Automatic Detection of Electrodermal Activity Events during Sleep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Wavelet Transforms
2.3. Events Frequency Range
2.4. Algorithm
- Data loading. First, files containing the EDA signal, the manually scored events, and sleep stages are loaded. After loading, signal pre-processing is performed.
- Signal pre-processing. WTs are used to smooth the original signal, before down-sampling the signal and applying a band-pass filter. A haar discrete WT (DWT) is applied to the filtered signal, detail coefficients are hard thresholded, and an inverse DWT is applied to obtain a smoothed signal.
- Artefact detection. Motion artefacts are detected using WTs on the non-smoothened signal. Parts of the EDA signal that strongly resemble a specific wavelet are considered artefacts.
- Event detection. The pre-processed signal is segmented into non-overlapping time windows. Then, the FFT is applied to each segment and thresholds are used in the time domain as well as frequency domain to detect EDA events. Respective parts of the signal are stored in an array.
- Artefact removal. Signal segments that are considered artefacts are removed from the above array.
- Wake epoch removal. Signal segments marked as waking periods are also removed.
- Storm detection. Finally, EDA storms are detected using their respective definitions.
2.5. Re-Sampling
2.6. Signal Pre-Processing
2.7. Artefact Detection
2.8. EDA Event Detection
2.9. EDA Storm Detection
2.10. Performance Indices
2.10.1. Precision
2.10.2. Recall
2.10.3. -Score
3. Results
Algorithm Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.H. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci. Biobehav. Rev. 2014, 47, 122–153. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, P.L. Thermoregulation and sleep. Front. Biosci. 2003, 8, 1054. [Google Scholar] [CrossRef] [PubMed]
- Idiaquez, J.; Casar, J.C.; Arnardottir, E.S.; August, E.; Santin, J.; Iturriaga, R. Hyperhidrosis in sleep disorders—A narrative review of mechanisms and clinical significance. J. Sleep Res. 2022, 32, e13660. [Google Scholar] [CrossRef] [PubMed]
- Arnardottir, E.S.; Thorleifsdottir, B.; Svanborg, E.; Olafsson, I.; Gislason, T. Sleep-related sweating in obstructive sleep apnoea: Association with sleep stages and blood pressure. J. Sleep Res. 2010, 19, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L. Publication recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [CrossRef]
- Affanni, A.; Chiorboli, G. Design and characterization of a real-time, wearable, endosomatic electrodermal system. Measurement 2015, 75, 111–121. [Google Scholar] [CrossRef]
- Tronstad, C.; Amini, M.; Bach, D.R.; Ørjan, G. Martinsen. Current trends and opportunities in the methodology of electrodermal activity measurement. Physiol. Meas. 2022, 43, 02TR01. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef]
- Lascio, E.D.; Gashi, S.; Santini, S. Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; Association for Computing Machinery: New York, NY, USA, 2018; Volume 2, pp. 1–21. [Google Scholar] [CrossRef]
- Poh, M.Z.; Loddenkemper, T.; Swenson, N.C.; Goyal, S.; Madsen, J.R.; Picard, R.W. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4415–4418. [Google Scholar] [CrossRef]
- Zontone, P.; Affanni, A.; Bernardini, R.; Piras, A.; Rinaldo, R. Stress Detection Through Electrodermal Activity (EDA) and Electrocardiogram (ECG) Analysis in Car Drivers. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Jacobsen, F.A.; Hafli, E.W.; Tronstad, C.; Ørjan, G. Martinsen. Classification of emotions based on electrodermal activity and transfer learning - A pilot study. J. Electr. Bioimpedance 2021, 12, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Anusha, A.S.; Preejith, S.P.; Akl, T.J.; Sivaprakasam, M. Electrodermal activity based autonomic sleep staging using wrist wearable. Biomed. Signal Process. Control 2022, 75, 103562. [Google Scholar] [CrossRef]
- Gashi, S.; Alecci, L.; Di, E.; Debus, M.E.; Gasparini, F.; Santini, S. The Role of Model Personalization for Sleep Stage and Sleep Quality Recognition Using Wearables. IEEE Pervasive Comput. 2022, 21, 69–77. [Google Scholar] [CrossRef]
- Piccini, J.; August, E.; Óskarsdóttir, M.; Arnardóttir, E.S. Using the electrodermal activity signal and machine learning for diagnosing sleep. Front. Sleep 2023, 2, 1127697. [Google Scholar] [CrossRef]
- Lajos, L.E. The relation between electrodermal activity in sleep, negative affect, and stress in patients referred for nocturnal polysomnography. Diss. Abstr. Int. Sect. B Sci. Eng. 2004, 65, 2633. [Google Scholar]
- Sano, A.; Picard, R.W. Toward a taxonomy of autonomic sleep patterns with electrodermal activity. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 777–780. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Arnardottir, E.S.; Janson, C.; Bjornsdottir, E.; Benediktsdottir, B.; Juliusson, S.; Kuna, S.T.; Pack, A.I.; Gislason, T. Nocturnal sweating—A common symptom of obstructive sleep apnoea: The Icelandic sleep apnoea cohort. BMJ Open 2013, 3, e002795. [Google Scholar] [CrossRef]
- Burch, N. Data processing of psychophysiological recordings. In Proceedings of the Symposium on the Analysis of Central Nervous System Data Using Computer Methods, Washington, DC, USA, 29–30 October 1964; pp. 165–180. [Google Scholar]
- Sano, A.; Picard, R.W.; Stickgold, R. Quantitative analysis of wrist electrodermal activity during sleep. Int. J. Psychophysiol. 2014, 94, 382–389. [Google Scholar] [CrossRef]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar] [CrossRef]
- Bach, D.R.; Friston, K.J.; Dolan, R.J. An improved algorithm for model-based analysis of evoked skin conductance responses. Biol. Psychol. 2013, 94, 490–497. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef]
- Hossain, M.B.; Posada-Quintero, H.F.; Kong, Y.; McNaboe, R.; Chon, K.H. Automatic motion artifact detection in electrodermal activity data using machine learning. Biomed. Signal Process. Control 2022, 74, 103483. [Google Scholar] [CrossRef]
- Daubechius, I. Ten Lectures of Wavelets; Sosiety for Industrial and Applied Mathematics Analysis: Philadelphia, PA, USA, 1992; pp. 1544–1576. [Google Scholar]
- Rao, R.; Chapa, J. Algorithms for designing wavelets to match a specified signal. IEEE Trans. Signal Process. 2000, 48, 3395–3406. [Google Scholar] [CrossRef]
- Arnardottir, E.S.; Islind, A.S.; Óskarsdóttir, M.; Ólafsdóttir, K.A.; August, E.; Jónasdóttir, L.; Hrubos-Strøm, H.; Saavedra, J.M.; Grote, L.; Hedner, J.; et al. The Sleep Revolution project: The concept and objectives. J. Sleep Res. 2022, 31, e13630. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Värri, A.; Rosa, A.C.; Nielsen, K.D.; Gade, J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr. Clin. Neurophysiol. 1992, 82, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Kales, A.; Rechtschaffen, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; NIH Publication; U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network: Bethesda, MD, USA, 1968.
- Berry, R.; Quan, S.; Abreu, A. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.6; AASM: Darien, IL, USA, 2020. [Google Scholar]
- Madan, P.; Singh, V.; Singh, D.P.; Diwakar, M.; Kishor, A. Denoising of ECG signals using weighted stationary wavelet total variation. Biomed. Signal Process. Control 2022, 73, 103478. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Subasi, A. Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition. Biomed. Signal Process. Control 2020, 58, 101872. [Google Scholar] [CrossRef]
- Chen, W.; Jaques, N.; Taylor, S.; Sano, A.; Fedor, S.; Picard, R.W. Wavelet-based motion artifact removal for electrodermal activity. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015; pp. 6223–6226. [Google Scholar] [CrossRef]
- Chui, C.K.; Heil, C. An Introduction to Wavelets. Comput. Phys. 1992, 6, 697. [Google Scholar] [CrossRef]
- Graps, A. An Introduction to Wavelets. IEEE Comput. Sci. Eng. 1995, 2, 50–61. [Google Scholar] [CrossRef]
- Rafiee, J.; Rafiee, M.A.; Prause, N.; Schoen, M.P. Wavelet basis functions in biomedical signal processing. Expert Syst. Appl. 2011, 38, 6190–6201. [Google Scholar] [CrossRef]
- Kaplun, D.; Voznesenskiy, A.; Romanov, S.; Nepomuceno, E.; Butusov, D. Optimal estimation of wavelet decomposition level for a matching pursuit algorithm. Entropy 2019, 21, 843. [Google Scholar] [CrossRef]
- Vetrugno, R.; Liguori, R.; Cortelli, P.; Montagna, P. Sympathetic skin response. Clin. Auton. Res. 2003, 13, 256–270. [Google Scholar] [CrossRef]
- Edelberg, R. Electrodermal Mechanisms: A Critique of the Two-Effector Hypothesis and a Proposed Replacement. In Progress in Electrodermal Research; Roy, J.C., Boucsein, W., Fowles, D.C., Gruzelier, J.H., Eds.; Springer: Boston, MA, USA, 1993; pp. 7–29. [Google Scholar] [CrossRef]
- Martin, I.; Venables, P. Techniques in Psychophysiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980. [Google Scholar]
- The MathWorks Inc. MATLAB, version 9.12.0.1884302 (R2022a); The MathWorks Inc.: Natick, MA, USA, 2022. [Google Scholar]
- Braithwaite, J.; Watson, D.; Robert, J.; Mickey, R. A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments; Technical Report; University of Birmingham: Birmingham, UK, 2013. [Google Scholar]
- Coifman, R.R.; Donoho, D.L. Translation-Invariant De-Noising; Springer: New York, NY, USA, 1995; pp. 125–150. [Google Scholar] [CrossRef]
- Kuna, S.T.; Benca, R.; Kushida, C.A.; Walsh, J.; Younes, M.; Staley, B.; Hanlon, A.; Pack, A.I.; Pien, G.W.; Malhotra, A. Agreement in computer-assisted manual scoring of polysomnograms across sleep centers. Sleep 2013, 36, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Safont, G.; Salazar, A.; Vergara, L. Vector score alpha integration for classifier late fusion. Pattern Recognit. Lett. 2020, 136, 48–55. [Google Scholar] [CrossRef]
- Soriano, A.; Vergara, L.; Ahmed, B.; Salazar, A. Fusion of Scores in a Detection Context Based on Alpha Integration. Neural Comput. 2015, 27, 1983–2010. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.S.; Ciliberti, D.; Mankin, E.A.; Poe, G.R. Recurrent Hippocampo-neocortical sleep-state divergence in humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2123427119. [Google Scholar] [CrossRef]
Mother Function | DL 1 | DL 2 | DL 3 | DL 4 |
---|---|---|---|---|
db44 | 0.0059 | 0.0228 | 0.0815 | 0.3572 |
coif3 | 0.0060 | 0.0219 | 0.0789 | 0.3599 |
Index | Average | Median | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
73.7% | 77.4% | 11.1% | 100% | 19.5% | |
66.1% | 67.4% | 8.9% | 95.3% | 22.4% | |
68.9% | 68.9% | 9.9% | 100% | 20.5% | |
50.3% | 47.6% | 0.0% | 100% | 26.6% | |
62.6% | 65.4% | 18.8% | 100% | 18.2% | |
51.5% | 53.6% | 0.0% | 82.4% | 20.2% |
Index | Average | Median | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
68.9% | 76.5% | 16.7% | 91.8% | 19.7% | |
77.8% | 79.8% | 16.7% | 96.1% | 14.7% | |
71.4% | 78.0% | 16.7% | 89.7% | 15.6% | |
49.8% | 49.5% | 0.0% | 97.2% | 26.0% | |
75.9% | 78.9% | 0.0% | 100% | 20.7% | |
56.6% | 57.6% | 0.0% | 95.6% | 22.1% |
0.3937 | 0.0300 | 0.6167 | 0.9458 | 0.0237 | 0.5012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccini, J.; August, E.; Noel Aziz Hanna, S.L.; Siilak, T.; Arnardóttir, E.S. Automatic Detection of Electrodermal Activity Events during Sleep. Signals 2023, 4, 877-891. https://doi.org/10.3390/signals4040048
Piccini J, August E, Noel Aziz Hanna SL, Siilak T, Arnardóttir ES. Automatic Detection of Electrodermal Activity Events during Sleep. Signals. 2023; 4(4):877-891. https://doi.org/10.3390/signals4040048
Chicago/Turabian StylePiccini, Jacopo, Elias August, Sami Leon Noel Aziz Hanna, Tiina Siilak, and Erna Sif Arnardóttir. 2023. "Automatic Detection of Electrodermal Activity Events during Sleep" Signals 4, no. 4: 877-891. https://doi.org/10.3390/signals4040048
APA StylePiccini, J., August, E., Noel Aziz Hanna, S. L., Siilak, T., & Arnardóttir, E. S. (2023). Automatic Detection of Electrodermal Activity Events during Sleep. Signals, 4(4), 877-891. https://doi.org/10.3390/signals4040048