Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges
Abstract
:1. Introduction
2. State-of-the-Art
2.1. Forward Problem
2.2. Inverse Problem
3. ESI-Clinical and Cognitive Research Implementations
3.1. Clinical Applications
3.2. Cognitive Applications
4. ESI Challenges and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitzdorf, U. Current Source-Density Method and Application in Cat Cerebral Cortex: Investigation of Evoked Potentials and EEG Phenomena. Physiol. Rev. 1985, 65, 37–100. [Google Scholar] [CrossRef] [PubMed]
- Helmholtz, H. Ueber Einige Gesetze Der Vertheilung Elektrischer Ströme in Körperlichen Leitern Mit Anwendung Auf Die Thierisch-Elektrischen Versuche. Ann. Der Phys. 1853, 165, 211–233. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.T.; Hemakom, A.; Gylling Safeldt, M.; Krohne, L.K.; Madsen, K.H.; Siebner, H.R.; Mandic, D.P.; Hansen, L.K. Unmixing Oscillatory Brain Activity by EEG Source Localization and Empirical Mode Decomposition. Comput. Intell. Neurosci. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mahjoory, K.; Nikulin, V.V.; Botrel, L.; Linkenkaer-Hansen, K.; Fato, M.M.; Haufe, S. Consistency of EEG Source Localization and Connectivity Estimates. NeuroImage 2017, 152, 590–601. [Google Scholar] [CrossRef]
- Stropahl, M.; Bauer, A.-K.R.; Debener, S.; Bleichner, M.G. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.M.; He, B. EEG Mapping and Source Imaging. In Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 7th ed.; Schomer, D.L., Silva, F.H.L., Eds.; Oxford University Press: New York, NY, USA, 2018; ISBN 978-0-19-022848-4. [Google Scholar]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford University Press: New York, NY, USA, 2006; ISBN 978-0-19-505038-7. [Google Scholar]
- Phillips, C.; Rugg, M.D.; Friston, K.J. Anatomically Informed Basis Functions for EEG Source Localization: Combining Functional and Anatomical Constraints. NeuroImage 2002, 16, 678–695. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Duan, L.; Gong, B.; Qiao, Y.; Xu, F.; Chen, J.; Wang, C. EEG Source Localization Using Spatio-Temporal Neural Network. China Commun. 2019, 16, 131–143. [Google Scholar] [CrossRef]
- Hecker, L.; Rupprecht, R.; Tebartz van Elst, L.; Kornmeier, J. ConvDip: A Convolutional Neural Network for Better M/EEG Source Imaging. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Batatia, H.; Oberlin, T.; D’Giano, C.; Tourneret, J.-Y. Bayesian EEG Source Localization Using a Structured Sparsity Prior. NeuroImage 2017, 144, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Kar, R.; Konar, A.; Chakraborty, A.; Bhattacharya, B.S.; Nagar, A.K. EEG Source Localization by Memory Network Analysis of Subjects Engaged in Perceiving Emotions from Facial Expressions. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar]
- Ary, J.P.; Klein, S.A.; Fender, D.H. Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thicknesses. IEEE Trans. Biomed. Eng. 1981, BME-28, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-H.; Vorwerk, J.; Wolters, C.H.; Knösche, T.R. Influence of the Head Model on EEG and MEG Source Connectivity Analyses. NeuroImage 2015, 110, 60–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorwerk, J.; Cho, J.-H.; Rampp, S.; Hamer, H.; Knösche, T.R.; Wolters, C.H. A Guideline for Head Volume Conductor Modeling in EEG and MEG. NeuroImage 2014, 100, 590–607. [Google Scholar] [CrossRef]
- Hamalainen, M.S.; Sarvas, J. Realistic Conductivity Geometry Model of the Human Head for Interpretation of Neuromagnetic Data. IEEE Trans. Biomed. Eng. 1989, 36, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, H.I.; Ng, K.T. New Finite Difference Formulations for General Inhomogeneous Anisotropic Bioelectric Problems. IEEE Trans. Biomed. Eng. 1997, 44, 800–809. [Google Scholar] [CrossRef]
- Fuchs, M.; Wagner, M.; Kastner, J. Boundary Element Method Volume Conductor Models for EEG Source Reconstruction. Clin. Neurophysiol. 2001, 112, 1400–1407. [Google Scholar] [CrossRef]
- Rullmann, M.; Anwander, A.; Dannhauer, M.; Warfield, S.K.; Duffy, F.H.; Wolters, C.H. EEG Source Analysis of Epileptiform Activity Using a 1 Mm Anisotropic Hexahedra Finite Element Head Model. NeuroImage 2009, 44, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.-S.; Ma, B.; Yu, Z.; Yeung, P.F.; Ip, H.H.S. 3-D Head Model Retrieval Using a Single Face View Query. IEEE Trans. Multimed. 2007, 9, 1026–1036. [Google Scholar] [CrossRef]
- Nara, T.; Ando, S. A Projective Method for an Inverse Source Problem of the Poisson Equation. Inverse Probl. 2003, 19, 355–369. [Google Scholar] [CrossRef]
- Saase, V.; Wenz, H.; Ganslandt, T.; Groden, C.; Maros, M.E. Simple Statistical Methods for Unsupervised Brain Anomaly Detection on MRI Are Competitive to Deep Learning Methods. arXiv 2020, arXiv:2011.12735. [Google Scholar]
- Vorwerk, J.; Oostenveld, R.; Piastra, M.C.; Magyari, L.; Wolters, C.H. The FieldTrip-SimBio Pipeline for EEG Forward Solutions. BioMedical Eng. OnLine 2018, 17, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Parra, L.C.; Haufe, S. The New York Head—A Precise Standardized Volume Conductor Model for EEG Source Localization and TES Targeting. NeuroImage 2016, 140, 150–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrachini, L. A Finite Element Solution of the Forward Problem in EEG for Multipolar Sources. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Birot, G.; Spinelli, L.; Vulliémoz, S.; Mégevand, P.; Brunet, D.; Seeck, M.; Michel, C.M. Head Model and Electrical Source Imaging: A Study of 38 Epileptic Patients. NeuroImage Clin. 2014, 5, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Engwer, C.; Vorwerk, J.; Ludewig, J.; Wolters, C.H. A Discontinuous Galerkin Method to Solve the EEG Forward Problem Using the Subtraction Approach. SIAM J. Sci. Comput. 2017, 39, B138–B164. [Google Scholar] [CrossRef]
- Vorwerk, J.; Engwer, C.; Pursiainen, S.; Wolters, C.H. A Mixed Finite Element Method to Solve the EEG Forward Problem. IEEE Trans. Med Imaging 2017, 36, 930–941. [Google Scholar] [CrossRef]
- Beltrachini, L. The Analytical Subtraction Approach for Solving the Forward Problem in EEG. J. Neural Eng. 2019, 16, 056029. [Google Scholar] [CrossRef] [Green Version]
- Miinalainen, T.; Rezaei, A.; Us, D.; Nüßing, A.; Engwer, C.; Wolters, C.H.; Pursiainen, S. A Realistic, Accurate and Fast Source Modeling Approach for the EEG Forward Problem. NeuroImage 2019, 184, 56–67. [Google Scholar] [CrossRef]
- Vanrumste, B.; Van Hoey, G.; Van de Walle, R.; D’Havè, M.R.P.; Lemahieu, I.A.; Boon, P.A.J.M. The Validation of the Finite Difference Method and Reciprocity for Solving the Inverse Problem in EEG Dipole Source Analysis. Brain Topogr. 2001, 14, 83–92. [Google Scholar] [CrossRef]
- Cuartas Morales, E.; Acosta-Medina, C.D.; Castellanos-Dominguez, G.; Mantini, D. A Finite-Difference Solution for the EEG Forward Problem in Inhomogeneous Anisotropic Media. Brain Topogr. 2019, 32, 229–239. [Google Scholar] [CrossRef]
- Pillain, A.; Rahmouni, L.; Andriulli, F. Handling Anisotropic Conductivities in the EEG Forward Problem with a Symmetric Formulation. Phys. Med. Biol. 2019, 64, 035022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montes-Restrepo, V.; van Mierlo, P.; Strobbe, G.; Staelens, S.; Vandenberghe, S.; Hallez, H. Influence of Skull Modeling Approaches on EEG Source Localization. Brain Topogr. 2014, 27, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Rimpiläinen, V.; Koulouri, A.; Lucka, F.; Kaipio, J.P.; Wolters, C.H. Improved EEG Source Localization with Bayesian Uncertainty Modelling of Unknown Skull Conductivity. NeuroImage 2019, 188, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Fender, D.H. Source Localization of Brain Electrical Activity. In Handbook of Electroencephalography and Clinical Neurophysiology; Elsevier: Amsterdam, The Netherlands, 1987; pp. 355–403. [Google Scholar]
- Grech, R.; Cassar, T.; Muscat, J.; Camilleri, K.P.; Fabri, S.G.; Zervakis, M.; Xanthopoulos, P.; Sakkalis, V.; Vanrumste, B. Review on Solving the Inverse Problem in EEG Source Analysis. J. NeuroEngineering Rehabil. 2008, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; Grave de Peralta, R. EEG Source Imaging. Clin. Neurophysiol. 2004, 115, 2195–2222. [Google Scholar] [CrossRef]
- Hämäläinen, M.S.; Ilmoniemi, R.J. Interpreting Magnetic Fields of the Brain: Minimum Norm Estimates. Med. Biol. Eng. Comput. 1994, 32, 35–42. [Google Scholar] [CrossRef]
- Fuchs, M.; Wagner, M.; Köhler, T.; Wischmann, H.-A. Linear and Nonlinear Current Density Reconstructions. J. Clin. Neurophysiol. 1999, 16, 267–295. [Google Scholar] [CrossRef]
- Lin, F.-H.; Witzel, T.; Ahlfors, S.P.; Stufflebeam, S.M.; Belliveau, J.W.; Hämäläinen, M.S. Assessing and Improving the Spatial Accuracy in MEG Source Localization by Depth-Weighted Minimum-Norm Estimates. NeuroImage 2006, 31, 160–171. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low Resolution Electromagnetic Tomography: A New Method for Localizing Electrical Activity in the Brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing Interactions in the Brain with Exact Low-Resolution Electromagnetic Tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Vrba, J.; Robinson, S.E. Signal Processing in Magnetoencephalography. Methods 2001, 25, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Yu, Z.L.; Wu, W.; Liu, K.; Gu, Z.; Qi, F.; Li, Y.; Liang, J. Electromagnetic Source Imaging via a Data-Synthesis-Based Denoising Autoencoder. arXiv 2021, arXiv:2010.12876. [Google Scholar]
- Wipf, D.P.; Owen, J.P.; Attias, H.T.; Sekihara, K.; Nagarajan, S.S. Robust Bayesian Estimation of the Location, Orientation, and Time Course of Multiple Correlated Neural Sources Using MEG. NeuroImage 2010, 49, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Pirondini, E.; Babadi, B.; Obregon-Henao, G.; Lamus, C.; Malik, W.Q.; Hämäläinen, M.S.; Purdon, P.L. Computationally Efficient Algorithms for Sparse, Dynamic Solutions to the EEG Source Localization Problem. IEEE Trans. Biomed. Eng. 2018, 65, 1359–1372. [Google Scholar] [CrossRef]
- Ebrahimzadeh, E.; Shams, M.; Rahimpour Jounghani, A.; Fayaz, F.; Mirbagheri, M.; Hakimi, N.; Hashemi Fesharaki, S.S.; Soltanian-Zadeh, H. Epilepsy Presurgical Evaluation of Patients with Complex Source Localization by a Novel Component-Based EEG-FMRI Approach. Iran J Radiol 2019, 16. [Google Scholar] [CrossRef]
- Plummer, C.; Vogrin, S.J.; Woods, W.P.; Murphy, M.A.; Cook, M.J.; Liley, D.T.J. Interictal and Ictal Source Localization for Epilepsy Surgery Using High-Density EEG with MEG: A Prospective Long-Term Study. Brain 2019, 142, 932–951. [Google Scholar] [CrossRef]
- Nemtsas, P.; Birot, G.; Pittau, F.; Michel, C.M.; Schaller, K.; Vulliemoz, S.; Kimiskidis, V.K.; Seeck, M. Source Localization of Ictal Epileptic Activity Based on High-Density Scalp EEG Data. Epilepsia 2017, 58, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Centeno, M.; Tierney, T.M.; Perani, S.; Shamshiri, E.A.; Pier, K.S.; Wilkinson, C.; Konn, D.; Vulliemoz, S.; Grouiller, F.; Lemieux, L.; et al. Combined Electroencephalography–Functional Magnetic Resonance Imaging and Electrical Source Imaging Improves Localization of Pediatric Focal Epilepsy. Ann. Neurol. 2017, 82, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.M.; He, B. EEG Mapping and Source Imaging; Oxford University Press: New York, NY, USA, 2017; ISBN 978-0-19-022851-4. [Google Scholar]
- Foged, M.T.; Martens, T.; Pinborg, L.H.; Hamrouni, N.; Litman, M.; Rubboli, G.; Leffers, A.-M.; Ryvlin, P.; Jespersen, B.; Paulson, O.B.; et al. Diagnostic Added Value of Electrical Source Imaging in Presurgical Evaluation of Patients with Epilepsy: A Prospective Study. Clin. Neurophysiol. 2020, 131, 324–329. [Google Scholar] [CrossRef]
- Mégevand, P.; Seeck, M. Electric Source Imaging for Presurgical Epilepsy Evaluation: Current Status and Future Prospects. Expert Rev. Med Devices 2020, 17, 405–412. [Google Scholar] [CrossRef]
- Jun, Y.-H.; Eom, T.-H.; Kim, Y.-H.; Chung, S.-Y.; Lee, I.-G.; Kim, J.-M. Source Localization of Epileptiform Discharges in Childhood Absence Epilepsy Using a Distributed Source Model: A Standardized, Low-Resolution, Brain Electromagnetic Tomography (SLORETA) Study. Neurol Sci 2019, 40, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- van Mierlo, P.; Vorderwülbecke, B.J.; Staljanssens, W.; Seeck, M.; Vulliémoz, S. Ictal EEG Source Localization in Focal Epilepsy: Review and Future Perspectives. Clin. Neurophysiol. 2020, 131, 2600–2616. [Google Scholar] [CrossRef] [PubMed]
- Coito, A.; Biethahn, S.; Tepperberg, J.; Carboni, M.; Roelcke, U.; Seeck, M.; van Mierlo, P.; Gschwind, M.; Vulliemoz, S. Interictal Epileptogenic Zone Localization in Patients with Focal Epilepsy Using Electric Source Imaging and Directed Functional Connectivity from Low-Density EEG. Epilepsia Open 2019, 4, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Staljanssens, W.; Strobbe, G.; Van Holen, R.; Keereman, V.; Gadeyne, S.; Carrette, E.; Meurs, A.; Pittau, F.; Momjian, S.; Seeck, M.; et al. EEG Source Connectivity to Localize the Seizure Onset Zone in Patients with Drug Resistant Epilepsy. NeuroImage Clin. 2017, 16, 689–698. [Google Scholar] [CrossRef]
- Vespa, S.; Baroumand, A.G.; Ferrao Santos, S.; Vrielynck, P.; de Tourtchaninoff, M.; Feys, O.; Strobbe, G.; Raftopoulos, C.; van Mierlo, P.; El Tahry, R. Ictal EEG Source Imaging and Connectivity to Localize the Seizure Onset Zone in Extratemporal Lobe Epilepsy. Seizure 2020, 78, 18–30. [Google Scholar] [CrossRef]
- Galaris, E.; Gallos, I.; Myatchin, I.; Lagae, L.; Siettos, C. EEG Source Localization Analysis in Epileptic Children during a Visual Working-Memory Task. arXiv 2020, arXiv:2005.11186. [Google Scholar]
- Zhou, J.; Liu, S.; Ng, K.K.; Wang, J. Applications of Resting-State Functional Connectivity to Neurodegenerative Disease. Neuroimaging Clin. 2017, 27, 663–683. [Google Scholar] [CrossRef]
- Tsolaki, A.C.; Kosmidou, V.; Kompatsiaris, I.Y.; Papadaniil, C.; Hadjileontiadis, L.; Adam, A.; Tsolaki, M. Brain Source Localization of MMN and P300 ERPs in Mild Cognitive Impairment and Alzheimer’s Disease: A High-Density EEG Approach. Neurobiol Aging 2017, 55, 190–201. [Google Scholar] [CrossRef]
- Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R.D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K.; et al. Functional Connectivity Assessed by Resting State EEG Correlates with Cognitive Decline of Alzheimer’s Disease—An ELORETA Study. Clin. Neurophysiol. 2016, 127, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- La Foresta, F.; Morabito, F.C.; Marino, S.; Dattola, S. High-Density EEG Signal Processing Based on Active-Source Reconstruction for Brain Network Analysis in Alzheimer’s Disease. Electronics 2019, 8, 1031. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Boly, M.; Findlay, G.; Jones, B.; Gjini, K.; Maganti, R.; Struck, A.F. Quantitative Spatio-Temporal Characterization of Epileptic Spikes Using High Density EEG: Differences between NREM Sleep and REM Sleep. Sci. Rep. 2020, 10, 1673. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Guerrero, A.; Achermann, P. Brain Dynamics during the Sleep Onset Transition: An EEG Source Localization Study. Neurobiol. Sleep Circadian Rhythm. 2019, 6, 24–34. [Google Scholar] [CrossRef]
- Bersagliere, A.; Pascual-Marqui, R.D.; Tarokh, L.; Achermann, P. Mapping Slow Waves by EEG Topography and Source Localization: Effects of Sleep Deprivation. Brain Topogr 2018, 31, 257–269. [Google Scholar] [CrossRef]
- Brancaccio, A.; Tabarelli, D.; Bigica, M.; Baldauf, D. Cortical Source Localization of Sleep-Stage Specific Oscillatory Activity. Sci. Rep. 2020, 10, 6976. [Google Scholar] [CrossRef]
- Klinzing, J.G.; Mölle, M.; Weber, F.; Supp, G.; Hipp, J.F.; Engel, A.K.; Born, J. Spindle Activity Phase-Locked to Sleep Slow Oscillations. NeuroImage 2016, 134, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.; Riedner, B.A.; Huber, R.; Massimini, M.; Ferrarelli, F.; Tononi, G. Source Modeling Sleep Slow Waves. Proc. Natl. Acad. Sci. USA 2009, 106, 1608–1613. [Google Scholar] [CrossRef] [Green Version]
- Castelnovo, A.; Riedner, B.A.; Smith, R.F.; Tononi, G.; Boly, M.; Benca, R.M. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study. Sleep 2016, 39, 1815–1825. [Google Scholar] [CrossRef] [Green Version]
- Handiru, V.S.; Vinod, A.P.; Guan, C. Multi-Direction Hand Movement Classification Using EEG-Based Source Space Analysis. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4551–4554. [Google Scholar]
- Li, M.-A.; Wang, Y.-F.; Jia, S.-M.; Sun, Y.-J.; Yang, J.-F. Decoding of Motor Imagery EEG Based on Brain Source Estimation. Neurocomputing 2019, 339, 182–193. [Google Scholar] [CrossRef]
- Edelman, B.J.; Baxter, B.; He, B. EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks. IEEE Trans. Biomed. Eng. 2016, 63, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhou, L.; Jia, S.; Lun, X. A Novel Approach of Decoding EEG Four-Class Motor Imagery Tasks via Scout ESI and CNN. J. Neural Eng. 2020, 17, 016048. [Google Scholar] [CrossRef]
- Antelis, J.M.; Montesano, L.; Ramos-Murguialday, A.; Birbaumer, N.; Minguez, J. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. IEEE Trans. Biomed. Eng. 2017, 64, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Mottaz, A.; Solcà, M.; Magnin, C.; Corbet, T.; Schnider, A.; Guggisberg, A.G. Neurofeedback Training of Alpha-Band Coherence Enhances Motor Performance. Clin. Neurophysiol. 2015, 126, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, S.; Ptak, R.; Aboulafia, T.; Magnin, C.; Gillabert, N.; Allet, L.; Pignat, J.-M.; Schnider, A.; Guggisberg, A.G. EEG Alpha Band Synchrony Predicts Cognitive and Motor Performance in Patients with Ischemic Stroke. Behav Neurol 2013, 26, 187–189. [Google Scholar] [CrossRef]
- Nicolo, P.; Rizk, S.; Magnin, C.; Pietro, M.D.; Schnider, A.; Guggisberg, A.G. Coherent Neural Oscillations Predict Future Motor and Language Improvement after Stroke. Brain 2015, 138, 3048–3060. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, J.; Beste, C. Paradoxical, Causal Effects of Sensory Gain Modulation on Motor Inhibitory Control–A TDCS, EEG-Source Localization Study. Sci. Rep. 2018, 8, 17486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, X.; Wang, Y.; Sun, J.; Li, C.; Tong, S. Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study. Sci. Rep. 2017, 7, 9662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabeti, M.; Katebi, S.D.; Rastgar, K.; Azimifar, Z. A Multi-Resolution Approach to Localize Neural Sources of P300 Event-Related Brain Potential. Comput. Methods Programs Biomed. 2016, 133, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.J.; Ehlis, A.-C.; Muehlberger, A.; Fallgatter, A.J. Source Localization of Early Stages of Face Processing. Brain Topogr 2005, 18, 77–85. [Google Scholar] [CrossRef]
- Andersen, R.S.; Eliasen, A.U.; Pedersen, N.; Andersen, M.R.; Hansen, S.T.; Hansen, L.K. EEG Source Imaging Assists Decoding in a Face Recognition Task. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 939–943. [Google Scholar]
- Calbi, M.; Siri, F.; Heimann, K.; Barratt, D.; Gallese, V.; Kolesnikov, A.; Umiltà, M.A. How Context Influences the Interpretation of Facial Expressions: A Source Localization High-Density EEG Study on the “Kuleshov Effect”. Sci. Rep. 2019, 9, 2107. [Google Scholar] [CrossRef]
- Monteiro, R.; Simões, M.; Andrade, J.; Castelo Branco, M. Processing of Facial Expressions in Autism: A Systematic Review of EEG/ERP Evidence. Rev J Autism Dev Disord 2017, 4, 255–276. [Google Scholar] [CrossRef]
- Chikara, R.K.; Ko, L.-W. Modulation of the Visual to Auditory Human Inhibitory Brain Network: An EEG Dipole Source Localization Study. Brain Sci. 2019, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Fahimi Hnazaee, M.; Khachatryan, E.; Van Hulle, M.M. Semantic Features Reveal Different Networks During Word Processing: An EEG Source Localization Study. Front. Hum. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Lim, J.; deSouza, J.J.; Bezerianos, A.; Sun, Y. Task-Independent Mental Workload Classification Based Upon Common Multiband EEG Cortical Connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1940–1949. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, I.; Dimitrakopoulos, G.N.; Gao, L.; Zhang, Y.; Qi, P.; Matsopoulos, G.K.; Thakor, N.; Bezerianos, A.; Sun, Y. Mental Workload Drives Different Reorganizations of Functional Cortical Connectivity Between 2D and 3D Simulated Flight Experiments. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Whittingstall, K.; Stroink, G.; Gates, L.; Connolly, J.; Finley, A. Effects of Dipole Position, Orientation and Noise on the Accuracy of EEG Source Localization. BioMed. Eng. OnLine 2003, 2, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced Detection of Artifacts in EEG Data Using Higher-Order Statistics and Independent Component Analysis. NeuroImage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akalin Acar, Z.; Makeig, S. Effects of Forward Model Errors on EEG Source Localization. Brain Topogr 2013, 26, 378–396. [Google Scholar] [CrossRef] [Green Version]
- Homölle, S.; Oostenveld, R. Using a Structured-Light 3D Scanner to Improve EEG Source Modeling with More Accurate Electrode Positions. J. Neurosci. Methods 2019, 326, 108378. [Google Scholar] [CrossRef]
- Cline, C.C.; Coogan, C.; He, B. EEG Electrode Digitization with Commercial Virtual Reality Hardware. PLoS ONE 2018, 13, e0207516. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Liu, Z.; Mueller, B.A.; Lim, K.; He, B. Influence of White Matter Anisotropic Conductivity on EEG Source Localization: Comparison to FMRI in Human Primary Visual Cortex. Clin. Neurophysiol. 2009, 120, 2071–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodbeck, V.; Spinelli, L.; Lascano, A.M.; Wissmeier, M.; Vargas, M.-I.; Vulliemoz, S.; Pollo, C.; Schaller, K.; Michel, C.M.; Seeck, M. Electroencephalographic Source Imaging: A Prospective Study of 152 Operated Epileptic Patients. Brain 2011, 134, 2887–2897. [Google Scholar] [CrossRef] [PubMed]
Method | Authors | Advantages | Disadvantages |
---|---|---|---|
Recurrent Neural Network—Long Short-Term Memory | [10] | Extremely fast computation of source estimates, once the training has completed. Can harness the spatio-temporal information of EEG, resulting in more robust solution regarding noise. Great expandability and room for improvement. | Trained for single sources. Requires a lot of time for the training session, even if the model is simple. Worse accuracy than other models presented. |
Convolutional Neural Netrwork | [11] | Simplicity and expandability. Once trained, produces results extremely fast. | Trained on single time points and does not incorporate the temporal information of EEG creating low noise tolerance. Lower accuracy on multisource scenarios. |
Denoising AutoEncoder | [46] | Very high noise tolerance, producing accurate results even with low SNR. Do not require mathematical priors. | Requires a lot of time for training and offline computation of the Leadfield matrix. Susceptible to overfitting due to vanishing gradient for complex scenarios. |
Bayesian Method—Bernouli Laplacian priors | [12] | Near-zero mean localization error. Great recovery and accuracy of dipole locations in low SNR. Sparser solutions. Correct estimation of the amplitude of source currents. | Very high computational cost. Requires accurate head model for high accuracy. |
Bayesian Method—Kalman Filters | [49] | Near-zero mean localization error. Lower computational cost than other spatio-temporal dynamic algorithms, faster than other KF approaches. | Under-estimation of the amplitude of source currents. Requires a priori information for the source covariance matrix. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorzos, I.; Kakkos, I.; Ventouras, E.M.; Matsopoulos, G.K. Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges. Signals 2021, 2, 378-391. https://doi.org/10.3390/signals2030024
Zorzos I, Kakkos I, Ventouras EM, Matsopoulos GK. Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges. Signals. 2021; 2(3):378-391. https://doi.org/10.3390/signals2030024
Chicago/Turabian StyleZorzos, Ioannis, Ioannis Kakkos, Errikos M. Ventouras, and George K. Matsopoulos. 2021. "Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges" Signals 2, no. 3: 378-391. https://doi.org/10.3390/signals2030024
APA StyleZorzos, I., Kakkos, I., Ventouras, E. M., & Matsopoulos, G. K. (2021). Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges. Signals, 2(3), 378-391. https://doi.org/10.3390/signals2030024