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Abstract: Next-generation wireless communications aim to utilize mmWave/subTHz bands. In
this regime, signal propagation is vulnerable to interferences and path losses. To overcome this
issue, a novel technology has been introduced, which is called reconfigurable intelligent surface
(RIS). RISs control digitally the reflecting signals using many passive reflector arrays and implement
a smart and modifiable radio environment for wireless communications. Nonetheless, channel
estimation is the main problem of RIS-assisted systems because of their direct dependence on the
system architecture design, the transmission channel configuration and methods used to compute
channel state information (CSI) on a base station (BS) and RIS. In this paper, a concise survey on
the up-to-date RIS-assisted wireless communications is provided and includes the massive multiple
input-multiple output (mMIMO), multiple input-single output (MISO) and cell-free systems with an
emphasis on effective algorithms computing CSI. In addition, we will present the effectiveness of the
algorithms computing CSI for different communication systems and their techniques, and we will
represent the most important ones.

Keywords: channel estimation; channel state information (CSI); optimized algorithm; multi input-
multi output (MIMO) systems; multiple input-single output (MISO) systems; reconfigurable intelli-
gent surface (RIS)

1. Introduction

The main goal of the sixth generation (6G) wireless technologies is to upgrade com-
munication quality. Since the number of mobile devices is rapidly increasing, the issue
concerning the efficient propagation of data at their distribution nodes unavoidably arises.
For this reason, it is essential to study the improvement of bandwidth, system capacity and
reliability, as well as quality of service (QoS). The percentage of energy consumption, carbon
footprint and hardware costs are also considered [1]. In addition, the mmWave/subTHz
band is already used in current research activity, which provides a large gain in the perfor-
mance of 6G technology communication systems, although it is quite sensitive to physical
obstacles and/or propagation attenuation effect. To avoid the above problems, the technol-
ogy of RISs has emerged [2].

Specifically, an RIS consists of a surface designated by software that is typically
connected to a prepared set-up system which mitigates blocking effects. It consists of many
separately controllable, low-cost, and quasi-passive elements. The RIS succeeds in adapting
to alterations in the propagation environment and modulating the radio waves, as each
element can cause an adaptable phase shift to each detected signal, in order to enable a
dynamic control over the wireless propagation channel [3]. Therefore, the RIS does not need
complex signal processing units, as it is able to create a virtual path between the transmitter
and receiver. Hence, throughput is improved, and a higher performance is achieved [2]. The
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contribution of the RIS is represented in [4] for reducing transmitted power at the BS using
signal-to-interference-plus-noise ratio (SINR) constraints in multi-user MISO (MU-MISO)
RIS-assisted systems for the joint improvement of the precoder and reflecting beamforming
matrices (RBMs); in [5], the total rate reached the maximum under the transmit power
limitation; in [6], the total rate was improved by considering the associated attenuation
of Rayleigh waves and the usual hardware faults in both the transceiver and RIS; in [7],
reaching the maximum of the minimum user equipment (UE) rate was investigated in the
case of a large amount of antennas; in [8], the effect of hardware faults was assessed; in [9],
the effect of incomplete CSI in the possibility of shutdown was demonstrated. Furthermore,
there are discussions on how the technology of RIS contributes to the efficient transmission
of energy consumption on the internet of vehicle (IoV) networks [10] and in passive meta
surface-coated devices [11].

In addition, a new RIS structure, which reflects and absorbs the transmitted signal
through an absorbing agent equipped with radio frequency chains, performs signal pro-
cessing techniques, configures its phase shift matrix, and does not need incoming signal
control [2]. It is called a hybrid RIS (HRIS) and research has been presented in [12–15].
In [16], concerning sparse antenna activation based on a channel extension strategy in a
HRIS, a full one-hop channel optimization and beam searching scheme design for inclusion
in channel subsampling are proposed.

Beamforming (i.e., precoding in transmission and combining in reception) is a key
signal processing technique to ensure reliable communication between the transmitter and
receiver. Although conventional MIMO systems widely consider single-stage all-digital
beamforming, two critical challenges for mMIMO systems arise: high hardware costs due
to a single dedicated radio frequency (RF) chain per antenna and large channel estimation
overheads [17]. In several studies, such as [18–21], the hybrid beamforming (HBF) solution
is proposed, which generates the RF stage through slow time-varying angular information
and the digital baseband (BB)-stage through reduced-dimensional CSI. HBF has been
studied, mainly in RIS-assisted mMIMO systems, to achieve the requirements for full CSI
estimation [22,23]. In [22], the spectral performance is improved by the joint optimization
of the RIS phase shift and hybrid precoder/compressor two-stage algorithm, while cost
and energy consumption are reduced. In [24], the HBF scheme is used in a mmWave
RIS-assisted broadband MIMO system with geometric mean beamforming decomposition
in order to avoid complex bit/power allocation, while the authors in [23], designed a joint
RIS phase shift matrix and HBF with a direct channel between the transmitter and receiver.

To make use of the advantages promised by the RIS, accurate CSI is essential, although
it is difficult to achieve because a complex signal processing capability of the RIS [25]
is missing. Furthermore, the RIS consists of passive components, which do not process
signals and do not evaluate the UE-RIS and RIS-BS channel separately, but sequentially (i.e.,
the cascaded end-to-end channel). When there are many BS antennas and RIS reflectors,
the number of sequential channel coefficients will be large; and so will be the number of
pilots [26]. This causes a problem for channel estimation in any communication system.
Other parameters that affect the channel estimation are the distance of the users from the
RIS, the type of communication system used, but mainly the algorithm used for the channel
estimation. We cannot assume which algorithm is the best for channel estimation in every
RIS-assisted system architecture because each system has different requirements. Hence,
there has been great contributions on channel estimation for RIS-assisted communication
systems, such as those in [1,4,17,26,27].

The purpose of the current research is to provide an inclusive and up-to-date survey
of papers in RIS-assisted wireless communications, such as MIMO and MISO system
communications. Emphasis is given on the practical challenges of BS, RIS and user channels
to estimate their value using optimized algorithms with different channel models and
system configurations. This paper presents several methods to optimally solve critical
issues of channel estimation, such as pilot overhead reduction. The complexity of these
methods is presented and the communication systems in which they can be used are
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selected according to their positive outcome. In addition, the challenges of the proposed
methods are mentioned in order to be handled in future research.

The rest of the paper is organized as follows: Section 2 presents system models for
channel estimation in RIS-assisted systems with different system architectures. Section 3
presents optimal channel estimation algorithms using statistical CSI (S-CSI) or instanta-
neous CSI (I-CSI). Section 4 presents the results of the proposed optimal algorithms per
communication system, and some concluding remarks are drawn in Section 5.

Notations: x is a scalar, x is a vector, X represents a matrix, and A denotes a set. ‖a‖0,
‖a‖2, ‖A‖l1 and ‖A‖F denote `0, `2, `2 and the Frobenius norm, respectively.

⊗
is the

Kronecker product. [a]i, [A]i,j and [A]i,j,k are the i-th element of vector a, the (i, j)-th element

of matrix A and the (i, j, k)-th element of tensor A, accordingly. The notations (·)T , (·)H

and tr(·) each stand for the transpose, Hermitian transpose and trace operators. The E[·]
is the expectation operator and diag(a) denotes an n× n diagonal matrix that consists of
the elements of vector a. b ∼ CN (0, Σ) is the symbol for a circularly symmetric complex
Gaussian vector with zero mean and covariance matrix Σ, λ is the wavelength, ω is the
discount factor, S is the finite set of states, A is the finite set of actions, θ is the vector of
policy parameters and θold denotes the vector of policy parameters before the update; πθ is
the policy neural network with parameters denoted by θ and π : S× A→ [0, 1] , at and st
are the action and state of given time step t, respectively, with at ∼ πθ(at|st), r : S→ R is
the reward function, ϕn is the phase shift introduced by the n-th element of the RIS, υ is
the velocity of the user, c = 3 × 108 m/s is the speed of light and fc is the carrier frequency.
Finally, IM stands for the M×M identity matrix.

2. System Models for RIS-Assisted Systems

Table 1 summarizes the latest research on channel estimation in different RIS-assisted
system settings. We noticed that most research has been carried out in narrowband for one
or more users and channel estimation has been accomplished in cascaded channels. For the
remaining categories, more research is needed.

Table 1. RIS channel estimation for different system setups [28].

System Setup Antenna Setup Main Results

Single-user, narrowband

MISO

• Usage of ON/OFF training reflection pattern at RIS [29];
• Usage of Full-ON training reflection pattern at RIS [30];
• Estimation based on compressed sensing by exploiting

sparsity of mmWave channels [31];
• Deep learning techniques for estimation [32–35];
• Kalman filter in high-mobility scenarios for

estimation [36,37].

MIMO

• Compressed sensing by exploiting low-rank/sparse
channels for estimation [38–42];

• Matrix factorization/decomposition techniques for
estimation [43–45];

• Deep learning for THz channels for estimation [35];
• Estimation in high mobility scenarios with fixed-position

RIS [46,47].
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Table 1. Cont.

System Setup Antenna Setup Main Results

Multi-user, narrowband MISO

• User to user straightforward cascaded channel
estimation [48–50];

• Exploitation common to RIS-BS channel [51] and
additional channel sparsity [52,53];

• Dual-link (BS-RIS) reflection [54] and anchor nodes [55] to
resolve cascaded common offline RIS-BS channel and
online RIS-UE channel for estimation;

• Linear minimum mean-squared-error (LMMSE) criterion
in the downlink for estimation [56];

• Matrix factorization/decomposition [44,57] and additional
channel sparsity for estimation [58,59];

• Usage of convolutional neural network for estimation
based on deep learning techniques [60,61];

• Sparse Bayesian learning for separate channel
estimation [62].

Single-user, broadband

MISO • Single convolutional neural network for reducing training
complexity [63].

MIMO • Deep denoising neural network in mmWave channels for
separate channel estimation [64].

Multi-user, broadband

MISO

• Usage of orthogonal matching pursuit (OMP) algorithm
and exploiting common channel sparsity over different
subcarriers [65];

• Canonical polyadic decomposition tensors for separate
channel estimation [66].

MIMO

• Deep learning techniques which use federated
learning [67];

• Compressed sensing and exploiting dual sparsity of THz
MIMO channels [68];

• Phase shift design schemes in uplink with linear zero
forcing (ZF) detection in receiver side [69,70];

• Efficient transmission for energy consumption in IoV
networks [10] and in passive meta surface-coated
devices [11].

From Table 1 we observed that there are many different methods on how the channel
can be estimated in RIS-assisted MISO and MIMO systems. For this reason, we searched
and present below additional research on deep learning techniques, high user mobility
scenarios, estimation in cascaded channels, use of neural networks and ZF detection
techniques. We focused on these scenarios because most of the literature uses and develops
them. In addition, we present other methods, such as tensor algorithms, which are used in
more recent literature.

2.1. MISO Systems

The authors in [71,72] use S-CSI design passive beamformers for MISO systems and a
purely S-CSI-based approach for the design of RIS-assisted multi-user downlink systems
is proposed in [4]. Furthermore, in [73], the authors use a tensor algorithm and capitalize
on the parallel factor (PARAFAC) decomposition to create an efficient iterative algorithm
based on the alternating least squares (ALS) concept to answer the channel estimation
issue in the downlink of a MISO network. For this reason, an approximate expression is
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established to employ the sum rate and formulate an active-passive joint beamforming
design problem. Because of the non-convex constraint, the objective function is intractable
and complicates the relationship between the BS transmit beamformer and RIS passive
beamformer. In [27], the authors solve this optimization problem by using a proximal
policy optimization (PPO) algorithm, which is a powerful reinforcement learning (RL)
algorithm from the actor–critic family and outperforms other actor–critic algorithms. In
the following subsection, we present the system and channel models for the considered
RIS-assisted MISO communication systems, which are similar to those in [71–74].

2.1.1. System Model

The system and channel models for the considered RIS-assisted MISO communication
systems are similar to those in [74]. Specifically, Figure 1 depicts an RIS-assisted MU-MISO
system with M antennas at the BS, communicating with K users, and the RIS is equipped
with J antennas for signal transmission. Each j-th reflective element of the RIS has a
reflective coefficient ξ j and the reflectance matrix of the RIS panel is depicted as Ξ = diag(ξ1,

. . . , ξ j), where ξ j= ejϕj with ϕj denoting the phase shift of the j-th element of the RIS. All
channel models follow the Rician distribution [74]. hk,0 ∈ CM×1 is the direct channel from
BS to the k-th UE, H1 ∈ CJ×M that from the BS to RIS and hk,2 ∈ CJ×1 that from the RIS to
the k-th UE. The corresponding effective channel from the transmitter to the k-th UE would
be hT

k , hT
k,0 + hT

k,2ΞH1 [74].
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The channel matrix hk,2 between the RIS and k-th UE is given as [74–76]

hk,2 =

√
δk,2κk,2

1 + κk,2

−
hk,2 +

√
δk,2κk,2

1 + κk,2

∼
hk,2, (1)

where
√

δk,2 is the distance dependent path-loss factor, κk,2 is the Rician factor between the

RIS and the k-th UE. Furthermore,
−
hk,2 = aRIS

(
ϕ
(RIS)
k , ψ

(RIS)
k

)
where ϕ

(RIS)
k , ψ

(RIS)
k is the az-

imuth and elevation angle of departure (AoD) from the RIS to the k-th UE, respectively, and
aRIS

(
ϕ
(RIS)
k , ψ

(RIS)
k

)
is the array response vector at the RIS side. For aRIS

(
ϕ
(RIS)
k , ψ

(RIS)
k

)
is the assumed uniform planar arrays (UPAs) and is given by

aRIS

(
ϕ
(RIS)
k , ψ

(RIS)
k

)
=

1√
JH JV

1, . . . , ej 2π
λ D(hsin ϕ

(RIS)
k sin (ψ

(RIS)
k )+υcos ψ

(RIS)
k ), . . . ,

ej 2π
λ D((JH)sin ϕ

(RIS)
k sin (ψ

(RIS)
k )+(JV−1)cos ψ

(RIS)
k )

T

,
(2)

where D is the distance between antenna elements and J = JH JV , where JH and JV are the
number of elements at the horizontal and vertical axes, accordingly [74].
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The channels between the BS and RIS, and the direct one from the BS to the k-th
receiver are depicted as [75–77]

H1 =

√
δ1κ1

1 + κ1

−
H1 +

√
δ1

1 + κ1

∼
H1, (3)

hk,0 =

√
δk,0κk,0

1 + κk,0

−
hk,0 +

√
δk,0

1 + κk,0

∼
hk,0, (4)

where δ1 is the distance dependent path-loss, κ1 is the Rician factor of the BS-RIS link. δu,0
and κu,0 stand for the distance dependent path-loss and the Rician factor between BS and the

k-th UE link, correspondingly [74]. In addition,
−

H1 = aRIS

(
ϕ(RIS), ψ(RIS)

)
aBS

(
ϕ(BS), ψ(BS)

)H
,

where ϕ(RIS) and ψ(RIS) are the azimuth and elevation angle of the angle of arrival (AoA)
to the RIS and ϕ(BS) and ψ(BS) express the azimuth and elevation AoD from the BS to the

RIS direction. On the contrary,
−
hk,0 = aBS

(
ϕ
(BS)
k , ψ

(BS)
k

)
, where ϕ

(BS)
k and ψ

(BS)
k are the

azimuth and elevation AoD from the BS in the direction of the k-th UE [74].
Furthermore, there is no spatial correlation among the antennas and the distribution of

the non-line-of-sight (NLoS) component of the channels
∼
hk,2,

∼
hk,0 and

∼
H1 are independently

and identically distributed complex Gaussian random variables with zero-mean and unit-
variance [74].

Finally, the obtained signal for the k-th UE yk ∈ C is equal to

yk =
K

∑
k=1

√
PkhT

k fkxk + nk, (5)

where Pk denotes the allocated power and xk is the signal for k-th UE, fk is the beamforming
vector for the k-th UE, nk ∈ C represents a circularly symmetric complex additive Gaussian
noise with E

[
nknH

k
]
= σ2 [74].

2.1.2. Problem Formulation

In the problem formulated by the authors in [74], it is assumed that the transmitter is
not able to acquire CSI. Therefore, the trouble to reach the maximum total rate is based on
the channel statistics, i.e., the information angle and Rician factors, through the recursive
linkage [78]. Following the mathematical calculations, the authors in [74] arrive at the
solution of the following optimized problem to be a function of the distance-dependent
path loss, the Rician factors and other channel statistics, and the attenuation effect has been
averaged on a small scale, using the proposed PPO algorithm.

P1 : maxΘ, fk

K

∑
k=1

log2

(
1 +

P
U f H

k Ck fk

σ2 + ∑i 6=k
P
U f H

k Ck fk

)
, (6)

subject to
∣∣ξj
∣∣2 = 1, j = 1, . . . , J,

|| fk||22 = 1, u = 1, . . . , K,

Cu (Theorem III.1. in [74]).

2.2. MIMO Systems

Studies in [1–3,17,25,26,69,70,79,80] focus on creating optimal channel estimation algo-
rithms in RIS-assisted mMIMO and MIMO systems. In [3], the realistic characterization
of the achievable downlink of the RIS-assisted mMIMO systems is presented, accounting
for user mobility and I-CSI under correlated Rayleigh fading conditions, when regularized
ZF (RZF) precoding is applied. In [25], a two-stage strategy is used for the estimation of
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cascaded uplink channels without using a standard user for the RIS-assisted MU mmWave
system. In [26], an efficient three-stage channel estimation method with a low pilot over-
head is presented in an RIS-assisted single-antenna MU mmWave communication system,
and the BS, RIS and UE are equipped with UPA. In [17], an RIS angular-based hybrid
beamforming (AB-HBF) system requires low CSI overhead for the mmWave mMIMO
system with a mmWave channel model based on 3D geometry of three stages: (i) RF
beamformers, (ii) BB precoder/combiner, and (iii) RIS phase shift design. In [1], the authors
use a tensor algorithm for the joint estimation of involved channels and imperfections in
an RIS-assisted MIMO system. In [69,70], the authors create phase shift design schemes
in uplink with linear ZF detection in the receiver side of an RIS-assisted MIMO system.
Furthermore, in [81,82], the authors develop simple iterative and closed-form channel
estimation algorithms based on the PARAFAC modeling of the single-user MIMO scenario.
Finally, in [79,80], the researchers focus on a cell-free RIS-assisted system architecture
where channel estimation is achieved sequentially. Next, we present a cell-free and a cell
RIS-assisted mMIMO mmWave system.

2.2.1. Cell-Free Communication System

• Scenario Caption and Signal Model

Figure 2 illustrates an RIS-assisted single user cell-free communication system. Based
on [80], they assume a time division duplex (TDD) mMIMO system, where M BSs with the
assistance of J RISs serve K UE. The m-th BS is equipped with Nm antennas and each RIS
has Nj reflective elements, respectively, where m = 1, 2, . . . , M and j = 1, 2, . . . , N. In this
model, the RISs function as antenna arrays far away from the BS to improve capacity and
provide greater coverage at a low cost, to enhance cell-free communications. In addition, a
central processing unit (CPU) facilitates the joint signal processing of multiple BSs. The
RISs are managed by the wire to the BSs or CPU.
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Quasi-static block-fading channels are considered; the channel matrices from the m-th
BS to the j-th RIS are represented by Fmj ∈ CNj×Nm and the channel matrices from the j-th
RIS to the k-th UE are represented by hH

jk ∈ C1×Nm . For the j-th RIS, the reflection coefficient

matrix is Vj = diag
(
vj
)
∈ CNj×Nj , where vj =

[
υj,1, υj,2, . . . , υj,N

]T and υj,l = pj,le
jθj,l is the

reflection coefficient of the l-th element of the j-th RIS, ρj,l = 1 and θj,l are the amplitude and
phase, accordingly. The channel matrix from the m-th BS to the k-th UE affected by the j-th
RIS is hH

jkVjFmj. Additionally, the RIS has the same number of reflection elements, i.e., L1

= L2 = . . . = LN = L. The downlink CSI can be achieved by the uplink channel estimation
due to TDD systems. To estimate the uplink channel, the orthogonal pilot sequences and
reflection coefficients for the channel measurement should be designed. It also consists of
subframes Q for RISs, and each subframe contains symbol durations T, where T ≥ K [80].

The reflection vector of the j-th RIS in the q-th sub-frame is equal to vq
j , the pilot

sequence of the k-th UE is sH
k = [sk,1, sk,2, . . . , sk,T ]

T ∈ C1×T and sH
k sk = 0, k 6= J, sH

k sk =
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σ2
ρ T, where σ2

ρ is the transmit power of each UE. The channel that directly links the BS and
the UE considers all RISs to be disabled and the direct channel estimation is not considered.
In the q-th sub-frame, the received signal Ym,q ∈ CNm×T at the m-th BS is written as

Ym,q =
K

∑
k=1

N

∑
j=1

FH
mjV

q
j hjksH

k + Wm,q, (7)

where Wm,q ∈ CNm×T represents the incoming Gaussian noise following CN
(

0, σ2
j INm

)
[80].

In [80], since the orthogonal pilot sequences are employed and considering the low
mobility scenarios for the k-th UE, we obtain

∼
ym,q,k =

1
σ2

ρ T
Ym,qsk =

J

∑
j=1

FH
mjV

q
j hjk +

∼
Wm,q, (8)

where
∼
Wm,q = 1

PT Wm,q. By collecting the signals of the Q sub-frames via raw stacking, the

received signal
∼
Ym,k ∈ CNmQ×1 is expressed as

∼
Ym,k =



N
∑

j=1
FH

mjV
1
j hjk

N
∑

j=1
FH

mjV
2
j hjk

...
N
∑

j=1
FH

mjV
Q
j hjk


+


∼
Wm,1
∼
Wm,2

...
∼
Wm,Q

. (9)

• Channel Model of Cell-Free Communication System

In [80], the BSs and RISs are supplied with a uniform linear array (ULA), and the
physical channels defining the geometric arrangement are

Fmj =

√
NNm

Pf ,m,j

Pf ,m,j

∑
p=1

βm,j,paL

(
2πd

λ
sin θm,j,p

)
× aH

D

(
2πd

λ
sin ϕm,j,p

)
, (10)

hjk =

√
N

Ph,j,k

Ph,j,k

∑
b=1

γj,k,baL

(
2πd

λ
sin ϕj,k,b

)
, (11)

where Pf ,m,n and Ph,j,k are the number of paths of Fmj and hjk, accordingly, βm,j,p and γj,k,b are
the complex gains of the p-th and b-th paths of the two channels, accordingly. Additionally,
ϕm,j,p and ϕj,k,b are AoDs from the m-th BS to the j-th RIS and from the j-th RIS to the k-th
UE, accordingly. θm,j,p is the AoA from the m-th BS to the j-th RIS. dBS = dRIS = d is the
antenna inter-element distancing. aD(·) and aL(·) are ULA steering vectors of BSs and RISs,
accordingly. Not losing the generality, we have

a(θ) =

√
1
L

[
1, . . . , ejθ , . . . , ej(N−1)θ

]T
, (12)

where L is the number of antenna elements.

2.2.2. Cell Communication System

Figure 3 shows an RIS-assisted downlink cell mMIMO communication system [3],
where the BS has M antennas in communication with the K single-antenna non-cooperative
UEs behind the obstacles. The RIS has Nj reflecting elements, where j = 1 and 2, . . . , N RIS
is in the LoS of the BS to assist the contact with the UEs. The same scenario was considered
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where the BS and RIS are installed at a high altitude and with fixed locations. The size
of each RIS element is dH × dV, where dV and dH stand for its vertical height and its
horizontal width, accordingly. The suggested model also examines the potential presence
of direct links between the BS and the UEs.
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• Channel Model

A pseudo-static attenuation model with a larger bandwidth, rather than the channel
bandwidth, is calculated. They generate a typical block attenuation model with each
coherence interval/block included, τc = BCTC for the channel usage, BC is the amplitude
coherence (Hz) and TC is the time coherence (s). Inside the transmission of each relevance
block and during the n-th time slot, let H1 = [h11, . . . , h1L] ∈ CM×Nj and h2k,j ∈ CNj×1 be
the LoS channel between the BS and the RIS and the channel between the RIS and k-thUE at
the n-th time instant. Consider that h1i for i = 1, . . . , Nj expresses the i-th column vector of
H1. gk,j ∈ CM×1 is the direct channel between the BS and k-th UE at the n-th moment. The
greater part of existing studies e.g., [4,5], assumed the independent Rayleigh model, but,
compared fading appeared and changed the performance [83]. h2k,j and gk,j are depicted in
terms of related Rayleigh fading distributions as

h2k,j =
√

βh2k,j
RRIS,kq2k,j (13)

gk,j =
√

βg,kRBS,kqk,j, (14)

where RRIS,k ∈ CNj×Nj and RBS,k ∈ CM×M stand for the deterministic Hermitian-symmetric

positive semi-definite correlation matrices at the RIS and the BS accordingly, with tr
(

RRIS,k

)
=

Nj1 and tr
(

RBS,k

)
= M1 given. Furthermore, βh2k,j

expresses the path-losses of the RIS
kUE and βg,k is defined as the path-losses of the BS kUE links. Particularly, βg,k is sup-
posed to be small because of the blockages between the BS and the UEs. Furthermore,
q2k,j ∼ CN

(
0, INj1

)
and qk,n ∼ CN (0, IM1) indicate the matching fast-fading vectors at

the n-th moment. Notice that fast fading vectors shift within each coherence block, while
the parallel matrices are believed to be continuous for many coherence blocks [3].

The high level LoS channel H1 is illustrated as

[H1]m,j =
√

β1e
(j 2π

λ (m−1)dBSsin θ1,Nj
sin ϕ1,Nj

+(l−1)dRISsin θ2,msin ϕ2,m)
, (15)

where β1 is the path-loss between the BS and RIS, while dBS and dRIS are the inter-antenna
partition at the BS and inter-element partition at the RIS, accordingly [49]. Moreover, θ1,Nj
and ϕ1,Nj represent the elevation and azimuth line of sight (LoS) AoD at the BS regarding
the RIS reflecting element Nj, θ2,m and ϕ2,m represent the elevation and azimuth LoS AoA at
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the RIS. It is useful to point out that H1 can be acquired similarly to the covariance matrices
since the dependence of their statements on the distances and the angles is related [3].

The Nj2 elements are defined by the diagonal RBMs Θ = diag
(

µ1ejθ1 , . . . , µJe
jθNj2

)
∈

CNj×Nj , where θNj2 ∈ [0, 2π] and µNj2 ∈ [0, 1] are the phase and amplitude coefficient for the
RIS element Nj, accordingly. Maximum signal reflection is, i.e., µL2 = 1 ∀ Nj [4]. The overall
channel vector hk,j = gk,j + H1Θh2k,j, conditioned on Θ is delivered as hk,n ∼ CN (0, Rk),
where Rk = βg,kRBS,k + βh2k,j

H1ΘRRIS,kΘH HH
1 . Because Rk depends on the path-losses, the

correlation matrices can also be identified by the network and H1, which are all expected to
be known as clarified earlier [3].

• Channel Aging

In practice, the UE mobility causes channel aging phenomenon [84–87]. In [3], authors
assume that the RIS’s components move the same rating to a unique UE and this results in
a Doppler shift that changes channel with time. Therefore, unlike the conventional block
fading channel model, the flat fading channel coefficients differ from symbol to symbol.
Still, they are fixed within a symbol. The symbol duration is expected to be less than or
even to the coherence time of all UEs. Studies on the impact of channel aging assume the
same in [84–87]. The channel use is represented by n ∈ {1, . . . , τc} [3].

Arithmetically, the channel hk,j at the n-th time instant is denoted as a function of its
initial state hk,0. The advanced component is [87]

hk,j = αk,jhk,0 +
−
a j,kek,j, (16)

where ek,j ∼ CN (0, Rk) is the separate innovation component at the n-th time instant
and αk,j = J0(2πfDTsn) is the sequential correlation coefficient of UE k in the middle of
the channel at time 0 and k with J0(·) are the zeroth-order Bessel function of the first
kind, Ts is the channel testing duration, fD = υ fD

c is the maximum Doppler shift and
−
a j,k =

√
1− α2

k,j [3].

3. Channel Estimation in the RIS-Assisted Communication Systems

In this section, we will present some optimized algorithms proposed for channel
estimation in the MISO and MIMO model systems for RIS-assisted systems. First, the utility
of S-CSI and I-CSI is explained.

3.1. S-CSI and I-CSI

In [9], it has been proven that large-scale antenna systems may be impaired from pilot
contamination impact with many antennas. In frequency division duplex (FDD) systems,
the BS accesses the CSI using a feedback channel. When users have high mobility, S-CSI
is used, which varies more slowly than I-CSI [88]. The BS receives feedback for a longer
time to reduce the amount of feedback [74]. The RIS-assisted communication systems
are often hampered by the difficulty of obtaining accurate I-CSI [89]. Therefore, there are
several studies on I-CSI in [90,91] and channel reciprocity in TDD systems and uplink
training at the BS have been exploited, respectively. S-CSI has a much more balanced
quantity and changes very gradually. First, channel statistics are collected and updated
in sufficient time. Furthermore, signal exchange overhead and computation overhead can
be decreased because the state of the RIS does not need to change often. Doing so, signal
exchange overhead and computation overhead can be reduced, and S-CSI is used to verify
RIS coefficients over an extended period. For all of these reasons, the CSIs of the BS-RIS
and RIS-UEs links must be punctual to optimize the reflection coefficients of RIS-assisted
systems. In addition, CSI can be difficult to determine, due to the large number of passive
reflective elements in BS-RIS and RIS-UEs links. As a result, it is necessary to provide low
training loads while maximizing the operation profits provided by the RIS. Overall, S-CSI
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provides an efficient direction in system design because it varies relatively slowly and can
be obtained quite easily [74,75].

3.2. MISO Systems

In this section, we present the optimized algorithms, which use different techniques
for the channel estimation in MISO systems.

3.2.1. Alternating Optimization with the Semidefinite Relaxation (SDR) Technique

In [4], the transmit beamforming at the BS is designed together with the phase shifts
at the RIS based on all BS-RIS, UE-RIS and UE-BS channels, to fully realize the network
beamforming gain. They apply the semidefinite relaxation (SDR) technique to avoid the
non-convex SINR limitations, as well as the signal unit-modulus limitations imposed by
the MU passive phase shifters. Furthermore, to reduce the computational complexity,
an efficient algorithm is used based on the alternating optimization of the phase and
transmission shifts of the beamforming vector in an iterative manner, where their optimal
solutions are derived in closed form with the other being fixed. For more details see
Algorithm 1 in [4].

3.2.2. PPO Algorithm

As we mentioned in Section 2, the authors of [74] use the PPO algorithm on the RIS-
assisted MU-MISO system to solve optimization problem P1. PPO is presented in [27] and
has been shown to outperform other benchmark algorithms, as it is easy to set up, useful
and easy to execute, and is a model-free, policy-based, actor–critic strategy ranking method.

Think about an infinite-horizon discounted Markov decision process (MDP), specified
by the tuple (S, A, P, r, ω), where P: S× A× S→ R is the transition probability distribu-
tion and finally, ω ∈ [0, 1]. The purpose of PPO is to maintain the consistency of the
trust region policy optimization (TRPO) algorithms because they guarantee monotonic
improvements considering the Kullback–Leibler (KL) variance of policy updates using
first-order optimization methods. The TRPO increases the objective purpose and limits the
size of the policy update [74]. Specifically,

maxθÊt

[
πθ(αt|st)

πθold(αt|st)
Ât

]
, (17)

subject to Ê
[
KL
[
πθold(.|st), πθ(.|st)

]]
≤ δ,

with the expectation Êt[.] showing the observed average over a fixed batch of samples,
in an algorithm that varies between sampling and optimization. Furthermore, Ât is an
estimator of the gain function at timestep t and is given by

At = Q(st, αt)−V(st), (18)

where Q(., .) and V(.) are the action-value of the value functions, accordingly, and are
specified as follows

Q(st, αt) = Est+1,at+1,...

[
∞

∑
l=0

ωlr(st+1)

]
, (19)

V(st)= Eat ,st+1,...

[
∞

∑
l=0

ωlr(st+1)

]
, (20)

where st+1 ∼ P(st+1|st, at). The valuation of the benefit task in the interval t ∈ [0, T] is
given by [27]

Ât = δt + (ωκ)δt+1 + . . . + (ωκ)T−t+1δT−1, (21)

with δt = rt + ωV(st+1)−V(st) and κ is a hyperparameter and represents the factor for
the trade-off of bias and variance for the generalized advantage estimator (GAE) [74].
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Then, let ρt(θ) signify the probability ratio ρt(θ) = πθ(αt|st)/πθold(αt|st), then obvi-
ously ρt(θold)= 1, hence, according to (17), the TRPO maximizes

LCPI(θ) = Êt[ρt(θ)]Ât, (22)

where CPI is the conservative policy iteration. The major problem of optimization in (22) is
the probability of a large policy update. If πθold � πθ then ρt(θ) becomes very large and
policies change dramatically. To unravel this issue, PPO alters the objective function in (22),
as follows

LCPI(θ) = Êt
[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− εc, 1 + εc)Ât

)]
, (23)

where εc is a hyperparameter. The simplification of the objective function (22) was carried
out because using a small set of experiment sizes; the algorithm is not too acquisitive in
favoring actions with positive benefit functions, nor too fast in preventing actions with
negative benefit functions.

The PPO is an MDP with observation and action spaces. When resolving the joint
active and passive beamforming problem on the BS, the RIS and UE of the MISO system
are declared in the E environment, and the agent is the BS that controls the RIS. For more
details, see Algorithm 1 in [74].

3.2.3. Pseudocode of Asynchronous One-Step Q-Learning

In [92], the authors propose an RL algorithm in an RIS-assisted MU-MISO system,
where instead of repeating experience, they asynchronously execute multiple agents in
parallel over multiple instances of the environment. This parallelism likewise decouples
the agents’ data into a more stationary procedure, because at each time step, the parallel
agents experience a variety of different states. This allows a wider range of fundamental
RL algorithms within policy, such as critical action methods, and non-policy RL algorithms,
such as Q-learning, to be robust and efficiently implemented using deep neural networks.

They believe the standard RL setting, where an agent relates with environment E over
a few discrete time steps. At each time step t, the agent obtains a state st and takes an action
from some set of possible actions A, according to its policy π. In response, the agent obtains
the next state st+1 and obtains a scalar reward rt. The method remains until the agent
achieves a terminal state, after which the procedure restarts. The return Rt = ∑∞

k=0 ωkrt+k is
the total accumulated return from time step t withω ∈ (0, 1]. The purpose of the agent is to
improve the expected return from each state st [92].

In value-based model-free RL methods, the action value function is characterized
using a function approximator, such as a neural network. Let Q(s, α; θ) be an approximate
action-value function with parameters θ. The updates to θ are obtained from a variety of RL
algorithms. One example of such an algorithm is Q-learning, which directly estimates the
optimal action value function: Q∗(s, α) ≈ Q(s, α; θ). In one-step Q-learning, the parameters
θ of the action value function Q(s, α; θ) are studied by iteratively minimizing a sequence of
loss functions, where the i-th loss function is described as

Li(θi) = E
(
r + ωmaxa′Q

(
s′, α′; θi−1

)
−Q(s, α; θi)

)2 (24)

where s′ is the state encountered after state s [92].
The above method is mentioned as one-step Q-learning because it renews the energy

value Q(s, α) to the one-step return r + ωmaxa′Q(s′, α′; θi). A disadvantage of utilizing
one-step methods is that acquiring a reward r only immediately impacts the value of the
pair of state actions s that led to the reward. The values of the other pairs of state actions
are only indirectly affected through the updated value Q(s, α). This can make the learning
process slow, as many updates are expected to generate a reward to the relevant previous
states and actions [92]. For more details, see Algorithm 1 in [92].
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3.3. MIMO Systems

In this section, we present the optimized algorithms, which use different techniques
for the channel estimation in MIMO systems.

3.3.1. Three-Dimensional Multiple Measurement Vector (3D-MMV) and the Look Ahead
Orthogonal Match Pursuit (3D-MLAOMP) Algorithm

In [80], the scenario focuses on a multi-BS and multi-UE in RIS-assisted cell-free
systems and investigates the multi-BS cooperation and multi-UE joint estimation. For a
cascaded channel estimation, a 3D-MMV framework has been used to jointly estimate the
cascaded AoDs for all users in which the BS and RIS and multi-UE channels contribute
to a common part (BS-RIS) (characteristic 1). They additionally use tensor contraction to
present a 3D-MLAOMP algorithm. Moreover, when UE and RIS and multi-BS channels
communicate on a common part (RIS-UE) (characteristic 2), it is not implemented in the
cascaded channel estimation. For more details, see Algorithm 1 in [80].

3.3.2. Two-Stage Based Cascaded Channel Estimation for a Multi-User System

In [25], they propose a two-stage method for the uplink cascaded channel estimation
without using a typical user in an RIS-assisted MU-MIMO cell system. Specifically, in
the first stage, an ambiguous shared RIS-BS channel is constructed with all users jointly,
to differentiate the multi-user gain and reduce propagation errors. In the second stage,
each user estimates its channel together with the RIS and obtains full CSI of the cascaded
channel and analyzes the required pilot overhead. For more details, see Algorithm 1 in [25].

3.3.3. Algorithm for an RIS-Assisted AB-HBF System

The authors in [17] create an RIS-assisted AB-HBF mMIMO cell system, as mentioned
in Section 2. Their purpose is to maximize the achievable system rate by reducing the CSI
overhead size and hardware complexity. First, the RF beamformers are designed based on
slow-time varying angular parameters. Then, the BB precoder/combiner is designed with
a SVD and water filling algorithm using an efficient channel with reduced size. Finally,
to enhance the system capacity, the phase shifts of the RIS use a PSO method. For more
details, see Algorithm 1 in [17].

3.3.4. Channel Estimation Algorithms for the Cases with Long-Term Imperfection (LTI)
and Short-Term Imperfection (STI)

In [1], the authors propose different efficient tensor algorithms for channel estimation
in RIS-assisted MIMO systems, with the RIS elements affected by real-world imperfec-
tions. Non-ideal channel estimation problems are solved with trilinear and quadrilinear
PARAFAC. The proposed trilinear ALS (TALS)-based LTI algorithm solves with static
imperfections. The TALS-STI and higher-order singular value decomposition (HOSVD)-STI
algorithms are used for demanding scenarios with non-static behavior of RIS imperfec-
tions and with channel temporal coherence. Furthermore, the TALS-LTI and TALS-STI
algorithms have iterative solutions, to relax the system requirements and work with more
options for training parameters. The HOSVD-STI algorithm has a closed-form solution, has
a lower computational complexity than ALS algorithms, and performs parallel processing.
For more details, see Algorithms 1–3 in [1].

4. Results of the Proposed Algorithms

In this section, we present the results of the optimized algorithms for RIS-assisted
MISO and MIMO systems.

4.1. MISO Systems

According to the results of [74], the PPO-based algorithm is used for joint active
and passive beamforming for RIS-assisted MU MISO systems. They use S-CSI plots
at the beamforming vectors of the BS and at the phase shifts at the RIS. According to
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their simulation results for the low and moderate SNR, the S-CSI models achieve equal
performance to the I-CSI models and quickly converge to compare with others of the same
category. In addition, the PPO-based method outperforms the asynchronous advantage
actor–critic (A2C)-based method [92] and is robust against receiving many random actions,
resulting from the use of the clip function. The studying time for the S-CSI PPO-based is
considerably lower than that of the I-CSI PPO-based algorithm. Regarding the transmission
power effect of the BS, the performance of the S-CSI PPO-based approach is compared with
the alternating direction method of multipliers (ADMMs) suggested in [75]. Furthermore,
the I-CSI-based method validates its operation against the algorithm proposed in [93].
Although the performance of all algorithms is the same at the low SNR, when the SNR rises,
the I-CSI PPO-based algorithm outperforms the S-CSI PPO-based algorithms, the A2C and
ADMM-based algorithms. Furthermore, the above algorithms perform significantly better
than the RIS random phase shifts and the no-RIS case. For the effect of the Rician factor on
the average sum, the I-CSI PPO-based algorithm is compared with the algorithm in [93].
According to the results of [74], by increasing the Rician factor, the performance of all
algorithms with S-CSI and I-CSI enhances. Specifically, for the S-CSI approach, the LoS link
becomes dominant as it increases, the BS-RIS-UE link turns out to be more deterministic.

In [92], the results show that in the proposed framework, it is possible to robustly
train neural networks over RL with both value-based and policy-based techniques, non-
policy, as well as policy methods and discrete and continuous domains. One of the main
conclusions is that the use of peer actor-learners to inform a common model has a steadying
effect on the learning process of the three value-based methods examined. Although this
indicates that stable online Q-learning is possible without experience repetition, which was
used for this objective in the deep Q-Networks (DQN) algorithm, it does not mean that
experience repetition is not beneficial. Combining experience repetition into the framework
of asynchronous RL could significantly increase the data efficiency of these methods by
reprocessing old data. This leads to much quicker training times in areas, such as the open
racing car simulator (TORCS), where cooperating with the environment is more costly than
renewing the model for the architecture used.

In [72], the problem of planning the transmission joint beam and phase shifts in an
RIS-assisted MISO communication system was addressed. Only S-CSI is available at the
transmitter and efficient algorithms maximize the system performance. For the case of
the Rician fading, an iterative algorithm is used, and the convergence of the algorithm
is established. For the Rayleigh fading case, closed-form designs are used. Finally, the
proposed S-CSI-based algorithm achieves a similar performance to the algorithm that
requires I-CSI.

4.2. MIMO Systems

In [1], the authors use tensor algorithms for channel estimation in RIS-assisted MIMO
systems, with trilinear and quadrilinear PARAFAC and it is referred to in Section 3. The
results are that the proposed algorithms have a high-performance estimate for imperfec-
tions in the channel model and system settings. Furthermore, TALS-STI and HOSVD-STI
algorithms have a similar performance. The TALS-STI algorithm is preferred for defect
detection in the low SNR regime and when more flexible choices for the training parameters
are required. Finally, HOSVD-STI is preferred when low processing latency is desired.

In [80], the authors analyze an RIS-assisted cell-free mMIMO system, investigate the
multi-BS cooperation and multi-UE joint estimation. They use the 3D-MLAOMP algorithm,
and it is referred to in Section 3. In future work, the derivation of the results for time-
scale channel estimation through multi-BS cooperation will be explored. In addition,
non-orthogonal pilot sequences based on RIS-assisted cell-free channel estimation in high-
mobility scenarios will be investigated.

In [79], a closed-form analytical expression on the achievable sum of RIS-assisted
cell-free systems is proposed, this evaluates the effect of key parameters of the system
performance. To gain more information, a special case nLoS element was investigated
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with a power gain in the order of O(M). The proposed low-complexity algorithm uses a
two-time-scale transmission protocol, so that the joint beamformers in the BS and RIS are
optimized to increase the achievable weighted sum. In addition, the RIS beamformers were
improved based on the penalty double decomposition (PDD) method exploiting S-CSI,
while the BS beamformers were designed by the primal double degradation (PDS) method
dependent on I-CSI. The influence of key system parameters, such as the number of RIS
elements, CSI settings and the Rician factor was tested. Finally, the advantages of adopting
the cell-free paradigm and developing the exploitation of RISs were demonstrated.

In [2], a joint channel estimation and data detection (JCEDD) scheme for a HRIS-
assisted mmWave orthogonal time frequency space (OTFS) system was proposed. They
suggested a transmission structure, where the OTFS blocks were escorted by several pilot
sequences. In the duration of the pilot sequences, partial HRIS elements were alternatively
initiated in passive mode, and the impinging signal was entirely absorbed. The time
domain channel model was investigated. In addition, the received signal model at both the
HRIS and the BS was presented. Because CSI between the UE and the HRIS is obtained
by the pilot sequences. HRIS beamforming design strategy improves the received signal
strength at the BS. For the OTFS transmission, a JCEDD scheme was proposed. In this
scheme, they resorted to a probabilistic graphical model, and designed a message passing
(MP) algorithm to concurrently recover the data symbols and assess the equivalent channel
gain. Moreover, an expectation maximization (EM) algorithm was employed to acquire
channel parameters, i.e., the channel sparsity, the channel covariance, and the Doppler
frequency shift. By iteratively processing between the MP and EM algorithms, the delay-
Doppler domain channel and the transmitted data symbols can be acquired at the same
time. Simulation results were required to validate the proposed JCEDD scheme and its
robustness to the user velocity.

In [3], the effect of channel aging on RIS-assisted mMIMO systems is studied and the
effects of spatial correlation and I-CSI are considered. Correlation of channel aging and the
Rayleigh attenuation in the data transmission phase and uplink training phase is introduced,
the channel efficiency is estimated, and the DE attainable closed-form normalized zero-
pressure RZF and sum SE is presented. Channel growth regarding the RIS phase shifts and
power budget constraints is presented, applying the S-CSI-based alternating optimization
(AO) algorithm to reduce computational complexity and feedback overhead. Therefore, the
impact of channel aging and how it interacts with other fundamental parameters affecting
the performance were illustrated. For example, the proper range of the numbers of RIS
elements and frame duration reduces channel aging. In the future, the study of broadband
systems is proposed.

Table 2 summarizes the contributions of some studies, that are mentioned above, on
channel estimation in different RIS-assisted system settings.

The research gaps arising from the mentioned literature for channel estimation in
RIS-assisted MISO systems are related to improving the passive modulation of the received
signals from the RIS to the BS and the other way around. Furthermore, it is worth research-
ing and using more RL algorithms, expanding the use of neural networks, and improving
their architecture. Furthermore, research gaps in RIS-assisted MIMO systems concerning
channel estimation during multi-BS cooperation, in high user mobility scenarios, non-
orthogonal pilot sequences and window refresh schemes have not been investigated. CSI
estimation has not been investigated in broadband systems.
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Table 2. Contributions of the proposed methods in RIS-assisted communication systems.

Antenna Setup Contributions Pilot Overhead/Complexity Method’s Name Future Research/Results Source

MISO

• PPO algorithm for joint active
and passive modulated beam;

• use of S-CSI;
• in the low and moderate SNR

regimes, S-CSI models achieve
comparable performance to I-CSI
models.

• PPO-based algorithm.
• Fast algorithm convergence in

relation to others of the same
category.

[74]

MISO

• Enhance the spectrum and energy
efficiency, reduce the
implementation cost of future
wireless communication systems
through smartly adjusting its
signal reflection of the RIS.

• SDR and alternating optimization
techniques, efficient algorithms
balance the system performance
and computational complexity.

• Algorithm is used based on
alternating optimization of the
phase and transmission shifts of
the beamforming vector.

• Design of passive beamforming
of RIS based on feedback from the
BS/BS received signals from the
RIS for future work.

[4]

MISO

• Asynchronous versions of
standard reinforcement learning
algorithms which are able to train
neural network controllers.

• Pseudocode of asynchronous
one-step Q-learning.

• Using parallel actor-learners to
update a shared model that had a
stabilizing effect on the learning
process of the their value-based
methods;

• Algorithmic improvements,
several complementary
improvements to the neural
network architecture for future
research.

[92]
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Table 2. Cont.

Antenna Setup Contributions Pilot Overhead/Complexity Method’s Name Future Research/Results Source

MIMO

• Efficient tensor algorithms for
channel estimation, RIS
components affected by
real-world imperfections;

• Solving non-ideal channel
estimation problems with trilinear
and quadrilinear PARAFAC
models;

• TALS-STI and HOSVD-STI
algorithms: used for demanding
scenarios, and RIS imperfections
with channel time coherence is
non-static;

• TALS-LTI and TALS-STI
algorithms: offer iterative
solutions, relaxed system
requirements and operate with
more options for training
parameters;

• TALS-STI and HOSVD-STI
algorithms: similar performance.

• TALS-LTI algorithm >
O
(

N2K[M + L + ML]
)
;

• TALS-STI algorithm >
O
(

N2K[PM + PL + ML]
)
;

• HOSVD-STI algorithm >
O(NMLP).

• TALS-LTI algorithm: solves with
static imperfections;

• TALS-STI algorithm: preferred for
defect detection in the low SNR
regime and when more flexible
choices for training parameters
are required;

• HOSVD-STI algorithm: a
closed-form solution with lower
computational complexity
compared to ALS algorithms and
offers parallel processing, is
preferred when low processing
latency is desired.

• High performance estimation of
the proposed algorithms for
imperfections, channel model and
system settings.

[1]

MIMO

• Aiming at multi-BS and multi-UE
scenarios in RIS-assisted cell-free
systems;

• Investigating multi-BS
collaboration and multi-UE joint
estimation;

• Share a common part BS-RIS for
multi-UE channels: 3D-MMV
framework for the common
estimation of a consecutive AoD
for all UE and 3D-MLAOMP
algorithms.

• Channel estimation in two time
steps;

• CS frame development with
reduced pilot;

• The proposed algorithm is
efficient compared to
two-timescale channel estimation
methodologies.

• 3D-MLAOMP algorithm;

• First time step estimation with
multi-BS cooperation for future
work;

• Non-orthogonal pilot sequences
for high mobility scenarios for
future work.

[80]
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Table 2. Cont.

Antenna Setup Contributions Pilot Overhead/Complexity Method’s Name Future Research/Results Source

MIMO

• Design of two-timescale
beamforming in an RIS-assisted
cell-free system;

• Derivation of closed-form
analytic expression for achievable
sum-rate by updating system
parameters.

• Case study for non-LoS elements
with O(M) power gain;

• Low-complexity algorithm with
two time-step transmission
protocol to have common BFs in
BSs and RISs with alternative
optimization framework to
increase achievable weighted
sum-rate;

• Overall computational
complexity is in the order of
O
(

I4
(

I1 I2
(

M2 + MLN + L2 N2)
+I3

(
M2 + K2S2))) where I1 and

I2 are the inner-loop and
outer-loop iteration numbers of
RIS design, accordingly, I3
denotes the maximum iteration
number and I4 is the iteration
number of BS power-control
coefficients design.

• RIS BF using PDD-based method
with S-CSI;

• BS BF using PDS-based method
with I-CSI.

• Proposed algorithm outperforms
the successive convex
approximation (SCA)-designed
RISs with the two-timescale CSI
[94], genetic-designed RISs and
uniform power allocation with
the two-timescale CSI [95] and
random beamforming design;

• the proposed method achieves
the comparable performance with
the ADMM-based RIS phase
shifts scheme;

• the cell-free paradigm can achieve
a better performance with less
channel estimation overhead.

[79]

MIMO

• The RIS-assisted AB-HBF system
introduces the hybrid mmWave
mMIMO system;

• Study of various RIS-assisted
AB-HBF systems in relation to the
achievable rate of return to find a
better architecture to combine
both.

• RIS-assisted AB-HBF System.

• Increasing performance depends
on the position of the RIS;

• RIS provides reliability and
flexibility to the AB-HBF system.

[17]

MIMO

• Presents HRIS;
• JCEDD scheme is proposed for

the HRIS-assisted mmWave OTFS
system;

• received signals at the BS and
HRIS as CSI is obtained from
pilot sequences and the HRIS
beamforming design strategy is
proposed to enhance the received
signal strength at the BS.

• O
(

Niter No |M|P2
max M2 N4), where

number of JCEDD iterations is
Niter .

• JCEDD scheme for OTFS
transmission.

• Simultaneous acquisition of
delay-Doppler domain channel
and the transmitted data symbols;

• Schema update with user speed
effects and durability for future
work.

[2]
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Table 2. Cont.

Antenna Setup Contributions Pilot Overhead/Complexity Method’s Name Future Research/Results Source

MIMO

• One user channel correlation is
achieved;

• For different users and to reduce
power leakage from the common
AoA estimation in stage I, use of
low complexity 1D search
method;

• Extension for a UPA-type
multi-antenna user case using
OMP-based method for user AoD
estimation.

• O
(

Jlog (M) + (K− 1)J log M
L

)
for (1);

• O(JKlog (Q) + Jlog M(K− 1)

J log M
L

)
− JK for (2);

• Proposed full-CSI estimation for
single-antenna user (1);

• Extension of the proposed
method for multi-antenna user (2).

• Selection of RIS training matrix,
the random Bernoulli matrix has
near-optimal performance;

• The proposed algorithms
approach the genie-assisted upper
bound in the high SNR regime.

[26]
• New three-stage uplink channel

estimation protocol with
significant reduction of pilot
numbers for UPA-TYPE
RIS-assisted mmWave with the
UPA-type BS;

• All users share a common RIS-BS
channel for pilot overhead
reduction for channel estimation.

MIMO

• New two-stage based uplink
channel estimation strategy for
RIS-assisted multi-user mmWave
communication systems;

• Stage 1: all users together
construct a common RIS-BS
ambiguous channel for multi-user
variable gain;

• Stage 2: each user independently
estimates its own ambiguous
user-RIS channel for pilot header
reduction;

• Minimum number of pilots.

• L + O
(

KJ log M
L

)
.

• Two-stage based cascaded
channel estimation for a multi-UE
without choosing a typical user.

• The required average pilot
overhead of the proposed
two-stage method and the typical
user required method is much
lower than the direct-OMP
method and the
double-structured (DS)-OMP
method.

[25]



Signals 2023, 4 227

Table 2. Cont.

Antenna Setup Contributions Pilot Overhead/Complexity Method’s Name Future Research/Results Source

MIMO

• The impact of channel aging and
considering the effects of spatial
correlation and imperfect CSI;

• Established the channel
aging-correlated Rayleigh fading
in the data transmission phase,
uplink training phase to obtain
the effective channel estimation
and derived the DE achievable
sum SE with RZF in closed form;

• Apply an efficient AO algorithm
based on S-CSI: decreases both
the computational complexity
and the feedback overhead.

• O
(

MN2 + N + M
)
.

• projected gradient ascent
algorithm for the RIS design;

• block coordinate descent
algorithm for solving (P5).

• Study of broadband systems for
future work;

• Suitable selection of the number
of RIS elements and the length of
the frame duration can mitigate
channel aging.

[3]



Signals 2023, 4 228

5. Conclusions

The current research delivered an inclusive and up-to-date survey of papers in RIS-
assisted wireless communication, such as MIMO and MISO systems communications.
Emphasis was placed on the practical challenges of BS, RIS and user channels to estimate
them using optimized algorithms with different channel models and system configurations.
Then, for various practical scenarios of available CSI, namely I-CSI and S-CSI, we introduced
a detailed overview of the research results, depending on the system structure. Different
model systems were presented for MISO and MIMO systems using techniques, such as
tensor, RL, SDR and others to find the optimal channel estimation algorithm. For the
MISO systems, the SDR technique algorithm, the Q-learning RL algorithm and the main
PPO algorithm were presented. The PPO algorithm has presented a low and moderate
SNR, the BS transmission power was similar to the ADMM algorithm. The preferred
algorithms were I-CSI, S-CSI type and the BS-RIS-UE links, which were deterministic. The
Q-learning RL algorithm increased the performance and reprocessed the received data. For
MIMO systems that were divided into cell and cell-free, some of the algorithms presented
were the 3D-MMV 3D-MLAOMP algorithm, two-stage based cascaded channel estimation
algorithm, algorithm for an RIS-assisted AB-HBF system and algorithms that use LTI and
STI methods. Of the mentioned algorithms, the 3D-MMV 3D-MLAOMP algorithm has
been more interesting because it is a tensor-type algorithm, it has presented a low SNR and
is preferred for low processing latency. Table 2 presented the characteristics of the above
algorithms. Considering all the above, we found that channel estimation in RIS-assisted
communication systems is improved by creating new or optimizing existing algorithms.
Improvement was observed in estimation time, performance, how the BS-RIS and RIS-UE
channels are calculated and create scenarios for users with high mobility. It was found
that the performance of the system depends on the location of the RIS and how many
elements it consists of. As a result, the optimized algorithms helped to reduce the pilot
signal header and their complexity. For instance, for an RIS-assisted MU-MISO system
in [74], an optimized PPO-based algorithm was proposed, which used S-CSI, and the
algorithm had a fast convergence compared to same category algorithms. In addition, for
an RIS-assisted mMIMO system in [3], they proposed an optimized algorithm for high
user mobility with efficient complexity O(MN2 + N +M) and used S-CSI. According to
the researchers, it is necessary to further study the methods in broadband systems, to
study more the required number of RIS elements to have the maximum performance of
the system and the window size to reduce the channel aging. The contribution of neural
networks to channel estimation in RIS-assisted systems should be further investigated. In
addition, there should be more scenarios for high user mobility versus channel aging. In
our future work, we will simulate the mentioned algorithms for RIS-assisted MISO and
MIMO systems, respectively, to confirm their optimization in terms of channel estimation.
According to the settings of the systems used by these authors, but also by simulating
them with other parameters. We hope this research provides information to researchers
and professionals working on the new technologies of communication systems in order to
further explore the problems that have emerged.
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Abbreviations

1D 1 dimension
3D 3 dimensions
3D-MLAOMP 3D-MMV look ahead orthogonal match pursuit
3D-MMV Three-dimensional multiple measurement vector
6G Sixth-generation
A2C Asynchronous Advantage Actor–critic
AB-HBF Angular-based Hybrid Beamforming
ADMM Alternating Direction Method Of Multipliers
ALS Alternating Least Squares
AO Alternating Optimization
AoA Angle of Arrival
AoD Angle of Departure
BB Baseband
BS Base Station
CPI Conservative Policy Iteration
CPU Central Processing Unit
CS Compression Sensing
CSI Channel State Information
DE Deterministic Equivalent
DFT Discrete Fourier Transform
DQN Deep Q-networks
EM Expectation Maximization
FDD Frequency Division Duplex
GAE Generalized Advantage Estimator
HBF Hybrid Beamforming
HOSVD Higher-order Singular Value Decomposition
HRIS Hybrid RIS
I-CSI Instantaneous CSI
IoVs Internet of Vehicles
JCEDD Joint Channel Estimation and Data Detection
KL Kullback–Leibler
LMMSE Linear MMSE
LoS Line of Sight
LS Least Squares
LTI Long-term Imperfection
MDP Markov Decision Process
MIMO Multiple Input-Multiple Output
MISO Multiple Input-Single Output
mMIMO massive Multiple Input-Multiple Output
MMSE Minimum MSE
MMV Multiple Measurement Vector
MP Message Passing
MSE Mean-Squared-Error
MU-MISO multi-user MISO
NLoS Non-line-of-sight
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OMP Orthogonal Matching Pursuit
OTFS Orthogonal Time Frequency Space
PARAFAC Parallel Factor
PDD Penalty Double Decomposition
PDS Primal Double Degradation
PPO Proximal Policy Optimization
QoS Quality of Service
RBM Reflecting Beamforming Matrix
RF Radio Frequency
RIS Reconfigurable Intelligent Surface
RL Reinforcement Learning
RZF Regularized ZF
S-CSI Statistical CSI
SE Spectral Efficiency
SINR Signal-to-Interference-Plus-Noise Ratio
STI Short-term Imperfection
SVD Singular Value Decomposition
TALS Trilinear ALS
TDD Time Division Duplex
TORCS The Open Racing Car Simulator
TRPO Trust Region Policy Optimization
UE User Equipment
ULA Uniform Linear Array
UPA Uniform Planar Arrays
ZF Zero Forcing
SDR Semidefinite Relaxation
SCA Successive Convex Approximation
DS-OMP Double-Structured-OMP
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