0.84 0.03 0.00

Measure before the WRT Reference Category
Measure after the WRT 0.00 0.04 0.98

3.4. Direct Spectral Comparison

To directly compare the spectral characteristics of the two transducers, additional
recordings were collected, which included some of the same tasks as presented above,
as well as some pitch glides, all produced at a range of effort levels and loudness. The
recordings from each were spectrally analyzed with the maximum energy in each spectral
bin calculated. Figure 8 shows the overall maximum spectral response from the voice
between 90–3000 Hz. Generally speaking, the two transducers matched for the range
where fundamental speaking frequency was most likely to occur (<300 Hz). For higher
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frequencies, the accelerometer was between 10–20 dB lower than the collar microphone. It
was assumed that a microphone in front of the person and not below the chin on the neck
may have a slightly more subtle spectral slope, as higher frequencies will not diffract as
much as lower frequencies.
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4. Discussion
This 7-week follow-up study aimed to support our understanding of monitoring voice

production in more natural settings and assessed the agreement between microphone-
derived and accelerometer-derived voice acoustic parameters. In addition, we examined
whether the voice acoustic parameters obtained from both signals showed similar associa-
tions with the moment of the recording (pre vs. post WRT) and type of speech production
(reading vs. vowel). Five important results were found. First, Bland–Altman plots re-
vealed no significant systematic bias (mean difference) between microphone (MIC) and
accelerometer (ACC) measurements for the alpha ratio, CPP, pitch period entropy (PPE),
sound pressure level standard deviation (SPL SD), or fundamental frequency (fo) mean and
standard deviation (SD). Second, speech type (reading vs. vowel) and measurement timing
(pre vs. post WRT) were significantly associated with the alpha ratio, while the instrument
(accelerometer vs. microphone) was not. Third, microphone measurements showed a
slightly lower CPP compared to the accelerometer, with reading samples producing a
higher CPP compared to the steady vowels. Fourth, PPE, SPL SD, and fo mean showed
significant associations with speech type (reading vs. vowel) based on univariate analysis.
Fifth, microphone measurements yielded a statistically smaller fo SD compared to the
accelerometer, while reading productions had a larger fo SD than vowel productions.

Voice parameters can vary significantly depending on the time of day, due to factors
such as vocal fatigue, hydration levels, and circadian rhythms. To account for this variability,
we compared measures recorded at similar moments of the day. This approach helped to
minimize the impact of diurnal variations on our results.

Concerning the different types of speech (read speech and sustained vowel), we
included both speech tasks to capture a comprehensive range of voice parameters. By
analyzing both sustained vowel and read speech, we were able to account for the variability
introduced by different speech contexts. Additionally, we used statistical methods to
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control for speech type in our analyses, ensuring that the effects of the recording method
were not confounded by the type of speech produced.

The fo mean was the parameter least influenced by the type of transducer, compared
to the CPP and alpha ratio. This was expected, as the fundamental frequency should
be prominent in both signals (as was illustrated in Figure 8) and resilient to the tissue
transmission loss of higher frequency vibration and the reduced frequency response of
the accelerometer, as well as the added acoustic reflections within the airway detected by
the microphone signal. Our results agreed with previous research that reported a strong
correlation between the fo measured from a microphone signal and an accelerometer signal
among speakers with and without dysphonia [36]. However, studies have shown that talker
factors, such as sex as a biological factor, intrasubject variability, and microphone type,
significantly affected fundamental frequency estimates, which could affect the agreement
between instruments, depending on the fo range of the individual, e.g., very high-pitched
voice [37].

Regarding our results on CPP, considering that the CPP is a measure of periodicity
within a spectrum (e.g., the more harmonic a spectrum, the greater the cepstral peak is), it
was expected that the microphone and accelerometer values would be similar, since per-
forming the Fourier transform two times (once from time to frequency, then from frequency
to quefrency) would mitigate some of the high-fidelity components in the microphone
signal that the accelerometer signal does not have. Our results on CPP values were similar
to those of Mehta et al. (2016), who reported a strong moderate correlation (r ≤ 0.90)
between accelerometer and microphone signals [13]. Indirect comparable results were also
reported by Bottalico et al. (2020), who found that the CPP metric was a robust parameter
across six different microphones, with an average compatibility index of 0.8 [21].

Concerning the results on the alpha ratio, the spectral transfer function of the ac-
celerometer was not sensitive to reverberant/vocal tract resonance energy, whereas the
microphone had a flatter spectral transfer function [17,18]. This difference should elicit a
difference in the calculation of the alpha ratio, with the accelerometer largely insensitive to
strong spectral enhancement from resonant voice techniques, which would be captured by
the microphone signal.

With any study, there are limitations and future opportunities. In this study, the
placement of the neck collar could have been different for each recording. These differences
could affect both signals, likely affecting the accelerometer signal more. At the same time,
this was intentionally not controlled to allow for real-world variability to be introduced,
allowing for the results to be more translatable to actual clinical situations. Further, this was
a single biological male with an average fundamental frequency of about 130 Hz. With the
microphone being omnidirectional (more flat transfer function) [18] and the accelerometer
not having a flat transfer function, differences in average fundamental frequency could
have some slight impact on the parameter values, just as using the same microphone for
different people would. Nevertheless, the high quantity of repeated measures over time
showed that the results were highly robust, even with these limitations.

Additionally, while this study demonstrated the robustness of neck-worn accelerome-
ters, it only evaluated one type of accelerometer and microphone. Future research should
explore whether other contact microphones, including throat microphones, could yield
similar or more accessible results for researchers and clinicians. Testing lower-cost options
could help broaden the utility of such devices, even in other contexts, such as clinical
environments with high background noise (e.g., critical care units, outpatient clinics, or
bedside assessments).

The authors would like to mention the potential benefits of incorporating machine
learning methods into the agreement assessment. While this approach is beyond the current
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scope of our manuscript, we recognize its value and have identified it as a promising
direction for future research. This consideration underscores the evolving nature of our
work and the potential for advanced methodologies to enhance our evaluation processes in
subsequent studies.

It is also important to acknowledge that the results may not be fully generalizable
to all settings, including occupational environments with distinct noise profiles, such as
classrooms or call centers. The influence of various noise types (e.g., low- vs. high-frequency
noise) on voice assessment was not explored in this study [38,39]. Future research should
address these gaps by testing devices across diverse occupational and clinical settings and
including individuals with varying vocal profiles, such as female participants, to enhance
the applicability of these findings.

5. Conclusions
There is a need to better understand ecological voice assessment, which may lead to

more practical and/or efficient clinical assessment protocols. The findings of this study
demonstrated that the fundamental frequency, alpha ratio, PPE, and SPL SD values are
robust, regardless of the instrument used, whether it be a microphone or a neck-worn
accelerometer. This robustness suggests that accelerometers can be effectively utilized in
less-controlled environments, providing a reliable alternative to traditional microphones
for voice assessments. The practical implications of these results are significant for clinical
settings, as they offer a more flexible and accessible means of monitoring vocal health.

By validating the use of accelerometers, clinicians can confidently employ these devices
in various real-world scenarios, such as remote therapy and ecological voice assessments.
This approach not only enhances the accuracy of vocal health evaluations but also allows
for continuous monitoring of patients in their natural environments. Consequently, the
integration of accelerometers into clinical practice can lead to more personalized and
effective intervention strategies, ultimately improving patient outcomes.

In summary, the study supports the adoption of neck-worn accelerometers, and
possibly throat or contact microphones, as a viable tool for voice assessment, paving the
way for more comprehensive and ecologically valid evaluations of vocal function.
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