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Abstract: The development of robust circuit structures remains a pivotal milestone in electronic
device research. This article proposes an integrated hardware–software system designed for the
acquisition, processing, and analysis of surface electromyographic (sEMG) signals. The system
analyzes sEMG signals to understand muscle function and neuromuscular control, employing
convolutional neural networks (CNNs) for pattern recognition. The electrical signals analyzed on
healthy and unhealthy subjects are acquired using a meticulously developed integrated circuit system
featuring biopotential acquisition electrodes. The signals captured in the database are extracted,
classified, and interpreted by the application of CNNs with the aim of identifying patterns indicative
of neuromuscular problems. By leveraging advanced learning techniques, the proposed method
addresses the non-stationary nature of sEMG recordings and mitigates cross-talk effects commonly
observed in electrical interference patterns captured by surface sensors. The integration of an AI
algorithm with the signal acquisition device enhances the qualitative outcomes by eliminating
redundant information. CNNs reveals their effectiveness in accurately deciphering complex data
patterns from sEMG signals, identifying subjects with neuromuscular problems with high precision.
This paper contributes to the landscape of biomedical research, advocating for the integration of
advanced computational techniques to unravel complex physiological phenomena and enhance the
utility of sEMG signal analysis.

Keywords: sEMG; electronic system; sensor’s systems; convolutional neural network

1. Problem Introduction

Non-invasive methodologies for the analysis and detection of diseases represent a
significant contribution to medical science. At the same time, the development of these
methodologies poses new challenges to the scientific community regarding the use of
technology, sensor placement, and the evolution of biomedical signal analysis and study.
Therefore, methodologies and technologies must always be implementable and easily
reproducible. The challenge is to develop powerful and interfaced integrated software–
hardware devices for individual use, particularly considering the complexity of biomedical
signals, which are derived from electrical signals detected on the human body [1,2].

Biomedical signals are vital in medical diagnostics because they convey information
from biological tissues or organs during normal or pathological functioning. Often, this
information is not easily accessible and requires specific acquisition and processing proce-
dures to extract diagnostically and therapeutically relevant information. Biomedical signals

Signals 2024, 5, 476–493. https://doi.org/10.3390/signals5030025 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals5030025
https://doi.org/10.3390/signals5030025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0001-6846-1784
https://orcid.org/0009-0001-0218-7724
https://orcid.org/0000-0002-3153-9338
https://orcid.org/0000-0002-6812-5614
https://orcid.org/0000-0003-3391-1698
https://orcid.org/0000-0003-3837-6671
https://orcid.org/0000-0002-8290-5019
https://doi.org/10.3390/signals5030025
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals5030025?type=check_update&version=1


Signals 2024, 5 477

are typically detected using electrodes, which measure the potential difference between
two points [3,4]. The automated acquisition and processing of these signals promises to
extract physiological and clinical information with greater accuracy. Therefore, there is
an urgent need to develop new tools and employ appropriate, non-intrusive processing
techniques to achieve this goal. The integration of automation has significantly advanced
both diagnostic methodologies and therapeutic interventions [5]. The search for circuit
structures that can accommodate exponentially attenuated signals is crucial to advanc-
ing electronic device technologies in various fields, particularly biomedical applications.
Sensors used in biomedical contexts are of particular interest, given their critical role in
monitoring physiological parameters, detecting abnormalities, and facilitating medical
interventions [6,7].

Robust and efficient circuit structures are essential to ensuring the accuracy and
reliability of data acquisition in these crucial applications. The development of circuit
structures capable of processing exponentially attenuated signals is essential to driving
advances in electronic device technologies, especially in the biomedical field, where the
speed and reliability of data acquisition are of primary importance for diagnostic and
therapeutic purposes [8]. One of the most significant challenges in the field of biomedical
signal processing is the presence of disturbances and noise that permeate the signal of
interest, thus preventing accurate determination of its trajectory. For example, surface
electromyographic (sEMG) signals, which transmit the propagation of electrical activity, are
typically acquired using electrodes attached to the patient’s skin [9]. Electromyography is a
methodology that allows the study of the nervous system by recording the electrical muscle
signal that propagates during contraction. From a medical perspective, electromyography
allows the study of muscle pathophysiology. From an engineering perspective, when
skeletal muscle fibers contract, they conduct electrical activity (action potential, AP) that
can be measured by electrodes applied to the skin surface above the muscles [10]. The
propagation of the potential, in the case of surface electromyography, is acquired through
electrodes applied to the patient’s skin. The most common surface electrodes are adhesive
or Ag/AgCl-type gels, given their characteristics, including low noise (5–10 µV) and ease
of manufacture [11]. Needle or wire electrodes are typically made of stainless steel and
are mainly used in emergency cases. In humans, the basic action potential is triphasic;
the first two phases are similar in width, while the terminal phase has a peak-to-peak
width that is only 5–10% of that of the first two phases. In clinical settings, the summation
of the action potentials of all the motor units (MUs) in each muscle is detected using a
pair of appropriately positioned electrodes. This summation is represented by bipolar
signals with a symmetrical distribution of positive and negative amplitudes, known as
the interference pattern. The two most important parameters that influence the amplitude
and density of the analyzed signals are the recruitment of MUs and their frequency of
activation. These parameters are the main control strategies used by the central nervous
system to regulate the contraction process and thus modulate the strength of the muscle
involved. Biological tissues perform a low-pass filtering effect on the original signal, which
is why the surface electromyography (sEMG) signal does not reflect the original amplitude
and frequency but is only a representation of it [12,13]. The interference pattern of the
sEMG signal is random in nature as the set of activated MUs constantly changes, and
the effects of motor unit action potentials (MUAPs) arbitrarily overlap [14]. For the same
motor task performed with the same force, it is unlikely to observe identical patterns in
the signal because the number of recruited MUs and the frequency of activation change
continuously. Applying filtering algorithms or selecting appropriate amplitude parameters
attempts to limit the non-replicable part of the signal. This study proposes an integrated
system for the acquisition, processing, and analysis of the sEMG signal using artificial
intelligence (AI) techniques and supervised learning. Data were acquired using a device
developed for sEMG. The study then processed the data using a convolutional neural
network (CNN), a supervised learning technique inspired by biological processes, which
has several applications in image and video recognition, as well as in bioinformatics.
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CNNs have proven to be highly effective in analyzing electrophysiological signals due
to their ability to automatically extract and learn relevant features from raw data [15–17].
Applied to sEMG data, CNNs can identify numerous spatially independent patterns, each
associated with a single time flow, providing a way to separate the different electrical
signals from various muscle activities [18]. Unlike the variable nature of sEMG signals
recorded from a single muscle in isolation, the CNN analysis of sEMG signals from several
muscles simultaneously allows for the detection of highly reproducible components [19].
The use of filtering algorithms and the adjustment of amplitude parameters during signal
processing and acquisition serve to mitigate the non-replicable aspects of the signal. The
primary purpose of this study is to employ appropriate processing techniques to obtain a
trace directly associated with a characteristic of the muscle, typically the generated force.
The researchers in this paper demonstrate important applications in monitoring the work
activities of different subjects, significantly improving the quality and safety of work. The
developed electronic device consists of a signal acquisition circuit from six electrodes and
a Raspberry processor. The integrated system aims to filter and store signals from the
electrodes and send them to a cloud platform for further processing using an AI technique.
The proposed model has the goal of analyzing sEMG data with a supervised learning
approach. In particular, a one-dimensional convolutional neural network (1D-CNN) was
designed to detect the presence of neuropathies in subjects by identifying distinctive
patterns in the sEMG signals. The present document is organized as follows: Section 2 lists
similar works in which there are different points of view from the one presented in the
paper. Section 3 discusses the challenges of electromyography, particularly the physical
characteristics and nature of the sEMG signal. Section 3 describes the electronic device,
the sensors used, and the implemented acquisition system. The computational model
is presented in Section 4. Section 5 reports the results obtained from the processing of
experimental data. Finally, conclusions are drawn.

2. Related Works

Electromyography (EMG) has been used as a measure to track the progress of reha-
bilitation and to identify diseases that affect muscle activation patterns. Although widely
used, conventional EMG recording and interpretation techniques lack the ability to provide
accurate signal detection and robust classification accuracy. In recent years, thanks to
advances in materials science and artificial intelligence, EMG detection techniques have
improved at a rapid pace. Materials that allow for greater biocompatibility have improved
the quality of the data recorded by the electrodes. The use of machine learning algorithms
has opened up new ways to understand complex EMG signals, enabling different, new, and
improved application scenarios within the healthcare framework. To interpret the EMG
signal, some studies have used algorithms based on machine learning or deep learning
techniques for the pre-processing and interpretation of EMG signals. Raw EMG data are
collected from subjects using surface or needle electrodes [20], and a high-pass filter with a
cutting frequency of 2 Hz [21] is used to remove DC offset and low-frequency noise. To
eliminate the interference of the feed frequency, a notch filter at 50 Hz is adopted, while the
implementation of the signal can be carried out with classification algorithms for better
results. Some studies present a non-invasive method of superficial EMG to support the
diagnosis of Amiotropic Lateral Sclerosis (ALS). Using a flexible surface electrode applied
to the thoracic and primary dorsal intersonic (FDI) muscles, while the reference electrodes
were located near the elbow, EMG signals were processed with a linear discriminating
analysis (LDA) classifier, obtaining a diagnostic performance of 90% sensitivity and 100%
specificity for the diagnosis of ALS subjects [22].

Other studies, however, evaluated a biomarker that could predict the disease of
patients with chronic obstructive lung disease (COPD). The development potential during
their hospitalization period was acquired by the neural respiratory pulse extracted from
sEMG signals, by placing surface electrodes (Blue Sensor Q, Ambu, St Ives, UK) in the
second intercoastal space, immediately adjacent to the sternum. Using the t-test or Wilcoxon
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signed-rank tests, data were obtained with relatively high reception accuracy in 14 and
28 days [23].

Other work proposed a method to diagnose gastrointestinal diseases through patients’
sEMG signals, adopting the BIOPAC Systems Model MP36 Data Acquisition Unit and
placing the single-use gel surface electrodes on the area near the navel. The recording
signals were pre-processed from the decomposition of the empirical model and then
transmitted to a number of machine learning classifiers, including a quadratic SVM, a
fine KNN, RUS Boosted trees, and a cubic SVM, among which the highest achieved an
accuracy of 100% in the differentiation of diarrhea, constipation, and normal gastrointestinal
situations [24]. Similarly, scientists developed a generic algorithm based on sEMG signals
to automatically detect tonic–clonic seizures. Auto-regression (AR) and DWT were applied
to extract characteristics, and an ANN was used to classify. This approach achieved 100%
accuracy in the differentiation of people with bruxism from others [25,26].

To help accurately diagnose unilateral spastic cerebral palsy based on EMG signals,
a semi-automatic method was sought. Specifically, it was chosen to use auto-adhesive
pairs of Ag/AgCl EMG bipolar surface electrodes (recording diameter 10 mm), which were
placed on the muscles of the pronator teres (PT) and the pronator quadratus (PQ). The
recorded signals were pre-processed and then presented to three EMG experts for intra-
rater reliability analysis. Krippendorff’s alpha reliability estimate with 95% confidence
intervals was used to validate the results, showing predictive accuracy of 96% positive and
91% negative [27].

To differentiate patients with essential tremor from dominant Parkinson’s disease with
the combination of an accelerometer and an EMG, methods have been implemented that
use bipolar surface Ag/AgCl electrodes attached to the extensor and flexor muscles of
the subject’s left and right arm. The data were pre-processed by DWT and PCA, and the
classification algorithm used was a support vector machine (SVM), whose overall accuracy
was 83% for distinguishing patients with essential tremor (ET) from those with Parkinson’s
disease (PD) [28]. Table 1 displays the many uses of sEMG signals in disease analysis.

Table 1. Applications of sEMG signals in disease analysis.

Application Electrodes Algorithm Accuracy Advantages and Disadvantages

Detect
neuromyopathy

disorders

9 mm silver/silver
chloride electrodes

DWT
WPT
SVM

8%
False detection rate

Advantages
Higher sensitivity and specificity

Relatively simple processing

Diagnoses diseases

Surface electrode
array

Gel surface electrodes
Ag/AgCl bipolar

electrode

LDA
Cubic SVM AR

DWT
ANN
PCA
SVM

83–100%
Advantages

Low cost and less
time-consuming

Disease prognosis Surface electrode
array

Wilcoxon signed-rank
tests
LR

ROC
RMS

RMSD

≈74.7%

Disadvantages
Unsure ability in distinguishing

disorders
Cross-talk overestimation of

amplitude

Following the above outline of some research in the field of engineering for the
treatment of various diseases with the use of biomedical devices combined with signal
analysis using soft-computing techniques, in Section 3 this paper focuses on the challenges
of electromyography and the nature of the sEMG signal.
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3. Challenges in Electromyography
3.1. Phsical Principles

Electromyography (EMG) is based on the fundamental principles of neurophysiology
and allows to study the nervous system by recording the electrical signal of a muscle that
spreads during contraction [29]. Often, electromyographic examinations are combined with
other diagnostic methods, such as electroneurography, computed axial tomography, and
magnetic resonance imaging, and other methods of analysis and diagnosis are necessary
to evaluate the presence of any pathologies in the patient [30–32]. The electromyographic
signal depends on various factors such as anatomical, physiological, and muscle properties
and the state of the peripheral nervous system, so it is a very complex signal. However,
its usefulness goes beyond simple functional analysis, as it also serves as a diagnostic
tool to outline the location and severity of neurological lesions. When the fibers of the
skeletal muscle contract, they conduct an electrical activity (action potential, AP) that can be
measured by electrodes placed on the skin surface above the muscles [33]. Small functional
groups of muscle fibers, called motor units (MUs), contract synchronously, giving rise to
a potential of action of the motor unit (MUAP). To support the force, an MU is activated
repeatedly by the central nervous system several times per second. The repeat frequency,
or average, is often between 5 and 30 times per second (or faster). The amplitude of the
signal varies between 20 and 2000 µV. The electromyographic signal (EMG) is widely used
as a suitable means to access the physiological processes involved in the production of
joint movements. The EMG surface (sEMG) measures the electrical potential resulting
from the overlap of the action potential of individual muscle fibers. The use of sEMG
simplifies signal acquisition not only because of the non-invasiveness of the procedure,
but also because the acquisition can be carried out while performing functional exercises.
The information extracted from EMG signals can be exploited in various applications. The
sensors typically used for EMG measurement are needle sensors (unipolar or bipolar). In
the latter case, two sensors are placed on the muscle under analysis. The experimental data
analyzed here come from non-invasive surface EMG sensors, which have the cross-talk
effect, i.e., the detection of electrical activity by several muscles simultaneously in action. In
addition, there are several sources of “noise” that influence the recording. The impedance
of the electrodes and the slight variation in the electrode positions suggest the use of
appropriate techniques for filtering the sEMG data.

These cells exhibit distinct resting and action potentials, with potential differences
across their membranes typically spanning −40 to −90 mV. As a discipline at the inter-
section of physiology and technology, EMG measurement encounters various challenges.
To obtain optimal signals, efficient filtering techniques are required, and the type of EMG
measurement must be accurate, such that it provides signals with less noise and greater
reliability. The signal amplitude of the surface EMG measurements is analyzed to estimate
the level of muscle contraction, while the frequency component is used to assess muscle
activation performance. However, the amplitude of the detected EMG signal and the aver-
age frequency are influenced by the position of the surface electrodes, although the action
potentials in a muscle are generated simultaneously. The fairly wide voltage range means
that the signals are not reproducible. For this reason, the resting potential best represents
an indication of the membrane potential under normal conditions. Goldman’s equation
(Equation (1)) provides a framework for calculating the resting potential, incorporating key
variables such as membrane concentration and resistance.

E = Va − Vb =
RT
F

(
PNa [N

+
a ]b + Pk[K+]b + PCl

[
Cl−

]
b

PNa

[
N+

a
]

a + Pk[k+]a + PCl
[
Cl−

]
b

)
(1)

The temperature in Kelvin degrees is denoted by T in this equation, the gas con-
stant by R, and the Faraday constant by F. The ion membrane permeability of sodium
(PNa), potassium (PK), and chloride (PCl) is designated. Conversely, the amounts within
the blocks show the ions’ internal and exterior concentrations. The sodium–potassium
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pump is an active mechanism that mostly depends on the passive diffusion of potassium
ions to maintain the stability of the resting potential. This method generates a negative
charge inside the cell by requiring an energy source, creating significant concentration
gradients between the interior and outside of the cell, and involving the evacuation of
three sodium ions and the entry of two potassium ions at each stage. The Nernst equation
(Equation (2)), which specifies the balance potential required for the ion to balance under
those circumstances, describes the balance potential of an ion.

Ek =
RT
nF

ln
[K]o
[K′]i

= 0.06151log10
[K]o
[K′]i

(2)

where R represents the universal constant for ideal gases; T denotes the absolute tempera-
ture expressed in Kelvin; n signifies the number of moles of electrons exchanged during
the half-reaction; F stands for the Faraday constant; [K] represents the concentration of the
reduced species, located to the right of the arrow in the redox half-reaction, which loses
electrons; [K′] denotes the concentration of the oxidized species, situated to the left of the
arrow in the redox half-reaction, which gains electrons; o symbolizes the stoichiometric
coefficient of [K]; and i signifies the stoichiometric coefficient of [K′]. When the stimulus
causes depolarization of the plasma membrane, a potential difference is generated; this is
measured using pairs of bio-electrodes, which evaluate the potential difference between
two positions within a biological system. Electrodes serve as transducers, facilitating the
conversion of energy between the ionic and electronic realms. Their morphology and
characteristics significantly influence factors such as noise levels, frequency distortion, and
inadequate rejection of common-mode interference.

3.2. Signal Characteristics

The muscle is responsible for the movement of joints in the human body and the
force it can generate is usually proportional to its cross-sectional area. One of its main
characteristics is plasticity, i.e., the ability to adapt to stimuli and modify its structure to meet
functional demands [34]. The muscle fibers of a singular motor unit contract synchronously,
resulting in the manifestation of a uniform motor unit potential. Within the muscle, fibers
contract in small clusters simultaneously, necessitating the arrival of stimuli from the central
nervous system or an external electrical stimulator. These stimuli propagate along the
motor neurons axon until reaching the fibers of the motor unit. Upon innervation of each
fiber, two depolarization zones emerge and propagate towards the fiber’s ends at a velocity
of 3–5 m/s. As the action potential traverses the fiber, it generates an electric field that
disperses into the surrounding conducting medium, generating detectable voltages [35].
These voltages can be captured either via needle electrodes or on the skin’s surface using
surface electrodes.

Due to variations in innervation points and conduction velocities among the fibers
within a motor unit, the sources of the electric field are not perfectly aligned in space, re-
sulting in asynchronous arrival times at the recording electrodes. Each descending impulse
originating from the motor neuron and traveling along the axon triggers simultaneous
contraction of the muscle fibers within the same motor unit.

A growing body of evidence suggests that movements that appear fluid to the naked
eye are actually composed of the temporal and spatial superposition of discrete sub-
movements that are precisely recruited and coordinated by the central nervous system [36].
However, the spatial and temporal superposition of sub-movements has generally made it
difficult to isolate the effects of individual sub-movements [37].

The detection of non-stationarity in sEMG and kinematic variables is necessary to
identify the onset of temporally overlapping sub-movements. It is therefore relevant to
know how motor neurons that transmit electrical impulses to muscle fibers, causing them
to contract, involve non-stable impulses that cause undetectable action potentials. The
electrical activity that spreads along the muscle fibers, in fact, reflects the sum of numerous
MUAPs, each of which contributes to the overall complexity and variability of the signal.



Signals 2024, 5 482

Mathematically, the EMG signal can be modeled as a stochastic process characterized by
deterministic and random components [38].

The deterministic part is associated with the repetitive launch patterns of the motor
units, while the random component arises from the asynchronous launch and the variability
of the recruitment rates of the engine units. The frequency domain analysis of EMG signals
is crucial to understanding muscle fatigue, neuromuscular disorders, and muscle activation
efficiency. Techniques such as Fourier Transform, Wavelet Transform, and PCA/ICA
are commonly used to break down biopotential signals (i.e., ECG, EEG, EMG) into their
constituent frequencies, providing detailed spectral analysis [39–41].

Modern signal processing techniques have significant potential to improve the quality
and interpretability of EMG signals. Adaptive filtering, for example, can be used to
dynamically remove noise and artifacts, improving the signal–noise ratio [42]. Furthermore,
machine learning algorithms, convolutional neural networks (CNNs), have shown promise
in the identification and classification of patterns within EMG signals. These algorithms
can effectively manage the non-stationary nature of EMG signals and mitigate cross-talk
effects, providing more accurate and reliable analysis.

4. Case Study: High-Frequency Tasks

The main objective of this work is the development of a hardware–software system
consisting of an electronic device for acquiring the sEMG signal and a processor integrated
with the acquisition circuit used to store and send the data to a cloud platform. The received
data will be analyzed and implemented with AI techniques for surface electromyography.
Tools for signal acquisition and signal processing were used for its realization. In particular,
biopotential electrodes, an acquisition circuit, a variable power supply device to power
the circuit, and an acquisition board to convert the signal from analogue to digital were
used for acquisition. In order to study and process the signal, an acquisition system was
set up, i.e., an electronic measuring system whose purpose is to record and process the
measurements of the emitted signal [43,44].

The acquired signal is subjected to amplification to make it compatible with the
specifications of the instrumentation. Filtering reduces the amount of noise that is added to
the useful signal. After the conversion from analogue to digital form, the signal is sent to
an integrated circuit consisting of a Raspberry processor, which has the task of taking the
information acquired from the circuit and sending it to a cloud platform [45,46], where the
data will be processed and analyzed with AI algorithms.

The hardware design of an EMG signal acquisition system involves careful consid-
eration of various components and functionalities to ensure the effectiveness, safety, and
reliability of the device.

For this reason, targeted, constant, and intensive monitoring of EMG parameters was
carried out. The monitoring was performed by a central unit consisting of an acquisition
board and a processor for storing and processing signals from the electrodes interfaced
to the acquisition circuit. The acquired signals are managed by an intelligent System
On Module (SOM), i.e., an independent electronic device capable of managing a Linux
operating system and carrying out complex numerical processing. The acquired signals are
then sent to a database, via an Internet key, which stores them and makes them available to
be handled and processed (Figure 1).

The specific details may vary depending on the intended use and the technology
involved. The acquisition circuit proposed in this study was designed according to the
diagram shown in Figure 2.
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Figure 2. Schematic diagram of the acquisition circuit with front-end amplifier.

At the base of the instrumentation used is a variable power supply that was set at
±5 volts and connected to the power terminals of the acquisition circuit. The circuit is
equipped with three power supply terminals, three input terminals, i.e., the three pairs of
electrodes that will be applied to the subject’s skin, and three output cables that are used
to connect the circuit with the acquisition board. As far as amplification is concerned, as
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detailed in Figure 3, the RG resistor allows for a gain of G = 1000 (60 dB) using the specific
pin configuration of the AD623 amplifier.
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Figure 3. Detail of the acquisition circuit in the schematic composition: (a) amplification; (b) notch;
(c) low-pass filter.

The passive notch filter makes it possible to eliminate the specific frequency of
f = 50 Hz by means of a combination of various resistors and capacitors, which, thanks
to their particular positioning, create a system consisting of a pole and two simple zeros that
make it possible to stop the frequency that causes noise. Finally, an active third-order low-pass
filter was added to attenuate all frequencies above the cutoff frequency f = 150 Hz, with a
trend of −60 dB per decade. In addition, two capacitors, of capacitance C = 0.1 µF, were added
between the ground and the amplifier supplies. This addition is necessary, as these capacitors
have the function of noise suppressors, absorbing voltage peaks usually coming from the
power supply itself. For this reason, they have been mounted as close as possible to the power
supply pins of the ICs. The manufacturing of the prototype is reported in Figure 4.
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The EMG signal detected and acquired by the circuit is transmitted with a General-
Purpose Input/Output (GPIO) connection to an 8-channel analogue-to-digital converter,
specifically the MCP3008 converter. The ADC converter, configured in Python, is connection
to a Raspberry processor, which has the task of storing and sending the data on a cloud
platform, where the digitized signals are extrapolated from the processor’s base data and
then processed. This step is necessary because the Raspberry needs an external ADC
converter, which is why we have used the GPIO, through which we can connect external
electronic components and, among them, of course, an ADC converter.

Specifically, the system processes three different stages: the first is to acquire the signal,
the second is to display it, and the last is to save and send it. The electronic system consists
of an acquisition process necessary to acquire the signal; a process of displaying the EMG
signal during the process of Maximum Voluntary Concentration (MCV), which retrieves
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the file with the previously acquired data and performs some processing on the signal;
and finally a “Task” display process, which consists of a program that can extract from
the signals the various parameters in the time domain, such as the maximum peak, the
average value, and the effective value (Root Mean Square). In the first phase, the signals
are detrended and then subjected to a series of lower cut filtrations at 30 Hz and a higher
cut frequency of 450 Hz. This allows the transition only to certain frequencies, including
those in the range of 30 Hz to 450 Hz. After the filtering operation, the signal correction is
applied, which makes all the values of the signal positive so that even the negative signals
are twisted relative to the time axis. This operation allows for better signal reading and
allows for the calculation of standard parameters such as the average, effective value (RMS),
and maximum value. Subsequently, a fourth-order low-pass filter is set to a cut frequency
of 5 Hz and allows the passing of frequencies below the value of the cut rate. The main
purpose of the filtering is to eliminate the noise, and in this case, through the low-pass
filter, an operation of the envelope that allows the removal of the interference signal. The
ultimate purpose is to extract the individual processed signal (MCV). This value allows us
to redefine the signal that will no longer be evaluated by a voltage but by a percentage; this
operation takes the name of normalization and consists of acquiring the extent to which
a subject can contract a muscle and then assigning the value of maximum contraction to
the maximum value (corresponding to 1), and the contraction zero (corresponding a 0).
Usually, for this measurement, the subject has a maximum contraction for a few seconds,
and this process is repeated several times with a period of pause between one contraction
and the other. This is a powerful method for comparing electromyographic data obtained
from tests on different subjects.

Normalizing sEMG signals compared to MVC is also a commonly used method to
reduce variability between different recordings. For the implementation of the latest
analysis of “Task,” the same blocks were used in the MCV. Therefore, there exist a process
for reading the previously acquired signal, a process to perform the detrending of the
signals, a filter that passes the band of the fourth order with a bandwidth ranging from
30 Hz to 450 Hz, a procedure for performing the correction of the signal, and a low-pass
filter of the fourth order with a cutting frequency equal to 5 Hz. In addition, there are
also blocks here that are intended to read the values of the peaks detected by the previous
process on the three channels of the maximum voluntary contraction signal. These will be
used to normalize the signal that is translated with the ratio between the processed and
filtered signal and the maximum value of the MCV calculated with the previous process.
Following the normalization, the characteristic parameters of the signal are extracted,
i.e., the average value, RMS, and maximum value. The program implemented on the
Raspberry saves the data on the device in .txt format and sends it to a cloud platform to be
subsequently post-processed (Section 4). The choice of a Raspberry Pi card is due to the fact
that it has adequate memory for saving and sending the acquired data, because it has a large
volume, and finally because it offers high performance. Furthermore, Raspy-GPIO allows
the status of a GPIO to be viewed and its behavior to be modified. The GPIO zero Python
library has ensured a quality leap in programming thanks to higher-level abstractions
such as a motion sensor, light sensor, LED, and motor, and has allowed the adoption of an
approach capable of managing the underlying hardware by reading or setting its state with
more intuitive commands. The integrated signal acquisition, storage, and transmission
system presents a different approach than other integrated systems [47,48]. The proposed
integrated system aims to allow the operator to analyze the signals and data remotely, while
the patient can remain comfortably at home. While the authors of the paper [49] chose
the Arduino Mega to avoid the memory and power limitations of smaller boards, as data
acquisition and filtering required a large amount of memory, the proposed paper divides
the process into two phases. The first focuses on the acquisition of the EMG signal, trying
to eliminate interference and keep the signal unaltered; the second focuses on storage and
transmission. The subdivision of the process ensures a better quality of the acquired and
processed signal, at the expense of increasing the complexity of the system.
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5. Post-Processing EMG Signals: Proposed Supervised Learning Model

A supervised learning model (SLM) that has shown great promise for analyzing
temporal and visual data is the convolutional neural network (CNN) [50,51]. CNNs’
distinctive architecture, composed of convolutional, pooling, and fully connected layers,
makes them especially good at identifying patterns and structures in data. By applying
convolution operations to the input data, the convolutional layers enable the network to
recognize regional patterns and characteristics. The dimensionality of the data is reduced
by pooling layers. This improves computation efficiency and increases the network’s
resistance to even tiny changes in the input. Even though traditional CNNs are designed
for image data, they can be adapted to handle sequential data such as time series or signal
data through one-dimensional convolutional layers [52,53].

A recent work has shown that one-dimensional convolutional neural networks (1D-
CNNs) are specifically intended to process sequential data, making them highly suitable
for analyzing EMG signals [54]. The proposed SLM is an advanced 1D-CNN trained from
scratch, which analyzes sEMG signals and detects complex patterns to identify healthy
subjects or those with potential neuropathy.

5.1. Data Assessment

The post-processing phase of signal analysis involved examining biopotential signals
through sEMG on 200 subjects, 110 females and 90 males, aged between 20 and 40 years.
These subjects were divided in two classes: healthy and potential neuropathy. The signals
were obtained by placing six electrodes on the bicep muscle of each subject, assessing
voltage values over time during MVC conditions and during “task” operation for 10 s
(Figure 5).
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The signals are normalized by making the ratio between the signal acquired during
the task and that derived from the MCV. The EMG data collected represent tension over
time measured across the six electrodes.

The voltage profile on healthy subjects is homogeneous, and there are no sudden
changes in the trend of the curves (Figure 6).
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Patients that have abnormal voltage values on the EMG have conditions potentially
attributable to a neuropathy.

In particular, the EMG graph shows spikes that at their highest or lowest points are
more than 30% away from the mean trend line (Figure 7).
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Figure 7. sEMG data on subjects with potential neuropathy (V-s).

5.2. Data Pre-Processing

The pre-processing phase of sEMG data plays a crucial role to ensure that the raw
signals are effective for input into the advanced 1D-CNN. Pre-processing techniques pro-
vide help to enhance the quality of the data, reduce noise, and improve the performance of
the neural network [55,56]. At the beginning, sEMG .txt files was converted into matrix
.xlc files of [20,000, 6] dimension. sEMG data represent three different voltage values
over time, measured by the six electrodes placed on the biceps of the subjects. The data
loading procedure included reading these files in an organized manner, ensuring they were



Signals 2024, 5 488

consistently structured for the subsequent pre-processing and analysis. Thereafter, normal-
ization was performed to scale the sEMG signals to a consistent range. Normalization was
performed by dividing each value in the sEMG signal by the maximum value in the dataset,
resulting in normalized values between 0 and 1, in order to stabilize the training process
and improve the convergence of the network. Right after normalization, the data from
multiple subjects were concatenated to form a comprehensive dataset. This step involved
combining the normalized sEMG signals of healthy subjects and those with neuropathic
conditions into a single array. Each subject’s data were assigned a label (0 for healthy
and 1 for neuropathic) to facilitate supervised learning. The dataset was divided in an
80–20 working split; 80% of the data was used for training, and the remaining 20% was re-
served for testing. This split ensured that the network was trained on a substantial portion
of the data while being evaluated on unseen examples, allowing for an accurate assessment
of its generalization performance. The last pre-processing step was data augmentation.
Data augmentation is important to enhance the robustness of the neural network. For sEMG
signals, augmentation included adding noise, shifting the signal in time, and varying the
amplitude slightly. These augmentations help to simulate different scenarios and improve
the network’s ability to generalize to new unseen data [57,58].

5.3. SLM Architecture

In this study, we developed an advanced one-dimensional convolutional neural net-
work (1D-CNN) designed for classification of surface electromyographic (sEMG) signals,
which show temporal patterns indicative of muscle activity [59–61]. The input to the net-
work is a three-dimensional tensor of shape (20,000, 6, 3), representing the sequence length
and the number of channels of the sEMG signals. The SLM architecture is composed of a
first convolutional layer (64 filters, kernel size = 5) with Rectified Linear Unit (ReLU) as
an activation function to introduce nonlinearity and allow the network to learn complex
patterns. This layer is intended to extract local features from sEMG signals, capturing im-
portant characteristics like spikes and troughs associated with muscle contractions. Batch
normalization is then used to normalize the output, thereby stabilizing and accelerating
the training process. Batch normalization guarantees that activations remain within a
reasonable range, resulting in faster convergence and higher performance.

The output of this layer is then passed through a max-pooling layer in order to
downsample the dimensionality of the feature maps. This operation retains the most signif-
icant features and reduces computational complexity, making the network more efficient
and less sensitive to small shifts in the input data. Immediately after, a dropout layer
(rate = 0.3) is also used to prevent overfitting by randomly setting a fraction of the input
units to zero during training, causing the network to learn redundant representations
and improve generalization. The network then moves on to a second convolutional layer
(128 filters, kernel size = 5), followed by another batch normalization layer. This convo-
lutional layer extracts higher-level features from downsampled feature maps. A second
max-pooling layer is used to reduce dimensionality further, followed by a dropout layer
to prevent overfitting. Third and fourth convolutional layers capture even more complex
patterns in sEMG signals and apply batch normalization to the output for stability. A global
average pooling layer is then used to condense each feature map into a single value by
averaging all of the values contained within it.

At the end, the flattened output is then fed into a fully connected dense layer with
256 units and ReLU activation, which combines the learned features into a comprehensive
representation. The output layer is made up of a single unit with a sigmoid activation
function that returns a probability value between 0 and 1, indicating the possibility of the
input being classified as neuropathic. The architecture of the constructed SLM has 19 layers
following the input signal. (Figure 8).
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The framework was implemented with Tensorflow and the Keras library “https:
//keras.io” (accessed on 16 April 2024) in Python 3.11.9.

The model was developed and tested on a machine equipped with an NVIDIA GPU,
utilizing the CUDA and cuDNN libraries to accelerate the training process. The 1D-CNN
model was built using the Sequential API from TensorFlow’s Keras module. Below is the
detailed implementation of the model architecture (Table 2).

Table 2. SLM architecture: layer descriptions.

Layer Number Layer Name Input Shape Output Shape Kernel Size Stride

1 Conv1D (batch_size, 20,000, 6) (batch_size, 19,996, 64) 5 1
2 BatchNormalization (batch_size, 19,996, 64) (batch_size, 19,996, 64) - 1 -
3 MaxPooling1D (batch_size, 19,996, 64) (batch_size, 9998, 64) 2 2
4 Dropout (batch_size, 9998, 64) (batch_size, 9998, 64) - -
5 Conv1D (batch_size, 9998, 64) (batch_size, 9994, 128) 5 1
6 BatchNormalization (batch_size, 9994, 128) (batch_size, 4997, 128) - -
7 MaxPooling1D (batch_size, 9994, 128 (batch_size, 4997, 128) 2 2
8 Dropout (batch_size, 4997, 128) (batch_size, 4997, 128) - -
9 Conv1D (batch_size, 4997, 128) (batch_size, 4993, 256) 5 1

10 BatchNormalization (batch_size, 4993, 256) (batch_size, 2496, 256) - -
11 MaxPooling1D (batch_size, 4993, 256) (batch_size, 2496, 256) 2 2
12 Dropout (batch_size, 2496, 256) (batch_size, 2496, 256) - -
13 Conv1D (batch_size, 2496, 256) (batch_size, 2492, 512) 5 1
14 BatchNormalization (batch_size, 2492, 512) (batch_size, 2492, 512) - -
15 GlobalAveragePooling1D (batch_size, 2492, 512) (batch_size, 512) - -
16 Dropout (batch_size, 512) (batch_size, 512) - -
17 Dense (batch_size, 512) (batch_size, 256) - -
18 Dropout (batch_size, 256) (batch_size, 256) - -
19 Dense (batch_size, 256) (batch_size, 1) - -

1 No value.

6. Results and Discussion

Overall, this advanced 1D-CNN uses multiple convolutional layers, and aims to
capture and classify intricate patterns in sEMG signals. The network’s architecture is
specifically designed to handle the high dimensionality and complexity of sEMG data,
making it an effective tool for distinguishing healthy from neuropathic subjects based on
muscle electrical activity.

The results clearly show that the proposed neural network achieved high accuracy on
both the training (96.732%) and test sets (94.234%). These findings indicate that the model
is highly effective (Table 3).

Table 3. Accuracy of the proposed SLM.

Training Test

Accuracy 96.732% 94.234%

https://keras.io
https://keras.io


Signals 2024, 5 490

The high accuracy of the model in detecting neuropathies is promising for potential
integration of such neural networks into automated clinical diagnostic systems. These
systems could assist medical professionals in diagnosing neuromuscular conditions, re-
ducing the time required for manual analysis of sEMG signals and increasing diagnostic
accuracy [62,63]. Although the results are promising, the size of the dataset used is rela-
tively limited. Future studies could benefit from using larger and more diverse datasets to
confirm the robustness and generalizability of the model. To translate these results into
practical clinical applications, extensive clinical validation is necessary.

7. Conclusions

This study proposes a methodology for the analysis of sEMG data on different patients
with an innovative methodology that integrates an electronic system and soft-computing
techniques. In particular, the realization of the electronic circuit allowed the acquisition
of the information of superficial electromyography using a non-invasive approach on
several healthy subjects and subjects with potential neuropathy. The sEMG data from the
electrodes placed on the patient’s biceps are appropriately collected from the acquisition
circuit. The acquired signals are sent via the GPIO protocol to a Raspberry Pi processor,
which has the task of converting files to .txt format and sending them to a cloud platform
through communication with a GSM module. Subsequently, the properly pre-processed and
normalized data are used for the training of an advanced 1D-CNN, which aims to identify
the trend of signals and classify healthy subjects and subjects with potential neuropathy.
Overall, the method proposed achieved a good result in terms of accuracy.

Future improvements could lead to studies that include collaborations with medical
institutions to test the model on real clinical data and evaluate its effectiveness in a clinical
context. Integrating other signal modalities, such as electrocardiograms (ECGs) or electroen-
cephalograms (EEGs), could provide a more comprehensive view of the neuromuscular
status of the subject and further improve the diagnostic precision of the model.
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