Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
Abstract
:1. Introduction
2. Spectrum Sensing Problem
2.1. Spectrum Sensing as a Statistical Decision
- Hypothesis : PU’s signal is absent
- Hypothesis : PU’s signal is present
2.2. RQA Benefits
- RQA is based on the chaos theory and is normally used to extract the hidden recurring states of a dynamic system. The various parts of a transmission chain, such as modulation, filtering, coding, multiplexing, etc, generate hidden recurring states in the communication signals. Therefore, RQA can help detect the presence of the PU’s signal on a desired bandwidth.
- In a previous work [20], we showed that RQA is a promising tool for the spectrum sensing task. Indeed, in a noncooperative context, we proposed the Recurrence-Rate-based detection model (RRD), and this previous algorithm was able to detect the presence of the PU’s signals with SNR dB.
- During the detection procedure, a spectrum sensing algorithm based on RQA does not require the estimation of the noise variance, as required by some spectrum sensing algorithms such as ED, which is a great advantage.
- RQA can help detect a communication signal in a very low SNR; and contrary to ED, Recurrence Analysis can distinguish a noisy communication signal from a high energy noise.
- RQA does not have a high computational cost like CFD. In noncooperative spectrum sensing, RQA is more robust compared with the widely used ED or CFD.
3. Recurrence Quantification Analysis
3.1. Estimation of the Embedding Parameters
3.1.1. Time Delay
3.1.2. Phase Space Dimension
3.1.3. Optimal Values of m and
3.2. Recurrence Plot
4. Recurrence-Analysis-Based Detector
- It cannot detect the presence of a communication signal when SNR dB.
- It is very sensitive to the recurrence threshold .
- The computational cost is relatively high.
- The performance of an RRD is sensitive to the types of modulations of a communication signal.
4.1. Detection Model
- For a WGN, and have the same Probability Density Function (PDF), which is not the case for a noisy communication signal. Hence, to detect the presence of a communication signal, we check if is representative of . For this purpose, we use a statistical test of conformity to evaluate this representativeness [48].
- The of a WGN or a communication signal has the same PDF. This remark allows us to design a detector free of noise variance estimation.
4.2. Analytical Expression of the Probability of False Alarm
4.2.1. The PDF of under Hypothesis
4.2.2. The PDF of under Hypothesis
4.2.3. The Probability Density Function of T under hypothesis
4.2.4. Probability of False Alarm and Detection Threshold
4.3. Analytical Expression of the Probability of Detection
5. Simulations Results
6. Complexity Analysis of Recurrence-Analysis-Based Detector
6.1. Complexity Analysis of Energy-Based Detector
6.2. Complexity Analysis of Cyclostationary-Feature-Based Detector
6.3. Algorithmic Complexity of Recurrence-Analysis-Based Detector
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Mansour, A.; Mesleh, R.; Abaza, M. New challenges in wireless and free space optical communications. Opt. Lasers Eng. 2017, 89, 95–108. [Google Scholar] [CrossRef]
- Nasser, A.; Mansour, A.; Yao, K.C.; Chaitou, M.; Charara, H. Spatial and time diversities for canonical correlation significance test in spectrum sensing. In Proceedings of the Signal Processing Conference (EUSIPCO), 2016 24th European, Budapest, Hungary, 29 August–2 September 2016; pp. 1232–1236. [Google Scholar]
- Nasser, A.; Mansour, A.; Yao, K.C.; Charara, H.; Chaitou, M. Spectrum sensing for full-duplex cognitive radio systems. In Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), Grenoble, France, 30 May–1 June 2016; Springer: Cham, Switzerland, 2016; pp. 363–374. [Google Scholar]
- Nasser, A.; Mansour, A.; Yao, K.; Abdallah, H.; Charara, H. Spectrum sensing based on cumulative power spectral density. EURASIP J. Adv. Signal Process. 2017, 1, 38–56. [Google Scholar] [CrossRef]
- Moawad, A.; Yao, K.; Mansour, A.; Gautier, R. Autocepstrum Approach for Spectrum Sensing in Cognitive Radio. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018; pp. 1–6. [Google Scholar]
- Ding, G.; Wang, J.; Wu, Q.; Zhang, L.; Zou, Y.; Yao, Y.; Chen, Y. Robust Spectrum Sensing With Crowd Sensors. IEEE Trans. Commun. 2014, 62, 3129–3143. [Google Scholar] [CrossRef]
- Luo, L.; Roy, S. Efficient Spectrum Sensing for Cognitive Radio Networks via Joint Optimization of Sensing Threshold and Duration. IEEE Trans. Commun. 2012, 60, 2851–2860. [Google Scholar] [CrossRef]
- Zeng, Y.; Liang, Y. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 2009, 57, 1784–1793. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Nallanathan, A.; Nan, Y.; Zhao, C.; Zhou, Z. Deep Sensing for Next-Generation Dynamic Spectrum Sharing: More Than Detecting the Occupancy State of Primary Spectrum. IEEE Trans. Commun. 2015, 63, 2442–2457. [Google Scholar] [CrossRef]
- Burel, G.; Bouder, C.; Berder, O. Detection of direct sequence spread spectrum transmissions without prior knowledge. In Proceedings of the GLOBECOM’01, IEEE Global Telecommunications Conference, San Antonio, TX, USA, 25–29 November 2001; Volume 1, pp. 236–239. [Google Scholar]
- Zhang, X.; Gao, F.; Chai, R.; Jiang, T. Matched filter based spectrum sensing when primary user has multiple power levels. China Commun. 2015, 12, 21–31. [Google Scholar] [CrossRef]
- Kadjo, J.M.; Yao, K.C.; Mansour, A. Blind detection of cyclostationary features in the context of Cognitive Radio. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 150–155. [Google Scholar]
- Sobron, I.; Diniz, P.S.R.; Martins, W.A.; Velez, M. Energy Detection Technique for Adaptive Spectrum Sensing. IEEE Trans. Commun. 2015, 63, 617–627. [Google Scholar] [CrossRef]
- Lopez-Benitez, M.; Casadevall, F. Signal Uncertainty in Spectrum Sensing for Cognitive Radio. IEEE Trans. Commun. 2013, 61, 1231–1241. [Google Scholar] [CrossRef]
- Yang, K.; Huang, Z.; Wang, X.; Li, X. A Blind Spectrum Sensing Method Based on Deep Learning. Sensors 2019, 19, 2270. [Google Scholar] [CrossRef]
- Xue, H.; Gao, F. A machine learning based spectrum-sensing algorithm using sample covariance matrix. In Proceedings of the 2015 10th International Conference on Communications and Networking in China (ChinaCom), Shanghai, China, 15–17 August 2015; pp. 476–480. [Google Scholar]
- Zhang, K.; Li, J.; Gao, F. Machine learning techniques for spectrum sensing when primary user has multiple transmit powers. In Proceedings of the 2014 IEEE International Conference on Communication Systems, Macau, China, 19–21 November 2014; pp. 137–141. [Google Scholar]
- Xiao, H.; Zhou, X.; Tian, Y. Research on Wireless Spectrum Sensing Technology Based on Machine Learning. In Proceedings of the International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage; Springer: Berlin/Heidelberg, Germany, 2018; pp. 472–479. [Google Scholar]
- Kadjo, J.M.; Yao, K.C.; Mansour, A. Blind Spectrum Sensing Based on Recurrence Quantification Analysis in the Context of Cognitive Radio. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1835–1839. [Google Scholar]
- Ünal, B. Stability Analysis of Bitcoin using Recurrence Quantification Analysis. Chaos Theory Appl. 2022, 4, 104–110. [Google Scholar] [CrossRef]
- Martín, C.J.; Itayetzin, B.C.V.; Gertrudis, H.G.G.; Claudia, L. Nonlinear Dynamics of Heart Rate Variability after Acutely Induced Myocardial Ischemia by Percutaneous Transluminal Coronary Angioplasty. Entropy 2023, 25, 469. [Google Scholar] [CrossRef]
- Costa, D.G.d.B.; Reis, B.M.d.F.; Zou, Y.; Quiles, M.G.; Macau, E.E. Recurrence density enhanced complex networks for nonlinear time series analysis. Int. J. Bifurc. Chaos 2018, 28, 1850008. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Yin, F.; Hong, F. Analysis and Research on Chaotic Dynamics of Evaporation Duct Height Time Series with Multiple Time Scales. Atmosphere 2022, 13, 2072. [Google Scholar] [CrossRef]
- Marwan, N.; Kurths, J. Cross recurrence plots and their applications. In Mathematical Physics Research at the Cutting Edge; Nova Science Publishers: Hauppauge, NY, USA, 2004; pp. 101–139. [Google Scholar]
- Atapattu, S.; Tellambura, C.; Jiang, H. Energy Detection for Spectrum Sensing in Cognitive Radio; Springer: New York, NY, USA, 2014. [Google Scholar]
- Mitola, J.; Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef]
- Mitola, J. Cognitive Radio Architecture Evolution. Proc. IEEE 2009, 97, 626–641. [Google Scholar] [CrossRef]
- Naraghi-Pour, M.; Ikuma, T. Autocorrelation-Based Spectrum Sensing for Cognitive Radios. IEEE Trans. Veh. Technol. 2010, 59, 718–733. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Zbilut, J.P. Recurrence quantification analysis of nonlinear dynamical systems. Tutor. Contemp. Nonlinear Methods Behav. Sci. 2005, 94, 26–94. [Google Scholar]
- Anishchenko, V.S.; Astakhov, V.; Neiman, A.; Vadivasova, T.; Schimansky-Geier, L. Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Williams, G. Chaos Theory Tamed; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Ivancevic, V.G.; Ivancevic, T.T. Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 7. [Google Scholar]
- Marwan, C.W.N. Mathematical and Computational Foundations of Recurrence Quantifications. In Recurrence Quantification Analysis. Understanding Complex Systems; Springer: Cham, Switzerland; AIP Publishing: Melville, NY, USA, 2015. Available online: https://ouci.dntb.gov.ua/en/works/leGrnZW7/ (accessed on 17 June 2024).
- Bradley, E.; Kantz, H. Nonlinear time-series analysis revisited. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 097610. [Google Scholar] [CrossRef]
- Chelidze, D. Reliable Estimation of Minimum Embedding Dimension Through Statistical Analysis of Nearest Neighbors. J. Comput. Nonlinear Dyn. 2017, 12, 051024. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- David, C.; Joseph, P.C. Experimental Nonlinear Dynamics Notes for MCE 567; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom. 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Webber, C.L., Jr.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994, 76, 965–973. [Google Scholar] [CrossRef]
- Zbilut, J.P.; Webber, C.L., Jr. Recurrence quantification analysis: Introduction and historical context. Int. J. Bifurc. Chaos 2007, 17, 3477–3481. [Google Scholar] [CrossRef]
- Thiel, M.; Romano, M.C.; Kurths, J.; Meucci, R.; Allaria, E.; Arecchi, F.T. Influence of observational noise on the recurrence quantification analysis. Phys. D Nonlinear Phenom. 2002, 171, 138–152. [Google Scholar] [CrossRef]
- Mansour, A. Probabilités et Statistiques pour les Ingénieurs: Cours, Exercices et Programmation; Hermes Science: Paris, France, 2007. [Google Scholar]
- Shorack, G.R.; Wellner, J.A. Empirical Processes with Applications to Statistics; SIAM: University City, PA, USA, 2009. [Google Scholar]
- Gooch, J.W. Encyclopedic Dictionary of Polymers; Springer: New York, NY, USA, 2010. [Google Scholar]
- Abell, M.L.; Braselton, J.P.; Rafter, J.A.; Rafter, J.A. Statistics with Mathematica; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes; McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Miller, S.; Childers, D. Probability and Random Processes: With Applications to Signal Processing and Communications; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Kha, Q.H.; Ho, Q.T.; Le, N.Q.K. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [Google Scholar] [CrossRef]
- Nasser, A. Spectrum Sensing for Half and Full-Duplex Interwave Cognitive Radio System. Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 2017. [Google Scholar]
- Chin, W.L.; Li, J.M.; Chen, H.H. Low-complexity energy detection for spectrum sensing with random arrivals of primary users. IEEE Trans. Veh. Technol. 2015, 65, 947–952. [Google Scholar] [CrossRef]
- Cohen, D.; Eldar, Y.C. Sub-Nyquist cyclostationary detection for cognitive radio. IEEE Trans. Signal Process. 2017, 65, 3004–3019. [Google Scholar] [CrossRef]
- Tani, A.; Fantacci, R.; Marabissi, D. A low-complexity cyclostationary spectrum sensing for interference avoidance in femtocell LTE-A-based networks. IEEE Trans. Veh. Technol. 2015, 65, 2747–2753. [Google Scholar] [CrossRef]
- Ahmadi, S.; Srinivasan, R.M.; Cho, H.; Park, J.; Cho, J.; Park, D. Channel Models for IEEE 802.16 m Evaluation Methodology Document; IEEE 802.16 Broadband Wireless Access Working Group, 2007; pp. 3–12. Available online: https://standards.ieee.org/ieee/802.16g/3635/ (accessed on 17 June 2024).
- Zayen, B.; Guibène, W.; Hayar, A. Performance comparison for low complexity blind sensing techniques in cognitive radio systems. In Proceedings of the 2010 2nd International Workshop on Cognitive Information Processing, Elba Island, Italy, 14–16 June 2010; pp. 328–332. [Google Scholar] [CrossRef]
- Gardner, W. Cyclostationarty in Communications and Signal Processing; IEEE PRESS: New York, NY, USA, 1994. [Google Scholar]
- Gardner, W. The spectral correlation theory of Cyclostationary time-series. Signal Process. 1986, 11, 13–36. [Google Scholar] [CrossRef]
- Gardner, W. Exploitation Of Spectral Redundancy In Cyclostationary Signals. IEEE Signal Process. Mag. 1991, 8, 14–36. [Google Scholar] [CrossRef]
Entity | Parameters | Value |
---|---|---|
PU’s signal | Sampling frequency | 128 kHz |
Symbol rate | 16 Bd | |
Bandwidth of Interest B | 24 kHz | |
SU’s Detector | Observation time | 15.6 ms |
Sampling Frequency | 128 KHz | |
Embedding parameters | Dimension m | 16 |
time delay | 6 | |
Transmission Channel | Noise Model | AWGN |
Model D of Rayleigh Channel | ||
---|---|---|
Entity | Parameters | Value |
Features | Number of Path | 6 |
Doppler Frequency | 1.2 kHz |
Path Number | 1 | 2 | 3 | 4 | 5 | 6 |
Delay (ns) | 0 | 300 | 8900 | 12,900 | 17,100 | 20,000 |
Gain (dB) | 0 | −2.5 | −12.8 | −10.0 | −25.2 | −16.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadjo, J.-M.; Yao, K.C.; Mansour, A.; Le Jeune, D. Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio. Signals 2024, 5, 438-459. https://doi.org/10.3390/signals5030022
Kadjo J-M, Yao KC, Mansour A, Le Jeune D. Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio. Signals. 2024; 5(3):438-459. https://doi.org/10.3390/signals5030022
Chicago/Turabian StyleKadjo, Jean-Marie, Koffi Clément Yao, Ali Mansour, and Denis Le Jeune. 2024. "Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio" Signals 5, no. 3: 438-459. https://doi.org/10.3390/signals5030022
APA StyleKadjo, J. -M., Yao, K. C., Mansour, A., & Le Jeune, D. (2024). Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio. Signals, 5(3), 438-459. https://doi.org/10.3390/signals5030022