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Abstract: A basic tenet of linear invariant systems is that they are sufficiently described by either the
impulse response function or the frequency transfer function. This implies that we can always obtain
one from the other. However, when the transfer function contains uncanceled poles, the impulse
function cannot be obtained by the standard inverse Fourier transform method. Specifically, when
the input consists of a uniform train of pulses and the output sequence has a finite duration, the
transfer function contains multiple poles on the unit cycle. We show how the impulse function can be
obtained from the frequency transfer function for such marginally stable systems. We discuss three
interesting discrete Fourier transform pairs that are used in demonstrating the equivalence of the
impulse response and transfer functions for such systems. The Fourier transform pairs can be used to
yield various trigonometric sums involving sin(πk/N)

sin(πLk/N)
, where k is the integer summing variable and

N is a multiple of integer L.

Keywords: impulse response function; transfer function with singularities; marginally stable systems

1. Introduction

A linear time-invariant (LTI) system is sufficiently described by the unit impulse
response function (IRF). Given an LTI system with an unknown IRF, we can use any input
function to obtain the IRF. A conceptually simple way to determine a system’s IRF is to use
a unit impulse and unit step function as input. However, as a unit impulse has an infinitely
short duration and a unit step function has an infinitely long duration, they are not always
practical to produce in reality. A more practical and convenient input test function is the
rectangular function. For a discrete system, this corresponds to a sequence of uniform

pulses. For example, let us have the input to a discrete LTI system as x1[n] =
{

1, n = 0, 1
0, otherwise

and the corresponding output is y1[n] =
{

1, n = 0, 1, 2
0, otherwise

. It can be seen that the IRF is

h[n] = [1, 0, 1, −1, . . .], which is an infinite sequence with the repeating pattern underlined.
For an LTI system, the standard method to find the system’s IRF is to inverse Fourier
transform the frequency transfer function H[k] = Y[k]/X[k], where X[k] and Y[k] are the
discrete Fourier transform (DFT) of the input and output sequences, respectively. In this
example, however, inverse discrete Fourier Transform (IDFT) cannot be applied since a
singularity (pole) exists. In this article, we are largely concerned only with the singular
frequency transfer function (SFTF) of marginally stable systems. In general, deconvolution
via IDFT is not doable for SFTF and part of the information is considered lost [1].

To be more general, let the input sequence x[n] have L consecutive unit impulses, i.e.,

x[n] =
{

1, 0 ≤ n ≤ L − 1
0, n ≥ L

. The corresponding output of an LTI system is a sequence of real

values, y[n]. The last non-zero value in y[n] occurs at index Ly − 1, i.e., y[n] = 0, ∀n ≥ Ly
and y[n] ̸= 0 for n = Ly − 1. In this study, we are confined to finite L and Ly. To find
the IRF, h[n], we can carry out a time-domain deconvolution via polynomial division or a
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recursive sum (e.g., [2,3]). Alternatively, the IRF for the above defined x[n] can be found
through the convolution sum y[n] = ∑∞

m=0 h[m]x[n − m] as

h[n] =
{

y[n]− y[n − 1], 0 ≤ n ≤ L − 1
y[n]− y[n − 1] + h[n − L], n ≥ L

. (1)

Since y[n] = 0 for n ≥ Ly, h
[
Ly + 1

]
= h

[
Ly − L + 1]. h[n] becomes periodic with a period

of L starting at max
(

Ly − L + 1, 0
)

or sooner, where max is the maximum operator. The
number of independent points in h[n] is M = max

(
Ly + 1, L

)
. h[n] can alternatively be

expressed as
h[n] = ∑Ly−1

m=0 y[m]q[n − m] + h[n − L]u[n − L], (2)

where q[m] =


1, m = 0
−1, m = 1

0, otherwise
, and u[m] =

{
0 m < 0
1 m ≥ 0

is the unit step function. In general,

such an LTI system has an infinite IRF.
Fundamental to LTI systems is that they are sufficiently described by either h[n] or

its Fourier transform, the frequency transfer function H[k] (e.g., [3,4]). If h[n] and H[k]
are indeed equivalent in characterizing an LTI system, a logical conclusion is that we can
always obtain one from the other. The fact that we cannot find h[n] from a singular H[k]
via IDFT may not be because H[k] has incomplete information but because we have not
found the right way to carry it out. Otherwise, we have to admit H[k] and h[n] are not
always equivalent. The problem appears to be simple and yet fundamental to LTI systems.
Although LTI theory is very mature, obtaining IRF from an SFTF has not received much
attention. Despite extensive searches in the Web of Science database and the open internet,
the author cannot find any references on the direct conversion from SFTF to IRF. There are
possibly two reasons for this: (1) we cannot apply DFT or IDFT when there are singularities;
(2) alternative ways, such as polynomial division, can be used to obtain h[n]. General
discussions on the zeros of the discrete-time system can be found in [5,6]. The stability of
fractional oscillators is analyzed by Li et al. [7]. Schluter and Darup [8] showed that linear
dynamic controllers with integer coefficients are usually unstable. Park et al. [9] discussed
uniformly marginally stable zeros of linear sampled data systems and its application to
stable inversion-based control. In the following, we demonstrate that we can recover h[n]
from H[k] when X[k], the DFT of the input function, is a sinc function.

To describe the problem more precisely, let us consider the details of H[k]. To perform
the discrete Fourier transform (DFT), we zero-pad x[n] and y[n] to N elements. Let X[k] and
Y[k] be the DFT of the zero-padded sequence of x[n] and y[n], respectively. The N-point
DFT of x[n] is defined as

X[k] ≡ ∑N−1
n=0 x[n]e−j2πnk/N , k = 0 . . . N − 1. (3)

In this article, we restrict our input to x[n] =
{

1, 0 ≤ n ≤ L− 1
0, L ≤ n ≤ N − 1

. For k ∈ N = {0, 1, . . . N − 1},

we have

X[k] = ∑L−1
n=0 e−

j2πnk
N =

1 − WkL

1 − Wk = W(L−1)k/2 sin(πN Lk)
sin(πNk)

. (4)

where πN = π
N and W = e−j2πN . X[k] has zeros at k = l N

L , where l ∈ {1, . . . , L − 1}. We

denote the set of the zeros of X[k] as ko =
{

N
L , . . . (L−1)N

L

}
. Denoting Y[k] as the N-point

DFT of y[n], i.e., Y[k] = ∑
Ly−1
n=0 y[n]Wnk, k ∈ N, the frequency transfer function is thus

H[k] =
Y[k]
X[k]

= Y[k]
1 − Wk

1 − WkL . (5)
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The poles, which characterize the stability of a system, are at ko, which are all on the unit
cycle in the corresponding Z-transform and H[0] = Y[0]/L. Such a system is considered to
be marginally stable [10]. IDFT cannot be directly performed on H[k] to obtain h[n] when
there are singularities.

If we limit our objective to obtain h[n] from H[k], we may attempt to avoid poles in
H[k]. As we are concerned with discrete operations, we can sample H[k] in such a way that
there are no poles. In fact, when N is not divisible by L, H[k] does not necessarily have
a singularity. In this first approach, the inverse transform, however, does not yield h[n],
as shown in Figure 1. In this example, N = 17, L = 3, y[0 : 4] = 0, and y[5 : N − 1] = 0.
Alternatively, when N is divisible by L, we can assign a large value at k = ko to attempt
for an approximation of h[n]. We show an example of this second approach in Figure 2,
where N = 16, L = 2, y[0 : 6] = 1, y[7 : N − 1] = 0, and H[ko] = 1010. The approach does
not work in two aspects. The h[n] computed from the IDFT method yields values propor-
tional H[ko] we artificially set and it is not even proportionally correct at the beginning
indices. This invalidates the notion that a large enough real value is a reasonable numerical
approximation when there is a zero in the denominator.
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In the following, we show that when the input function x[n] is a rectangular function
and the output y[n] is a finite length sequence, h[n] can indeed be recovered from X[k] and
Y[k] when N is divisible by L. Before we delve into the proofs, we outline our method
of obtaining h[n] from H[k] in Section 2. The proof of our method is facilitated by three
interesting discrete Fourier transform pairs, which are discussed in Section 3. Each of the
three DFT pairs is presented as a lemma. Section 4 contains the proof of our method and
we point out some potential questions to be explored further in Section 5.
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2. Summary of the Solution

Let N be divisible by L throughout the following discussion, and we define

Z[k] ≡
{

0, k ∈ ko
1−Wk

1−WkL = ejπN(L−1)k sin(πN k)
sin(πN Lk) , k /∈ ko

, (6)

and H1[k] ≡ Y[k]Z[k]. H1[k] sets the poles of H[k] to zeros but otherwise is the same as
H[k]. Let the N-point IDFT of H1[k] be h1[n], i.e.,

h1[n] ≡
1
N ∑N−1

k=0 H1[k]W
−nk. (7)

From h1[n], we obtain h2[n] as

h2[n] ≡ h1[n] + h1[n + Ll ], (8)

where Ll = int
(

Ly
L

)
L, with int being the integer operator. We construct h3[k] in the

following manner:

h3[n] ≡
{

h2[n]− h2[Nh + n], N = 2mL
h2[n]− h2[n+Nh−Lh ]+h2[n+Nh+L−Lh ]

2 , N = (2m + 1)L
, (9)

where m is a positive integer, Lh = int
(

L
2

)
, and Nh = int

(
N
2

)
. Alternatively, h3[n] can be

computed via the following operation:

h3[n] =


2
N

Ly−1

∑
m=0

y[m]
N−1
∑

k=1, odd
F1(k, m − n), N = 2mL

1
N

Ly−1

∑
m=0

y[m]
N−1, ̸=ko

∑
k=1

F2(k, m − n) ,
N = (2m + 1)L

(9a)

where F1(k, n) ≡ WnkZ[k]
(

1 + W−Llk
)

and F2(k, n) ≡ F1(k, n)
[
1 − ejπkcos(πN Lk)

]
. Fi-

nally, we duplicate h4[n] from h3[n] and make the following modifications:

h4[n] ≡
{

h3[n] + h4[n − M1],
h3[n] + (h 4[n − M2] + h4[n − M2 − L])/2

. . .

M1 ≤ n ≤ Nh − 1, N = 2mL
M2 ≤ n ≤ Nh− − 1, N = (2m + 1)L

(10)

where M1 = Nh − Ll , M2 = Nh− − Ll , and Nh− = N−L
2 . (h4[n] = 0 if n < 0).

In the following, we demonstrate that when N ≥ 2
(

Ly + 1
)
, h3[n] = h[n] for

n < N
2 − Ll if N = 2 mL, and h3[n] = h[n] for n < N−L

2 − Ll if N = (2 m + 1)L. We
further demonstrate h4[n] = h[n] for n < N/2 if N = 2 mL. In the next section, we present
three Fourier transform pairs that are used for the proofs.

3. Three Fourier Transform Pairs and Their Properties
3.1. Inverse Fourier Transform of Z0[k] and Properties of h1[n]

Defining Z0[k] ≡ Z[k](1 − δ[k]), we can rewrite h1[n], defined by (7), as

h1[n] =
1

NL∑Ly−1
m=0 y[m] +

1
N ∑Ly−1

m=0 y[m]q0[n − m], (7a)

where
q0[m] ≡ ∑N−1

k=0 W−mkZ0[k] = ∑N−1
k=1 W−mkZ[k], (11)
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i.e., q0[m] and Z0[k] = Z[k](1 − δ[k]) form a DFT pair. In (7a), the index of q0 can be
negative. Noting that W−mN = 1 and Z[k] = Z∗[N − k], where * is for complex conjugate,
q0[m] can be alternatively expressed as follows:

q0[m] = 1
2 ∑N−1

k=1 (W−mkZ[k] + W−m(N−k)Z[N − k])

= ∑N−1, ̸=ko
k=1 cos (πN(2m + L − 1 )k) sin(πN k)

sin(πN Lk) .
(11a)

As q0[m] and y[n] are real, h1[n] is thus real as well. Since q0[m] is an IDFT, all the DFT/IDFT
properties apply, including the periodicity property, q0[m] = q0[N + m].

Lemma 1. If N is divisible by L,

q0[m] = (Nh− − m%N)δ[m, L]− (Nh− − m%N + 1)δ[m − 1, L], (11b)

where Nh− = N−L
2 , m%N = mod(m, N) is m modulo N, δ[m, L] ≡

{
1, i f f m

L ∈ I
0, otherwise

is the comb

function with a period of L, and I is the set of all integers.

Proof. Equation (11) can be written as

q0[m] = ∑N−1
i=1:N/L W−mk 1−Wi

1−WiL + ∑N−1
i=2:N/L W−mk 1−Wi

1−WiL + . . .+

∑N−1
i=N/L−1:N/L W−mk 1−Wi

1−WiL ,
(11c)

where ∑N−1
i=1:N/L indicates that the summation starts at i with an incremental of N/L and

ends at a value up to but not larger than N − 1. Since WiL = W(N/L+i)L for i ∈ ⋖, the
denominator in each summation does not vary with the summation index. The above
equation can be simplified to

q0[m] = L∑N/L−1
k=1

W−mkδ[m, L]− W−(m−1)kδ[m − 1, L]
1 − WLk . (11d)

If m is divisible by L and for m ∈ N, we have

q0[(i + 1)L]− q0[iL] = −L,
N − 1

L
− 1 ≥ i ≥ 0. (12)

If m − 1 is divisible by L,

q0[iL + L + 1]− q0[iL + 1] = L,
N − 2

L
− 1 ≥ i ≥ 0. (13)

Using the fact that WN−L = W−L, q0[0] through q0[L − 1] are

q0[0] =
L
2

N
L −1

∑
k=1

(
1

1 − WLk +
1

1 − WL( N
L −k)

) = Nh−, (14)

q0[1] = −q0[0] = −Nh−, (15)

q0[l] = 0, 1 < l ≤ L − 1, (16)

As q0[m] = q0[N + m], the recursive Equations (12) and (13) lead to

q0[m] =


Nh− − m%N , m/L ∈ I

−Nh− + m%N − 1, (m − 1)/L ∈ I
0, otherwise

(11e)

The expression can be alternatively written as Equation (11b). □

Expression (11b) consists of two linear functions in one period for m = [0, N − 1]. Two
example plots of q0[m] expressed as the sum of (11) and the closed form of (11a) are shown in
Figure 3 for N = 20, L = 2 and N = 4 5, L = 5. Lemma (1) shows that the sum expressed by
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Equation (11a), which happens to be the Fourier transform of Z0[k], has a simple expression.
For instance, letting m = 0, we have ∑N−1, ̸=ko

k=1 cos (πN(L − 1 )k) sin(πN k)
sin(πN Lk) =

N−L
2 . Similarly,

letting m = 1 leads to ∑N−1, ̸=ko
k=1 cos (πN(L + 1 )k) sin(πN k)

sin(πN Lk) = −N−L
2 .

Figure 3. Example plots to show that the summation expressed by (11a) is the same as the closed
form expressed in (11b). Note that q0 consists of two linear functions.

Other than being real and periodic, for i, k, m ∈ I, q0 has the following properties:

(i) ∑N−1
m=0 q0[m] =∑

i+(N−1)
m=i:L q0[m] = 0;

(ii) q0[iL] + q0[N − L − iL] = 0;

(iii) q0[iL] = −q0[iL + 1] = Nh− − ( iL)m%N ;

(iv) q0[iL + 1] + q0[N − L − iL + 1] = 0;

(v) q0[iL] + q0[N − iL] = −L + Nδ[(iL)%N ];

(vi) q0[iL + 1] + q0[N − iL + 1] = L − Nδ[(iL)%N ].

Theorem 1. For l ∈ L = {0, 1 . . . L − 1}, h1[kL + l] is a linear function of k for kL + l ≥
max

(
Ly − L + 1 , 0) and h1

[
N
2

]
→ 0 as N → ∞ .

Proof. From Lemma 1, (7a) can be expressed as

Nh1[n]− 1
L

Ly−1

∑
m=0

y[m] =
Ly−1

∑
m=0

y[m]{(Nh− − (n − m )%N)

δ[n − m, L]− (Nh− − (n − m )%N + 1)δ[n − m − 1, L]}.

(17)

Letting n1 = kL + l and n2 = n1 + L, we have

h1[n2]− h1[n1] =
1
N ∑Ly−1

m=0 y[m] [(n2 − m)%N − (n1 − m)%N ](δ[n1 − m − 1, L]− δ[n1 − m, L]). (18)

The condition for h1[kL + l] to be a linear function of k is that the above expression is in-
dependent of k. This condition is satisfied when n1 ≥ m and n2 ≤ N − 1 as (n2 − m)%N −
(n1 − m)%N = L and δ[n1 − m − 1, L] − δ[n1 − m, L] = δ[l − m − 1, L] − δ[l − m, L]. For
n1 < m, the right-hand side summation of (18) is zero if n1 − m − 1 ≥ −L + 1 due to
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δ[n1 − m − 1, L] − δ[n1 − m, L] = 0. If max
(

Ly − L + 1, 0
)
≤ n1 ≤ Ly − 2, h1[2L + n1] −

h1[L + n1] = h1[L + n1]− h1[n1] =
L
N ∑n1

m=0 y[m](δ[n1 − m − 1, L]− δ[n1 − m, L]). Combin-
ing the cases for n1 ≥ m and n1 < m proves the first part of the theorem.

When N − L + Ly is even, we have

Nh1

[
2Nh−+Ly

2

]
− 1

L ∑
Ly−1
m=0 y[m] =∑

Ly−1
m=0 y[m]{

(
− Ly

2 + m
)

δ
[

2Nh−+Ly
2 − m, L

]
+(

Ly
2 − m − 1

)
δ
[

2Nh−+Ly
2 − m − 1, L

]
}.

(19)

For finite Ly and bounded y[m], all of the terms in the summation are bounded. As

N → ∞, h 1

[
N+Ly−L

2

]
= h1

[
N
2

]
→ 0 for even N. When

(
N + Ly − L

)
or N is odd, the

same argument holds when N is replaced by N − 1. This proves the second part of the
theorem. □

When N is finite, |h 1[n]| around n =
N+Ly−L

2 is typically smaller than around n = N/2.
As the periodic linearity starts at Ly − L + 1, the middle point of the linear region is at
N+Ly−L

2 , which is the converging point of h1[n]. An example h1[n] is shown in Figure 4.
Two additional examples are provided in Section 4.

Figure 4. An example of h1[n]. In this example, N = 42, L = 3 and y is a train of 11 contiguous
unit impulses.

3.2. Inverse Fourier Transform of Z[k]δ[k + 1, 2]

Let q1[m] and Z[k]δ[k + 1, 2] be a DFT pair, i.e.,

q1[m] ≡ ∑N−1
k=0 W−mkZ[k]δ[k + 1, 2] = ∑N−1

k=1, odd W−mkZ[k]. (20)

Lemma 2. If N/L is an even integer,

q1[m] =
N
4
(δ[m, L]−δ[m − 1, L])bN [m], (20a)

where bN [m] = δ′
[
m%N ≤ N

2 − 1
]
− δ′

[
m%N ≥ N

2

]
.

Proof. q1[m] in one period for m ∈ N is

q1_1[m] =


N/4, m = 0 : L :

(
N
2 − L

)
; N

2 + 1 : L : N − L + 1

−N/4, m = 1 : L :
(

N
2 − L + 1

)
; N

2 : L : N − L
0, otherwise

. (21)

The N-point DFT of q1_1[m] is

Q1[k] =
N
4 ∑

N
2 −1

m=0:L (W
mk + W( N

2 +1+m)k − W(m+1)k − W( N
2 +m)k). (22)
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The denominators of the four geometric sums are the same. The sums of the geometric
sequences can be reduced to

Q1[k] =
{

NZ[k], k = odd
0, k = even

(22a)

That is, q1_1(m) and Q1[k] form a DFT pair. The IDFT of Q1[k] recovers q1_1[m] for m ∈ N:

∑N−1
k=1, odd W−mkZ[k] = q1_1[m]. (20b)

As q1[m] = q1[N + m], a general expression for q1[m] is Equation (20a), which can be
alternatively expressed as

q1[m] = (δ[m − cm, L]− δ[m − 1 + cm, L])N/4, (20c)

where cm = int
( 2

N m%N
)
= 1−bN [m]

2 . □

Lemma 2 can also be proven by following the approach used in proving Lemma 1.
Like q0[m], q1[m] is real and periodic. Additional properties of q1[m] include

(i) ∑N−1
m=0 q1[m] = ∑

i+(N−1)
m=i:L q1[m] =0;

(ii) q1[m] = q1[N − L + 1 − m];

(iii) q1[iL] = −q1[iL + 1] = N
4 bN [iL];

(iv) q1[m] = −q1

[
N
2 + m

]
.

Following (11a), q1[m] can be expressed as q1[m] = ∑N−1, ≠ko
k=1, odd cos(πN(2m+ L− 1)k) sin(πNk)

sin(πNLk) .
Lemma 2 shows that this sum of trigonometric functions has only three possible values. For
example, ∑N−1, ≠ko

k=1, odd cos(πN(L− 1)k) sin(πNk)
sin(πNLk) =

N
4 , and ∑N−1, ≠ko

k=1, odd cos(πN(L+ 1)k) sin(πNk)
sin(πNLk) =

−N
4 . Two example plots for q0[m] are shown in Figure 5 for N = 20, L = 2 and N = 30, L = 5.

Figure 5. Example plots to show that the summation expressed by (20) is the same as the closed form
expressed in (20a). q1 has only three possible values.
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3.3. Inverse Fourier Transform of
[
1 − ejπkcos(πN Lk)

]
Z[k]

We define

q2[m] ≡
N−1
∑

k=0
W−mk

[
1 − ejπkcos(πN Lk)

]
Z[k]

= ∑N−1
k=1 W−mk

[
1 − ejπkcos(πN Lk)

]
Z[k],

(23)

i.e., q2[m] and
[
1 − ejπkcos(πN Lk)

]
Z[k] form a DFT pair.

Lemma 3. If N/L is an odd integer,

q2[m] = N
2 (δ[m, L]− δ[m − 1, L])δ′[m%N < Nh−]− N

2 (δ[m − Nh+, L]−
δ[m − Nh+ − 1, L])δ′[m%N ≥ Nh+],

(23a)

where Nh+ = N+L
2 and Nh− = N−L

2 .

Proof. As in the proof for Lemma 2, we take the N-point DFT of q2[m] as expressed by
Equation (23a) for m ∈ N

Q2[k] =
N
2 ∑

N
2 −L

m=0:L (W
mk + W(Nh++1+m)k − W(m+1)k − W(Nh++m)k). (24)

The sums of the geometric sequences can be reduced to

Q2[k] =

{
NZ[k]

(
1 − ejπkcos(πN Lk)

)
, k ̸= ko

0, k = ko
. (24a)

As Z[ko] = 0, the above equation can be simply written as

Q2[k] = NZ[k]
(

1 − ejπkcos(πN Lk)
)

. (24b)

The IDFT of Q2[k] leads back to Equation (23a) for m ∈ N, i.e.,

N−1

∑
k=0

W−mk
[
1 − ejπkcos(πN Lk)

]
Z[k] =


N
2 , m = 0 : L : N−L

2 − L; Nh+ + 1 : L : N − L + 1

−N
2 , m = 1 : L : N−L

2 − L + 1; Nh+ : L : N − L .

0, otherwise

(25)

Note that q2[Nh−]= q2[Nh− + 1] = 0. Since q2[m] = q2[N + m], a more general expression
for any m is Equation (23a). Alternatively, we can express Equation (23a) as

q2[m] =
N
2
[δ(m − c′m − Nh+c′m, L)− δ(m + c′m − 1 − Nh+c′m, L)], (23b)

where c′m = δ′[m%N ≥ Nh+] +
1
2 δ′[ (m %N = Nh−)∪(m %N = Nh− + 1)]. In this expression,

we have assigned c′m = 1/2 at m%N = Nh− or m%N = Nh− + 1 to make q2[m] zero at these
two points. Analogous to Equation (20a), Equation (23a) can also be written as

q2

[
m +

N + L
2

]
=

N
2
(−δ[m, L] + δ[m − 1, L])b′N [m], (23c)

where b′N [m] = δ′[m%N ≤ Nh− − 1]− δ′[N − 2L + 1 ≥ m%N ≥ Nh−]. □

Other than the fact that q2 is real and periodic, additional properties include the
following:

(i) ∑N−1
m=0 q2[m] = ∑

i+(N−1)
m=i:L q2[m] =0, ∀i ∈ I;

(ii) q2[m] = q2[N − L + 1 − m];

(iii) q2[iL] + q2[iL + 1] = 0.
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Note that q2[m] = 2q1[m] for 0 ≤ m ≤ L(min(N1
2 , N2−L

2 )− 1), where N1 and N2 are
used to generate q1[m] and q2[m], respectively, and min is the minimum operator. Like
q1[m], q2[m] has only three values. The lengthiness in Expression (23a) is to account for the
positions of the three values. The number of positive values in q1 per period is N/L, while
there are N/L − 1 positive values in q2 per period. Similar to Lemmas 1 and 2, Lemma 3
can also be used to find sums containing sin(πk/N)

sin(πLk/N)
. Two example plots of q2[m] are shown

in Figure 6 for N = 18, L = 2 and N = 25, L = 5.

Figure 6. Example plots to show that the summation expressed by (20) is the same as the closed form
expressed in (20a).

4. Equivalence to the Unit Impulse Response Function
4.1. Relationship of h3[n] and h2[n] with h[n]

Theorem 2. If N ≥ 2
(

Ly + 1
)
, h3[n] = h[n] for n < N

2 − Ll when N
L is even; and h3[n] =

h[n] for n < N−L
2 − Ll when N

L is odd.

Proof. Case 1: N
L is an even integer.

From the definition of h1[n] and h2[n], we have

h2

[
n +

N
2

]
=

2
NL∑Ly−1

m=0 y[m] +
1
N ∑Ly−1

m=0 y[m]∑N−1
k=0 F1(k, m − n)ejπk (26)

From Equation (9) and Lemma 2, we have

h3[n] =
2
N ∑Ly−1

m=0 y[m](q1[n − m] + q1[n + Ll − m]). (27)

The minimum value for n − m is −Ly + 1. When n + Ll − m < 0, q1[n + Ll − m]) =
q1[N + n + Ll − m] = 0 since N + n + Ll − m ≥ N − L + 2. q1[n − m]= q1[n + Ll − m] =
0 under the condition that N ≥ 2

(
Ly − 1

)
. When n + Ll − m ≥ 0 and n − m < 0,
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q1[n − m] = q1[N + n − m] = −q1

[
N
2 + n − m

]
= −q1[n + Ll − m] under the condi-

tion that N ≥ 2
(

Ly + 1
)
. Thus, when n − m < 0, q1[n − m] + q1[n + Ll − m] = 0 if

N ≥ 2
(

Ly + 1
)
. When n − m ≥ 0 and n + Ll <

N
2 , q1[n − m] = q1[n + Ll − m] as Ll is zero

or a multiple of L. Thus,

h3[n] =
4
N ∑Ly−1

m=0 y[m]q1[n − m] = ∑Ly−1
m=0 y[m]q[n − m] + h[n − L]u[n − L] (27a)

This is the same as Equation (2). Therefore, if N ≥ 2
(

Ly + 1
)
, h3[n] = h[n] for n < N

2 − Ll .
In order to produce M points (corresponding to index n = 0 : M − 1) accurately in

h3[n], the minimum N required is Nmin = 2max
(

Ly + 1, L
)
+ 2Ly − 2mod

(
Ly, L

)
− 1. For

example, if Ly = 4, L = 3, Nmin = 4Ly − 1 = 15. Since N/L needs to be an even integer, N
should be 18 to authentically produce the first five elements.

Case 2: N
L is an odd integer

Similar to Case 1 and applying Equation (10) for odd N/L and Lemma 3, h3[n] can be
written as

h3[n] =
1
N ∑Ly−1

m=0 y[m](q2[n − m] + q2[n + Ll − m]). (28)

Using the same process as in case 1, h3[n] can be shown to be identical to h[n] for n <
N−L

2 − Ll and N ≥ 2
(

Ly + 1
)
. □

Corollary 1. h2[n] → h[n] for finite n as N → ∞ .

Proof. For finite L and Ly, h2[n] = h3[n]+ h2[n + Nh] = h[n]+ h1[n + Nh]+ h1[n + Nh + Ll ]
as N → ∞ for finite n. From Lemma 1, h1[n + Nh] = h1[n + Nh + Ll ] = 0 for finite n and
Ll . Thus, h2[n] → h[n] for finite n as N → ∞ . The corollary states that h2[n] can be a good
approximation of h[n] if N is sufficiently large. □

4.2. Relationship of h4[n] with h[n]

Theorem 3. If N ≥ 2
(

Ly + 1
)

and N/L is even, h4[n] = h[n] for 0 ≤ n < N
2 .

Proof. Let n = kM1+n1, where M1 = N/2 − Ll , k = int(n/M1), and n1 = mod(n, M1).
The recursive Equation (10) for even N/L can be written as

h4[n] = ∑k
i=0 h3[n1 + (k − i)M1] . (10a)

When k = 0, h4[n] = h3[n] = h[n] for n < N
2 − Ll , as demonstrated in Theorem 2.

We just need to consider k ≥ 1 and N
2 − Ll ≤ n < N

2 in the following. Note that
mod(n1 + (k − i)M1, L) = mod(n1, L) for all integer k and n1. Using property (iv) of q1[n]
and Equation (27), the above summation results in

h4[n] =
2
N ∑Ly−1

m=0 y[m](q1[n − m] + q1[n1 + Ll − m]). (10b)

When n1 + Ll − m < 0, q1[n1 + Ll − m] = 0 as n1 + Ll − m > −L + 2, which makes
q1[n − m] = 0. When n1 + Ll − m ≥ 0 and n − m < 0, q1[n − m]= −q1[n1 + Ll − m]. When
n1 + Ll − m ≥ 0 and n − m ≥ 0, q1[n − m] = q1[n1 + Ll − m] for n < N/2. Thus, for
n − m ≥ 0 and n < N

2 , q1[n − m] = q1[n + Ll − m], which leads to

h4[n] =
4
N ∑Ly−1

m=0 y[m]q1[n − m] = h[n]. (25b)

The above is the same equation as (25a) except the applicable range for n is improved to
n < N/2. □

When N
L is an odd integer and n ≤ Nh− − 1, the following recursive equation appears

to be true:
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h4[n] = h3[n] + (h 4[n − Nh− + Ll ] + h4[n − Nh− + Ll − L])/2. (29)

However, the author is unable to obtain a proof at this point.

4.3. Examples

In our first example (N/L is even), input x[n] =
{

1, 0 ≤ n ≤ 2
0, 3 ≤ n ≤ N

, and output y[n] ={
1, 0 ≤ n ≤ 4
0, 5 ≤ n ≤ N

, with N being 36. h1[n] and h2[n] are plotted in Figure 7A, while h3[n] and

h4[n] are plotted along with the true impulse response function, h[n], in Figure 7B. As seen
in Figure 7A, h1[n] starts to be periodically linear at index 3

(
i.e., Ly − L + 1

)
. h3[n] is the

same as h[n] = [1, 0, 0, 1, 0, −1. . .] for the first N/2 − int(Ly/L)L = 15 points and h4[n] is
the same as h[n] for the first N/2 = 18 points in agreement with the above discussion. In

the second example (N/L is odd), the input is x[n] =
{

1, 0 ≤ n ≤ 3
0, 4 ≤ n ≤ N

, and the output is

y[n] =
{

n − 1, 0 ≤ n ≤ 8
0, 9 ≤ n ≤ N

, with N = 36. The impulse response function for this system is

h[n] = [−1, 1, 1, 1, 0, 2, 2, 2, 1, −5, . . .], with the periodic oscillations starting after six data
points. The periodic linearity for h[n] starts at index 6, as seen from Figure 8A. As indicated
in Figure 8A, h3[n] is the same as h[n] for the first (N − L)/2 − int(Ly/L)L = 8 data points.
In this case, N is not large enough for h3[n] to obtain all 10 independent points in h[n]. h4[n],
which is computed from Equation (29), is the same as h[n] for the first N−L

2 − 1 = 15 points.
In Figure 9, we show an example of relatively large L (80) and Ly (149) with N = 4L. The
output sequence, y[n], is an integer array consisting of randomized numbers from 1 to 149.
h4[n] is the same as h[n] for the first N

2 = 160 points, while h4[n] equals h[n] for the first
N
2 − Ll = 80 points.

Figure 7. The upper panel is for h1[n] and h2[n] while the lower panel is for h3[n] and h4[n] and the
true impulse response, h[n]. In this example, N = 36, L = 3 and Ly = 5. Note that h[n] and h3[n] are the
same for n = 0:14, while h[n] and h4[n] are the same for n = 0:17.
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Figure 8. Same as Figure 7 except that, in this example, N = 36, L = 4 and Ly = 6. h[n] and h3[n] are
the same for n = 0:11, while h[n] and h4[n] are the same for n = 0:15.

Figure 9. An example plot for h[n], h3[n] and h4[n] with L = 80, Ly = 149 and N = 320. Each element
in y[n] is a random integer from 1 to 149.

5. Conclusions

The frequency transfer function, H[k], of a linear time-invariant system is generally
considered to be equivalent to the unit impulse response function h[n]. The normal process
of obtaining the impulse function from the frequency transfer function via the DFT, however,
breaks down when the latter has singularities for discrete systems. This happens when the
input time-domain function is a uniform train of pulses and the transfer function contains
zeros on the unit cycle. We show that the frequency transfer function contains complete
information to determine the IRF in such a case. A broader fundamental question to be
answered is whether the IRF can always be determined from a frequency transfer function
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containing singularities. If the answer is positive, the ensuring question is how to find h[n]
from H[k] with any kind of pole in general.

Our method to obtain h[n] from H[k] involves performing the inverse Fourier trans-
form of the transfer function by excluding the poles to obtain a time-domain function, h1[n].
We show that a linear combination of h1[n] and its shifts can yield h[n]. It is important to
note that the poles in the transfer function discussed here are all on the unit circle in the
z-domain. Such systems are marginally stable and h[n] is periodic after max

(
Ly − L + 1, 0

)
points. The number of independent points in h[n], M, is the larger of Ly + 1 or L. Our
method requires the length of the discrete transfer function, N, to be at least 2M to correctly
capture the first M points in h[n]. It is of interest to explore whether it is possible to obtain
the first M points of h[n] using N < 2M.

In demonstrating that h[n] can be obtained using the DFT method, we have explored
three interesting Fourier transform pairs. These DFT pairs are used not only for obtaining
h[n] from H[k] but can be used to yield various trigonometric sums involving sin(πk/N)

sin(πLk/N)
,

where N is a multiple of integer L and k is the summing integer variable.
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