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Abstract: Reliable streamflow forecasting is crucial for several tasks related to water-resource man-
agement, including planning reservoir operations, power generation via Hydroelectric Power Plants
(HPPs), and flood mitigation, thus resulting in relevant social implications. The present study is
focused on the application of Automated Machine-Learning (AutoML) models to forecast daily
streamflow in the area of the upper Teles Pires River basin, located in the region of the Amazon
biomes. The latter area is characterized by extensive water-resource utilization, mostly for power
generation through HPPs, and it has a limited hydrological data-monitoring network. Five differ-
ent AutoML models were employed to forecast the streamflow daily, i.e., auto-sklearn, Tree-based
Pipeline Optimization Tool (TPOT), H2O AutoML, AutoKeras, and MLBox. The AutoML input
features were set as the time-lagged streamflow and average rainfall data sourced from four rain
gauge stations and one streamflow gauge station. To overcome the lack of training data, in addition
to the previous features, products estimated via remote sensing were leveraged as training data,
including PERSIANN, PERSIANN-CCS, PERSIANN-CDR, and PDIR-Now. The selected AutoML
models proved their effectiveness in forecasting the streamflow in the considered basin. In particular,
the reliability of streamflow predictions was high both in the case when training data came from
rain and streamflow gauge stations and when training data were collected by the four previously
mentioned estimated remote-sensing products. Moreover, the selected AutoML models showed
promising results in forecasting the streamflow up to a three-day horizon, relying on the two available
kinds of input features. As a final result, the present research underscores the potential of employing
AutoML models for reliable streamflow forecasting, which can significantly advance water-resource
planning and management within the studied geographical area.
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1. Introduction

Reliable streamflow forecasting is crucial for several applications, such as reservoir
management [1], predicting energy generation in hydroelectric installations [2], flood
mitigation [3], designing hydraulic schemes [4], assessing the impact of human-induced
changes on water accessibility [5], and estimating the occurrence of extreme climate phe-
nomena [6]. The wide spectrum of the mentioned applications highlights the essential need
for accurate streamflow predictions [7]. Consequently, there is an increasing demand for
improved short-term and long-term streamflow predictions to enhance water-resource man-
agement practices [7,8]. However, reliability in streamflow forecasts remains a significant
challenge within the field of water-resource management. Indeed, the difficulty in accurate
hydrological forecasting is primarily due to the dynamic relations and considerable spatial
and temporal variability of the elements that regulate the hydrological cycle that convert
rainfall into river flows [9]. Moreover, the transformation of rainfall into runoff is generally
nonlinear [10], thus leading to additional complexities in its proper modeling.
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Precipitation is the primary source of water input into a river basin, directly influencing
river flow through several hydrological processes [7,9,11]: when precipitation occurs, it can
either infiltrate the soil, contributing to groundwater recharge or become surface runoff,
which flows over the land and into rivers and streams. The amount and intensity of
precipitation, along with the characteristics of the watershed, such as soil type, vegetation
cover, and topography, determine the proportion of water that becomes runoff versus
infiltration [7,8]. During periods of heavy rainfall, the soil’s infiltration capacity can be
exceeded, leading to increased surface runoff and higher river flows. Conversely, during
dry periods, reduced precipitation results in lower river flow as groundwater contributions
diminish [5,6]. Additionally, the temporal distribution of precipitation events, such as the
occurrence of prolonged rainfall versus short, intense storms, plays a crucial role in shaping
the river flow patterns [9]. Understanding the reported dynamics is essential for accurate
streamflow forecasting and effective water-resource management, particularly in regions
with limited hydrological data like the Amazon basin [7–9].

The transformation of rainfall into runoff has been modeled in multiple ways through
physical [12], conceptual [13], and empirical approaches [14]. Physical and conceptual
models provide a comprehensive mathematical formulation of the hydrological elements
that govern the transformation of rainfall into streamflow [12,13]. However, the application
of the latter models requires comprehensive data about the considered basin, including cli-
matic conditions, soil features, and characteristics of drainage channels. As a consequence,
the need for such extensive hydrometeorological data can render physical and conceptual
models impractical or result in subpar performance in predicting rainfall-runoff in water-
sheds with limited available data [7]. On the other hand, empirical models, often based
on Machine Learning (ML), can identify correlations between input and output data of
hydrological systems without taking into account the involved physical processes [15–17].
Indeed, ML models can forecast the hydrological components of interest by employing
mathematical equations that only fit the available training data. Traditional ML-based
hydrological models, for instance, based on k-Nearest Neighbors (k-NN), Support Vector
Machine (SVM), Random Forest (RF), Artificial Neural Networks (ANNs), and Deep Learn-
ing (DL) have proven to be effective in predicting the streamflow in basins with limited
hydrometeorological data [16,17].

Regarding ML models, according to Islam et al. [18], it must be noted that within the
field of hydrology, the latter models are particularly relevant when the focus is put on
the model’s reliability and/or simplicity rather than the ability to effectively represent the
underlying hydrological, physical processes. For instance, high reliability in predictions
is crucial for operational uses both in reservoirs and flood alert systems [1,3]. Indeed,
several recent research works, including the ones of De Sousa et al. [19] and Filho et al. [20],
focused on the applicability of ML models to daily streamflow forecasting in the Amazon
biomes and such authors underscored the remarkable performances of several traditional
ML models in the context of Amazon basin, where limited hydrometeorological data were
available. Incidentally, similar findings resulting in the successful application of ML-based
forecasting models were obtained in other regions of Brazil with comparable hydrometeo-
rological characteristics, e.g., in the Brazilian state of Pernambuco by Da Silva et al. [21].
Furthermore, it was noted that the effectiveness of ML models in streamflow forecasting is
not only due to their resilience in handling the scarcity of available hydrometeorological
information but also in dealing with the frequent non-stationary nature of the considered
data [19,22]. Finally, De Sousa et al. [19] showed that historical rainfall and streamflow data
alone are mostly sufficient to exploit ML for streamflow forecasting.

Even if the traditional ML models demonstrated their effectiveness in the context of
streamflow forecasting, they often present several drawbacks to their effective applicability.
In particular, traditional ML models typically require a deep understanding of each of the
employed underlying ML algorithms and their adjustable parameters and hyperparameters
for effective model selection and tuning [23–25]. Furthermore, the process of manually
training, selecting the proper model, and tuning the respective hyperparameters is often
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time-consuming, in particular when dealing with ML algorithms allowing the possibility
of adjusting a wide set of parameters and hyperparameters, each with multiple or even
continuous degrees of freedom [24–26]. Last but not least, every step of the traditional ML
pipeline required to obtain a fully working forecasting ML model, i.e., data preprocessing,
feature extraction, repeated model training and testing, hyperparameter tuning, and final
model selection must be done manually [23–25].

Automated Machine-Learning (AutoML) models were introduced to mitigate the above-
mentioned issues, and they offer several advantages over the traditional ML pipeline [23–25].
First, AutoML models reduce the need for deep expertise in each of the employed ML
algorithms, as they completely automate data preprocessing, feature extraction, repeated
model training and testing, hyperparameter tuning, and final model selection by signifi-
cantly simplifying the entire ML design process for researchers [23–25]. Furthermore, the
provided automation does not only reduce design complexity but also drastically cuts
down the time required for developing reliable ML models, as it can efficiently test a
vast space of candidate optimal models and respective hyperparameters, something that
would often be impractical to do manually [23–26]. Finally, AutoML models streamline
the entire ML pipeline—from data preprocessing to final model selection—ensuring that
each step is optimally performed without or with minimal manual intervention [23–25].
As a final result, the design of ML forecasting models becomes a completely end-to-end
design process, which, in the context of hydrology, could accelerate the development of
reliable ML-based models for streamflow prediction, even in environments with limited
hydrometeorological data. Indeed, recently, AutoML was applied in a few related studies
that focused on streamflow forecasting with remarkable forecasting performance [27–29].

Designing streamflow ML forecasting models that both require minimal training data
and can automate training, testing, tuning, and final model selection is crucial for hydro-
logical studies in world regions with limited data available, such as the Amazon [19,20,30].
Indeed, the Amazon basin has a lower density of hydrometeorological stations compared
to other regions in Brazil and worldwide [19,20]. Moreover, the existing network of sta-
tions suffers from issues related to limited historical data, uneven distribution, data series
inconsistencies, and limited measurement periods [19,20]. Such data gaps are partly due to
the region’s vast size and the inaccessibility of areas where monitoring stations are located,
such as national parks and indigenous lands where the Amazon rainforest is constantly
preserved. In the presented scenario, ML models have highly proven effectiveness in
accurately representing the hydrological behavior of the considered Amazon region even
with limited data, as demonstrated by previous studies [19,20], and AutoML models could
further enhance such forecasting performance.

Water resources in the Amazon basin hold significant value, primarily for the produc-
tion of hydroelectric energy through the construction of dams [31]. Unfortunately, the latter
process leads to several environmental issues, including biodiversity loss [32], local social
impacts [33], flooding of rainforest areas [34], and disruptions of the region hydrological
cycle [35]. Currently, three Hydroelectric Power Plants (HPPs)—Sinop, Colíder Pesqueiro
do Gil, and Teles Pires—are operational in the upper Teles Pires River basin [36]. Further-
more, the construction of two additional HPPs in the Amazon region—the Jirau and Santo
Antônio dams (on the Madeira River, Rondônia) and the Belo Monte dam (on the Xingu
River, Pará)—recently indicated a growing demand for hydroelectric production in the
considered region [37]. As a consequence, the Brazilian National Electric System Operator
(Operador Nacional do Sistema Elétrico—ONS) started to manage water accumulation
reservoirs and to compute streamflow predictions relying on stochastic models [19,38]. As
well as stochastic models, the ONS also employed conceptual models like SMAP [39,40],
but such models reported limited precision [38,40]. Thus, the potential of other ML-based
forecasting models, such as the ones represented by AutoML warrants exploration for
improving the performance of the critical streamflow prediction task in the Amazon region.

The importance of computing accurate streamflow forecasts cannot be understated
for effective water-resource planning and management in the Amazon basin region. Thus,
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given the constraints of the existing hydrometeorological data and the requirement for
reliable streamflow predictions, the objective of the present study is to exploit AutoML
methods to effectively forecast the daily streamflow in the selected geographical area.
Furthermore, the objective is even to improve the forecasting performances of the already
existing ML-based forecasting methods previously applied in the same context. Towards
the latter aims the present research relied both on data sourced from several rain and
streamflow gauge stations and rainfall products estimated through remote sensing, in line
with previously investigated approaches [19–21,30]. The employed estimates included Pre-
cipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN), PERSIANN—Cloud Classification System (PERSIANN-CCS), PERSIANN—
Climate Data Record (PERSIANN-CDR), and PERSIANN—Dynamic Infrared Rain rate
near real-time (PDIR-Now), where the latter one represents a recently introduced product
just recently tested in the context of streamflow forecasting [41,42].

The forthcoming part of the article is organized as follows: Section 2 reports the
latest ML-based approaches which addressed the problem of streamflow forecasting, even
with particular focus on the Amazon biomes; Section 3 describes the geographical area
of interest on which it is focused the present study, the employed datasets, the selected
AutoML models along with their experimental settings, and the analyzed metrics for final
evaluation of the AutoML models; Section 4 reports the obtained results of the present
study; Section 5 discusses the reported findings, even with respect to the previous research
works which addressed the same objectives; and Section 6 draws the conclusions of the
carried research and suggests potential future directions.

2. Related Works

In recent years, researchers have employed several ML-based models to forecast the
streamflow due to their high accuracy and flexibility [16,17]. For instance, ANNs/DL-based
models [43,44], RF-based models [18,19,45], SVM-based models [46–48], and AutoML-
based models [27–29] have been used to provide reliable streamflow forecasts.

Adnan et al. [46] evaluated several ML models for predicting monthly streamflows
using precipitation and temperature inputs, including the Optimally Pruned Extreme
Learning Machine (OP-ELM), Least Square Support Vector Machine (LSSVM), Multivariate
Adaptive Regression Splines (MARS), and M5 Model Tree (M5Tree). The results obtained
by the authors revealed that LSSVM and MARS-based models outperformed OP-ELM and
M5Tree models in streamflow prediction, even without the necessity for local input data.

Meshram et al. [44] compared three ML-based techniques, i.e., Adaptive Neuro-Fuzzy
Inference System (ANFIS), Genetic Programming (GP), and ANNs, to forecast the stream-
flow in the Shakkar watershed (Narmada Basin, India). The latter models incorporated past
streamflow data and cyclic terms in the input vector to create suitable time-series models
for streamflow forecasting. To evaluate the models’ performances, standard time-series
forecasting metrics were used. Results indicated that the ANFIS model achieved the best
performance in time-series streamflow forecasting, with the GP model and the ANN model
ranking second and third, respectively. The study highlighted that models incorporating
cyclic terms significantly outperformed those relying solely on previous streamflow data.

Kumar et al. [27] employed ML models to predict daily streamflow using hydrometeo-
rological data related to rainfall, temperature, relative humidity, solar radiation, wind speed,
and the one-day lag value of the streamflow. Among the employed ML models, i.e., bagging
ensemble learning, boosting ensemble learning, Gaussian Process Regression (GPR), and
the AutoML-GWL model [49], the bagging ensemble-learning model resulted as the most
effective with a correlation coefficient R = 0.80 and Root Mean Square Error RMSE = 218.
The authors even tested the Soil and Water Assessment Tool (SWAT) physical-based model;
however, even the bagging ensemble-learning ML model demonstrated superior predictive
strength (SWAT: R = 0.82; RMSE = 281).

Lee et al. [28] developed a Multi-inflow Prediction Ensemble (MPE) model for dam
inflow prediction using the auto-sklearn AutoML model [50]. The MPE model combined
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ensemble models for high and low inflow prediction to enhance the prediction accuracy.
The study compared the MPE model performance with a conventional auto-sklearn-based
ensemble model, finding that the MPE model significantly improved predictions during
both flood and non-flood periods. The MPE model reduced RMSE and Mean Absolute
Error (MAE) by 22.1% and 24.9%, respectively, and the designed model increased the
coefficient of determination (R2) and Nash–Sutcliffe efficiency coefficient by 21.9% and
35.8%, respectively. The results indicated that the MPE model could enhance water-resource
management and dam operation, benefiting the environment and society.

Tu et al. [29] reconstructed long-term natural flow time-series for inflows into the Pearl
River Delta (within the state of China) using global reanalysis datasets, observation data,
and ensemble ML models. The study found that the quality of reconstruction provided by
the employed AutoGluon AutoML model was superior with respect to the other employed
ML models on large-scale datasets. Furthermore, the computed Indicator of Hydrologic
Alteration and Range of Variability Analysis (IHA-RVA) revealed that climate variability,
reservoir regulation, and human activities significantly altered the natural flow regime,
typically smoothing the natural flow variability. As a final result, the research provided an
efficient and reliable method for reconstructing natural river flows.

De Oliveira et al. [30] evaluated the performance of the Large-Scale Distributed Hy-
drological Model (MGB-IPH) in forecasting water availability in the upper Teles Pires River
basin. Despite the lack of climatic and hydrologic data in the region, the MGB-IPH model,
calibrated and validated using data from three fluviometric stations, proved to be effective.
The model performance was verified using the Nash–Sutcliffe Efficiency Index and the
Bias metric. The results demonstrated that the MGB-IPH model could forecast the flow
regimes in the upper Teles Pires basin with high reliability in terms of the employed metrics.
Overall, the study indicated that the MGB-IPH model is applicable for water management
in the basin, thus in areas with limited hydrometeorological data.

De Sousa et al. [19] assessed the performance of k-NN, SVM, RF, and ANNs ML-based
models for daily streamflow prediction in a transitional region between the Savanna and
Amazon biomes in the state of Brazil. The results reported by the authors indicated that the
employed ML models provided reliable streamflow predictions for up to three days, even
in the Amazon basin, where limited hydrometeorological data are available.

Filho et al. [20] developed ANNs ML-based models to predict floods in the Branco
River within the Amazon basin. The ML models leveraged river levels and average rainfall
data estimated from the remotely sensed rainfall PDIR-Now product. Hourly water level
data were recorded by fluviometric telemetric stations of the Brazilian National Water
Agency (Agência Nacional de Águas—ANA). The multilayer perceptron served as the
framework for the ANNs, with the number of neurons in each layer determined through
proper hyperparameter tuning methods.

Da Silva et al. [21] investigated ML models to predict streamflows for proper man-
agement of the Jucazinho Dam in the state of Pernambuco, Brazil. Relying on SVR, RF,
and ANNs models, the study aimed to forecast the streamflow at the considered dam.
Data normalization and Spearman’s correlation were used to enhance the final ML model’s
accuracy. Evaluated using metrics such as the Nash–Sutcliffe efficiency coefficient and the
coefficient of determination (R2), the SVM model showed the best forecasting performance
but was prone to underestimate long-term streamflow values, while RF and ANN models
overestimated them likely due to overfitting. The study highlighted the effectiveness of
ML in improving dam management in water-scarce regions such as Pernambuco, Brazil.

As reported in the previous paragraphs, recent research works have significantly
enhanced the application of ML models for streamflow forecasting, offering various ad-
vantages and limitations depending on the specific model and context. ANNs and DL
models [43,44] have gained attention due to their ability to model complex nonlinear re-
lationships between inputs and outputs, making them particularly effective when ample
data are available. However, such models often suffer from overfitting, particularly when
applied to small datasets or regions with limited hydrometeorological data, as observed



Signals 2024, 5 664

by Meshram et al. [44]. In contrast, RF-based models [18,19,45] offer robustness and inter-
pretability, making them a preferred choice in scenarios where the dataset includes noise
or missing values. However, their computational cost and the potential for overfitting in
high-dimensional datasets remain challenges. SVM models [46–48] have shown remark-
able accuracy in streamflow prediction, particularly for small-to-moderate datasets, thanks
to their ability to manage nonlinear patterns. Yet, SVMs are computationally intensive
and require careful tuning of hyperparameters, which can be a disadvantage in practical
applications. AutoML approaches [27–29] have recently emerged as powerful tools that
automate the model selection and tuning process, offering a balanced trade-off between
performance and ease of use. The AutoML-based models have demonstrated superior
performance in various hydrological contexts by optimizing the selection of algorithms
and hyperparameters, though their black-box nature may limit interpretability and user
trust in certain applications. Overall, while the choice of model depends on the specific
requirements of the study, the latest research suggests that a combination of ensemble meth-
ods and automated model optimization techniques, such as those provided by AutoML
frameworks, can significantly enhance the accuracy and reliability of streamflow forecasts,
particularly in data-scarce or highly variable climatic regions.

3. Materials and Methods
3.1. Geographical Area of Interest

The geographical area of interest on which the present study was focused is the upper
reaches of the Teles Pires River within the Amazon basin, located in the state of Brazil
(refer to Figure 1). The upper Teles Pires River basin encompasses a drainage region of
14,030.98 km2, with average elevation of 455.6 m, average slope of 0.03 mm−1, maximum
altitude of 895 m, and minimum altitude of 272 m (refer both to Figures 1 and 2) [30,51].

Figure 1. Map representation of the upper Teles Pires River basin. On the left side, a map of the
state of Brazil delineates the boundaries of all its 27 federal states. In particular, the Teles Pires River
basin extends across the states of Mato Grosso and Pará. On the right side, both the entire basin
and the upper basin of the Teles Pires River are represented, where the latter one is reported with
latitude and longitude coordinates. The figure reported by Oliveira et al. [30] under the terms of the
Creative Commons Attribution License—CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/
accessed on 1 September 2024).

The confluence of the Teles Pires and the Juruena Rivers gives rise to the Tapajós River,
a significant tributary of the Amazon River. Moreover, the upper Teles Pires River traverses
the Amazon biomes, regions where the primary economic activities are represented by

https://creativecommons.org/licenses/by/4.0/
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agriculture and livestock farming, producing commodities such as soybeans, corn, and
cotton [52]. The considered basin is even a significant source of electrical power due to the
presence of three sequentially built HPPs [31,36]: moving downstream, the first HPP is
Sinop, followed by the Colíder Pesqueiro do Gil HPP, and finally, the Teles Pires HPP [36].

Figure 2. Characterization map of the upper Teles Pires River basin reporting a digital elevation
model. The reported altitudes range from a minimum altitude of 272 m to a maximum of 895 m
and are color-coded according to the reported legend on the left side. The entire drainage network,
fluviometric, pluviometric, and meteorological stations are reported on the map. Figure adapted
from Oliveira et al. [30] under the terms of the Creative Commons Attribution License—CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/ accessed on 1 September 2024).

The upper Teles Pires River basin region primarily experiences a tropical hot and hu-
mid climate. The mean annual precipitations in the latter region range between 1706.7 mm
and 2036.2 mm, and the peak rainfall occurs from October to April (rainy season), while
the lowest precipitation period occurs from May to September (dry season). The monthly
rainfall in June, July, and August is typically less than 20 mm, with 0 mm being the
most common registered value. Furthermore, the average monthly air temperature in the
considered region varies from 23.0 °C to 25.8 °C, with an annual mean of 24.7 °C [19,53].

3.2. Employed Datasets

Table 1 reports the rain and streamflow measurement stations leveraged in the present
research. Such stations are under the control of ANA, and their location is noted in
Figure 2. The employed historical data series collected from the reported stations can be
accessed on the online platform “Hidroweb”, which is provided by the Brazilian National
Water Resources Information System (Sistema Nacional de Informações sobre Recursos
Hídricos—SNIRH, https://www.snirh.gov.br/hidroweb/serieshistoricas accessed on 1
September 2024).

The selected AutoML models were trained and tested relying on daily surface rainfall
and streamflow data within the time-span from January 1985 to November 2023. Any time
interval lacking collected data was omitted from the study.

The streamflow data Qd collected on the day d from the streamflow gauge station noted
with code 017210000 in Table 1, are shown in Figure 3. The latter streamflow time-series
was composed of 14,212 samples.

The well-known Thiessen polygon method [54] was employed to compute the average
daily rainfall within the basin:

Pd =
∑n

i=1 Pi Ai

At
, (1)

https://creativecommons.org/licenses/by/4.0/
https://www.snirh.gov.br/hidroweb/serieshistoricas
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in which Ai represents the area of influence (in squared kilometers) for the i-th rain gauge
station, which recorded rainfall of Pi (in millimeters) on the day d, the number n, set to 4,
represents the number of the employed stations, and At denotes the total area (in squared
kilometers) of the considered basin. The rainfall data collected from the four rain gauge
stations, reported in Table 1, and the computed average daily rainfall Pd in the basin were
shown in Figure 4. The four time-series collected from the four rain gauge stations on
which the average daily rainfall Pd was computed were composed of 14,212 samples.

Table 1. The table reports both the rain and streamflow gauge stations employed in the present
research. The “Code” column refers to the station identifiers used in the Brazilian national hy-
drometeorological network. Within the column “Station Type”, the letter “F” denotes a streamflow
(Fluviometric) gauge station, while the letter “P” denotes a rain (Pluviometric) gauge station. The
“Latitude” and “Longitude” columns report the coordinates for each of the considered stations.

Name Code Station Type Latitude (°) Longitude (°)

Teles Pires 017210000 F −12.67° −55.79°
Passagem da BR-309 01453000 P −14.61° −53.99°
Paranatinga 01454000 P −14.41° −54.04°
Porto Roncador 01355001 P −13.55° −55.33°
Teles Pires 01255001 P −12.67° −55.79°
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Figure 3. The Figure reports the average streamflow Qd (in m3 s−1) recorded at the Teles Pires
Fluviometric Station identified with code 017210000 (Latitude: −12.67º and Longitude: −55.79º) in
Table 1 over the period from January 1985 to November 2023. The data shows significant seasonal
fluctuations over months. Indeed, as reported in Section 3.1, peak rainfall usually occurs from
October to April (rainy season), resulting in higher streamflow during such months, while the lowest
precipitation period is from May to September (dry season), thus leading to lower induced streamflow
(refer to Section 1 to deepen the relationship between rainfall and river flows).

Alongside surface rainfall data, the present study also relied on rainfall data derived
from remote sensing. In particular, the latter data included precipitation estimates from re-
motely sensed products using ANNs, i.e., PERSIANN, PERSIANN-CCS, PERSIANN-CDR,
and PDIR-Now products (refer to Table 2) [41,42]. The latter products were provided by
the Center for Hydrometeorology and Remote Sensing (CHRS), located at the University of
California (UC), Irvine, CA, USA. The average daily precipitation for the latter products
was computed using a standard arithmetic approach: for each day, all the available pre-
cipitation measurements were averaged to produce a single daily average precipitation
value. The daily average precipitation on the day d, namely Pd, was calculated for each
remote-sensing product using the following formula:

Pd =
1

nd

nd

∑
i=1

Pi (2)
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where nd represents the number of precipitation measurements recorded in the day d,
and Pi denotes the individual precipitation measurement. The computed average daily
rainfall Pd derived from remote-sensing products was shown in Figure 5. The original
datasets containing raw estimates are available on https://chrsdata.eng.uci.edu accessed
on 1 September 2024.
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Rainfall data collected from station with code: 01355001
Name: Paranatinga - Station type: P (Latitude: -14.41° and Longitude: -54.04°)
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Rainfall data collected from station with code: 01453000
Name: Porto Roncador - Station type: P (Latitude: -13.55° and Longitude: -55.33°)
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Figure 4. The top four subplots in the Figure report the rainfall data collected from the four rain gauge
stations listed in Table 1. Each subplot shows the total rainfall over time for the respective station
on the y-axis. The final subplot displays the computed average daily rainfall, Pd, in red, calculated
using the Thiessen polygon method. The data spans from January 1985 to November 2023, with the
x-axis representing the measurement years for all the subplots. Additional details from Table 1, such
as station names, types, and geographical coordinates, were also reported.

https://chrsdata.eng.uci.edu
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Figure 5. The four subplots in the Figure report the average rainfall data Pd computed from the four
remote-sensing products, listed in Table 2. Each subplot shows the average rainfall over time for
the respective remote-sensing product on the y-axis. The time-spans for the computed averages are
reported in the title of each subplot, with the x-axis representing the measurement years.
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As a final remark, in the present study, outlier detection was not performed, as the raw
data were already validated by the dataset providers, i.e., SNIRH [19,20] and CHRS [41,42],
to ensure the accuracy and reliability of the provided datasets.

Table 2. The table reports the exploited rainfall datasets estimated through remote sensing [41,42].
The spatial resolution, selected data period, update frequency, and number of computed samples for
each considered product are reported.

Product Spatial Resolution (°) Selected Data Period Update Frequency Number of
Computed Samples

PERSIANN 0.25◦ × 0.25◦ March 2000–November 2023 Every 2 days 8640 samples
PERSIANN-CCS 0.04◦ × 0.04◦ January 2003–November 2023 Real-time 7980 samples
PERSIANN-CDR 0.25◦ × 0.25◦ January 1985–September 2020 No longer updated 13,023 samples
PDIR-Now 0.04◦ × 0.04◦ March 2000–November 2023 Every 15–60 min 8640 samples

3.3. AutoML Models Description and Experimental Settings

With the aim of carrying out a comprehensive study, we selected five AutoML mod-
els based on different conceptual design choices, including auto-sklearn [50], Tree-based
Pipeline Optimization Tool (TPOT) [55], H2O AutoML [56], AutoKeras [57], and ML-
Box [58]. All the listed AutoML models will be introduced in the next paragraphs of the
present subsection. Despite the differences in their design principles, all the employed
AutoML models automated the process of training and testing a large selection of optimal
candidate ML models, along with the tuning of their respective hyperparameters. All
the selected AutoML models were tested relying on the Python programming language
(release 3.12.0), executed on Microsoft® Windows® 11 Enterprise operating system. The
code to execute the employed AutoML models was not developed from scratch, but the
already available Python libraries provided by the developers of the models were leveraged
for each of them. The references to each of the latter Python libraries are, respectively,
provided within each reported publication [50,55–58]. The workstation used for running
the experiments was equipped with a 12th generation Intel® Core™i9-12900 processor
(with 5.10 GHz maximum clock frequency, 16 cores, and 24 threads) and 64 GB of RAM (of
type DDR5—4400 MHz).

The auto-sklearn AutoML model is built over the scikit-learn library [59], developed
in the Python programming language [50]. It employs 15 ML models, 4 data preprocessing
techniques, and 14 feature preprocessing methods, thus resulting in a vast hypothesis
space. Within such space, auto-sklearn formulates a Combined Algorithm Selection and
Hyperparameter (CASH) optimization problem and employs Bayesian optimization to
solve such a problem, aiming to find the optimal performing ML pipeline.

The TPOT AutoML model is designed to automatically build and optimize ML
pipelines using the well-established evolutionary computation method known as Genetic
Programming (GP) [55]: at the start of each TPOT run, a fixed number of pipelines is created
to form what is commonly referred to in GP as a “population”. Then, GP is employed to
evolve the latter set of pipelines that have been applied to the data, i.e., the population,
and a subset of these is preserved based on their predictive performance. Finally, the
highest-performing pipeline is kept either when TPOT achieves convergence or after a
specified number of TPOT runs, as defined in advance by the researcher.

H2O AutoML is designed to simplify the process of automatically training and testing
a wide ensemble of ML models [56]. First, the H2O model applies data preprocessing steps,
such as imputation, one-hot encoding, and standardization. Then, the H2O AutoML trains
a random grid of several ML algorithms, for instance including Gradient Boosting Machines
(GBMs), Deep Neural Networks (DNNs), and Generalized Linear Models (GLMs), relying
on a carefully selected hyperparameter space. The individual models are then optimized
through cross-validation to ensure the highest predictive performance. Additionally, the
H2O model trains two stacked ensembles of models: the first one incorporates all the
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employed ML models (optimized for model performance), and the second one includes
just the best-performing ML model for each algorithm class (optimized for production use).
The output of H2O AutoML is finally an object containing a “leaderboard” that ranks all
the trained ML models based on a custom user-defined performance metric, making it
straightforward to identify the optimal performing ML models.

AutoKeras is an AutoML model specifically designed for DL architectures, built over
the Keras Python library [57]. AutoKeras relies on the principle of network morphism,
which allows the functionality of a DL network to be preserved while its underlying
architecture is altered. In particular, AutoKeras leverages Bayesian optimization to steer
network morphism in the search for the optimal DL architecture for the given problem and
dataset. To effectively surf the wide resulting search space, the developers of AutoKeras
devised a specific neural network kernel and a tree-structured optimization algorithm.

MLBox is an AutoML Python library that provides a suite of features aimed at stream-
lining the ML pipeline [58]. The latter ones include fast data reading and distributed
data preprocessing, cleaning, and formatting which simplifies the often complex and time-
consuming task of preparing the data to be provided as input to ML models. Furthermore,
MLBox is also capable of highly robust feature selection, with the aim of ensuring data
quality and reliability of training data. Another key feature is the MLBox capability of
performing accurate hyperparameter optimization processes in high-dimensional spaces,
thus allowing the fine-tuning of ML models to achieve optimal predicting performance.
Furthermore, MLBox includes the latest state-of-the-art predictive ML models for both
classification and regression tasks, such as RF, Bagging, and Light GBM. Finally, MLBox
provides predictions even endowed with ML model interpretations, thus aiding both in the
understanding and transparency of the trained ML models.

The five AutoML models employed in this study exhibit distinct structural characteris-
tics and operational methodologies. Indeed, auto-sklearn leverages Bayesian optimization
to surf a vast hypothesis space, integrating multiple preprocessing and feature selection
techniques. TPOT utilizes genetic programming to evolve machine-learning pipelines, opti-
mizing them through evolutionary algorithms. H2O AutoML combines various machine-
learning algorithms, including Gradient Boosting Machines, Deep Neural Networks, and
Generalized Linear Models, and employs ensemble learning to enhance predictive perfor-
mance. AutoKeras focuses on deep learning, utilizing network morphism and Bayesian
optimization to identify optimal neural network architectures. MLBox emphasizes ease of
use with robust feature selection and hyperparameter optimization, primarily leveraging
tree-based models like LightGBM and Random Forest. Such structural differences influence
the adaptability, computational efficiency, and suitability of the selected AutoML models
for different types of datasets and prediction tasks.

Table 3 reports the features employed to train the selected AutoML models and the
resulting predicted outputs. Identical datasets were set across all the AutoML models, and
the unique induced variation was in the time-lag of the predicted streamflow, extending
it up to 3 days, to assess the forecasting performance of the models. For each feature
set, the AutoML models were trained, validated, and tested using daily surface rainfall
and streamflow data collected from the time periods specified in Table 3. In particular,
average streamflow and rainfall data were used jointly as input features where the data
were available for both the employed features. The available data for each feature was
split to include the last 30% of the data in the final test set, ensuring a final assessment of
AutoML models on unseen data. The remaining 70% of the dataset was used for models’
development. On the latter data, a 10-fold cross-validation approach was applied to train
and validate the AutoML models, where for each step, a different fold served as a validation
set while the other ones were used for training. For each kind of input feature, identical
folds with the same data were used for training and validating the models, and AutoML
models were finally tested on the same test set. Table 3 reports the development and
test data leveraged intervals for all the employed feature sets. The specific settings of the
employed Python libraries for training each AutoML model are reported in Appendix A.
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Table 3. Covariates related to streamflow (denoted as Q) and rainfall (denoted as P) were employed
as input features to train the AutoML models. In particular, the mean time-lagged streamflow
(Qt) and rainfall (Pt) for the considered basin were leveraged relying on five different methods:
Thiessen, PERSIANN, PERSIANN-CCS, PERSIANN-CDR, and PDIR-Now. The time-lag l for which
the streamflow predictions were computed was set as 1 ≤ l ≤ 3 days in the present research. The last
two columns report the development and test data intervals employed for all the selected feature sets.

Time-Lag (Days) Models Input Features
(Qt and Pt) Predicted Outputs Development Data

Interval Test Data Interval

1 Thiessen Qt+1 1985–2012 2013–2023
1 PERSIANN Qt+1 2000–2016 2017–2023
1 PERSIANN-CCS Qt+1 2003–2017 2018–2023
1 PERSIANN-CDR Qt+1 1985–2010 2011–2020
1 PDIR-Now Qt+1 2000–2016 2017–2023

2 Thiessen Qt+2 1985–2012 2013–2023
2 PERSIANN Qt+2 2000–2016 2017–2023
2 PERSIANN-CCS Qt+2 2003–2017 2018–2023
2 PERSIANN-CDR Qt+2 1985–2010 2011–2020
2 PDIR-Now Qt+2 2000–2016 2017–2023

3 Thiessen Qt+3 1985–2012 2013–2023
3 PERSIANN Qt+3 2000–2016 2017–2023
3 PERSIANN-CCS Qt+3 2003–2017 2018–2023
3 PERSIANN-CDR Qt+3 1985–2010 2011–2020
3 PDIR-Now Qt+3 2000–2016 2017–2023

3.4. Metrics for AutoML Models Evaluation

The daily streamflow forecasting capabilities of AutoML models were assessed using
the following performance metrics: Mean Absolute Error (MAE—Equation (3)), Root Mean
Square Error (RMSE—Equation (4)), Bias (BIAS—Equation (5)), Nash–Sutcliffe Efficiency
Index (NSEI—Equation (6)), and Kling–Gupta Efficiency Index (KGEI—Equation (7)):

MAE =
1
N

N

∑
i=1

|Oi − Pi|, (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Pi)2, (4)

BIAS =
1
N

N

∑
i=1

(Oi − Pi), (5)

NSEI = 1 − ∑N
i=1(Oi − Pi)

2

∑N
i=1(Oi − O)2

, (6)

KGEI = 1 −

√
(r − 1)2 +

(
σe

σo
− 1

)2
+ (BIAS − 1)2, (7)

where Pi represents the predicted streamflow (in m3 s−1), Oi is the observed streamflow
(in m3 s−1), O stands as the average of the observed streamflow (in m3 s−1), N is the
number of values contained in the sample, r represents the correlation coefficient between
the observed and predicted data, σe is the standard deviation of the data predicted by the
model, and σo is the standard deviation of the observed data.

Regarding the NSEI and KGEI metrics, assessment of the models was carried out
relying on the performance categorization proposed in past research works related to the
present one [19,60]: an NSEI value equal to 1 reported an equal match between the model
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predicted data and the actual data; a value greater than 0.75 implied model predictions of
high quality; an NSEI value between 0.36 and 0.75 reported that the model performance
was sufficient; finally, a NSEI value less than 0.36 denoted unsatisfactory predictions. The
latter categorization was equally used to assess the model’s performance with KGEI.

4. Results

The Figures 6 and 7 present the daily streamflow forecasting performance on the test
set for the five employed AutoML models, five feature sets, and three different forecasting
time-lags. Both the figures report the test set forecasting performance through five separate
subplots, each corresponding to a different performance metric, previously described in
Section 3.4. Specifically, Figure 6 shows the forecasting performance gained by AutoML
models for each selected metric over all the employed features. On the other hand, Figure 7
displays the forecasting performance gained for each metric when each selected feature
was used as input over all the employed AutoML models. Both Figures 6 and 7 display
results by providing summary statistics in each subplot through box plots, color-coded
with three different colors, each representing a different time-lag.

Regarding the results shown in Figure 6, proper statistical tests were applied to
understand: (1) if there were any statistically significant differences among the employed
AutoML models regarding the test set performance; (2) If the answer to the first point
was positive, which specific AutoML models showed statistically significantly different
performance with respect to other ones. Among the most common statistical tests to
assess the first point, we may find the Analysis of Variance (ANOVA) [61]. However, the
application of ANOVA requires that several assumptions be met to obtain reliable findings,
such as normality (groups should be approximately normally distributed), homogeneity of
variances (variances among groups should be approximately equal), and independence
(observations must be independent of each other). Even if independence may be reasonably
assumed in the present study, normality and homogeneity of variances were not guaranteed
by the analyzed results. Indeed, the Shapiro–Wilk test [62] and the Fligner–Killeen test [63]
were computed over results to check the latter two properties, with test groups defined by
grouping the obtained model results by AutoML model and performance metric.

First, the Shapiro–Wilk test was applied. The null hypothesis of the Shapiro–Wilk
test assumes that the data follow a Normal distribution, and if the p-value obtained from
the test is less than the chosen significance level α (commonly set to α = 0.05), the null
hypothesis is rejected and there is sufficient evidence to conclude that the data do not follow
a Normal distribution. The tested AutoML models showed a p-value greater than α = 0.05,
except for TPOT in MAE (p = 0.008), AutoKeras in RMSE (p = 0.015), MLBox (p = 0.009)
and TPOT (p = 0.029) in BIAS, and finally TPOT in NSEI (p = 0.04). As a result, normality
was not guaranteed within five out of twenty-five (the 20%) of the defined groups.

Next, the Fligner–Killeen test was applied to check the homogeneity of variances
among groups. The null hypothesis of the latter test set all the group variances to be
equal, and with a p-value less than the chosen significance level α (typically α = 0.05), the
null hypothesis is rejected. In particular, a different Fligner–Killeen test was performed
for each performance metric to compare the AutoML model’s performance variances on
the same metric scale. As a result, the performed tests showed statistically significant
differences in variances for all the metrics, as all the computed p-values were less than
α = 0.05. In particular, the p-values found by the executed Fligner–Killeen tests ranged
within 0.000 ≤ p ≤ 0.009.
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Figure 6. The figure reports the forecasting performance gained by AutoML models for each selected
metric, over all the employed features. The figure reports the test set forecasting performance through
five separate subplots, each corresponding to a different performance metric, previously described in
Section 3.4. Results are displayed by providing summary statistics in each subplot through box plots,
color-coded with different colors, each representing a different time-lag (refer to the legends).
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Figure 7. The figure reports the forecasting performance gained for each metric when each selected
feature was used as input over all the employed AutoML models. The figure reports the test set fore-
casting performance through five separate subplots, each corresponding to a different performance
metric, previously described in Section 3.4. Results are displayed by providing summary statistics
in each subplot through box plots, color-coded with different colors, each representing a different
time-lag (refer to the legends).



Signals 2024, 5 675

As a consequence of the found non-normality and non-homogeneity of variances, the
ANOVA test could not be leveraged and, as an alternative, the Kruskal–Wallis test [64]
was applied to understand if it existed any statistically significant difference among the
employed AutoML models regarding the test set performance. The Kruskal–Wallis test
allows the complete dropping of the normality and homogeneity of variances assumptions
while requiring only the independence one. The null hypothesis of the latter test states that
the medians of all the selected groups are equal, and the alternative hypothesis states that
at least one group has a different median from the other ones. In the case the computed
p-value is under a chosen significance level α (typically α = 0.05), the null hypothesis
is rejected, and at least one group median is statistically significantly different from the
other group medians. As with the previously applied statistical tests, the Kruskal–Wallis
test was applied with test groups defined by grouping the obtained model results by
AutoML model and performance metric. In particular, a different Kruskal–Wallis test was
performed for each metric to compare the AutoML model median performances on the
same metric scale. As a result, the Kruskal–Wallis test indicated statistically significant
differences in the AutoML model median performances for all the employed metrics, as all
the computed p-values were inferior to the chosen significance level α = 0.05. In particular,
the p-values found by the executed Kruskal–Wallis were equal to p = 0.00 for all the
analyzed performance metrics.

Since the Kruskal–Wallis test indicated that the selected AutoML models showed
statistically significantly different median performances, the Dunn post hoc test [65] was
then executed to understand which specific AutoML models showed different median
performances above other ones. As with the Kruskal–Wallis test, the Dunn test does not re-
quire the normality and homogeneity of variances assumptions, but only the independence
one. The Dunn test is leveraged to perform multiple pairwise comparisons, and for each
pair of groups being compared, the null hypothesis states that there is no difference in the
central tendency, typically the median, between the two groups. On the other hand, the
alternative hypothesis states that there is a statistically significant difference in the central
tendency between the two groups being compared. The null hypothesis in the Dunn test is
rejected when the p-value is less than a chosen significance level α (usually α = 0.05).

As with the previously applied statistical tests, the Dunn test was applied with test
groups defined by grouping the obtained model results by AutoML model and performance
metric. In particular, different pairwise Dunn tests were performed for each metric to
compare the AutoML models’ median performances on the same metric scale. The Dunn
test computed p-values, reported in Table 4, indicated two distinct groups of AutoML
models in terms of median performance: Indeed, the first one consisting of AutoKeras,
H2O AutoML, and auto-sklearn, generally showed no statistically significant difference in
median performance among themselves across all the employed metrics, as indicated by
their respective p-values close to p = 1.00; The second one, including MLBox and TPOT,
also showed no significant difference in median performance between them. However, the
two latter models showed significant differences when compared to the ones included in
the first group across all the metrics. The last point is due to the p-values less than α = 0.05
when comparing MLBox and TPOT with the models in the first group.

Upon analyzing the AutoML models performance results displayed in Figure 6, the
above-noted statistically significant differences in the computed p-values are reflected in
the reported performance metrics. Indeed, auto-sklearn consistently achieves lower median
MAE, RMSE, and BIAS across different features compared to MLBox and TPOT for each of
the considered time-lags. Moreover, auto-sklearn gained NSEI and KGEI median values
closer to 1.00 with respect to MLBox and TPOT. Similarly, H2O AutoML and AutoKeras also
tended to perform better in terms of all the employed performance metrics with respect
to MLBox and TPOT. On the other hand, the two latter AutoML models still showed
competitive performance, particularly in terms of the NSEI and KGEI metrics, where they
all reached median performance above the value of 0.75, which still suggests high-quality
model predictions, according to the categorization reported in the Section 3.4.
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Table 4. The computed p-values with the Dunn test. Pairwise computed p-values are reported for
each couple of AutoML models and performance metrics. For the sake of readability, the p-values
less than the chosen significance level α = 0.05 are reported as bold and underlined text.

Model AutoKeras H2O MLBox TPOT Auto-Sklearn

MAE

AutoKeras 1.000 1.000 0.038 0.038 1.000
H2O 1.000 1.000 0.020 0.019 1.000

MLBox 0.038 0.020 1.000 1.000 0.022
TPOT 0.038 0.019 1.000 1.000 0.022

auto-sklearn 1.000 1.000 0.022 0.022 1.000

RMSE

AutoKeras 1.000 1.000 0.002 0.040 1.000
H2O 1.000 1.000 0.000 0.008 1.000

MLBox 0.002 0.000 1.000 1.000 0.000
TPOT 0.040 0.008 1.000 1.000 0.004

auto-sklearn 1.000 1.000 0.000 0.004 1.000

BIAS

AutoKeras 1.000 1.000 0.001 0.000 1.000
H2O 1.000 1.000 0.001 0.000 1.000

MLBox 0.001 0.001 1.000 1.000 0.000
TPOT 0.000 0.000 1.000 1.000 0.000

auto-sklearn 1.000 1.000 0.000 0.000 1.000

NSEI

AutoKeras 1.000 0.835 0.000 0.001 1.000
H2O 0.835 1.000 0.030 0.046 1.000

MLBox 0.000 0.030 1.000 1.000 0.007
TPOT 0.001 0.046 1.000 1.000 0.013

auto-sklearn 1.000 1.000 0.007 0.013 1.000

KGEI

AutoKeras 1.000 1.000 0.043 0.014 1.000
H2O 1.000 1.000 0.004 0.001 1.000

MLBox 0.043 0.004 1.000 1.000 0.011
TPOT 0.014 0.001 1.000 1.000 0.003

auto-sklearn 1.000 1.000 0.011 0.003 1.000

Regarding the results shown in Figure 7, part of the statistical tests previously applied
was used to understand: (1) if there were any statistically significant differences among
the employed input features regarding the test set performance; (2) If the answer to the
first point was positive, which specific feature sets allowed to gain statistically significantly
different forecasting performance with respect to other ones. Tests were performed with test
groups defined by grouping the obtained model results by feature kind and performance
metric. The Shapiro–Wilk test and Fligner–Killeen test were computed over results to check
the normality and homogeneity of variance assumptions.

First, the Shapiro–Wilk test results indicated that the null hypothesis of normality was
rejected for most of the employed features at a significance level of α = 0.05. In particular,
for MAE and Bias, the null hypothesis was rejected for all the employed features. For RMSE,
all the features rejected the null hypothesis except PERSIANN-CCS (p = 0.088). For NSEI,
PDIR-Now (with p = 0.224), PERSIANN (p = 0.094), and PERSIANN-CDR (p = 0.082)
did not reject the null hypothesis. Lastly, for KGEI, PERSIANN (p = 0.103) and Thiessen
(p = 0.062) did not reject the null hypothesis. As a result, the normality assumption was
not guaranteed within 19 out of 25 (the 76%) of the analyzed groups.

Next, the Fligner–Killeen test was applied to check the homogeneity of variances
among groups. In particular, a different Fligner–Killeen test was performed for each



Signals 2024, 5 677

performance metric to compare performance variances on the same metric scale gained
when leveraging each input feature. As a result, the performed tests showed no statistically
significant differences in-group variances for all the employed metrics, as all the computed
p-values were greater than the significance level α = 0.05. In particular, the p-values found
by the executed Fligner–Killeen tests ranged within 0.146 ≤ p ≤ 0.884.

The Kruskal–Wallis was finally executed, with test groups defined by grouping the
obtained model results by feature kind and performance metric. In particular, a different
Kruskal–Wallis test was performed for each performance metric to compare performance
medians on the same metric scale, gained when leveraging each employed feature. As a
final result, the Kruskal–Wallis test indicated no statistically significant differences in the
AutoML model median performances with respect to the employed features, as all the
computed p-values were greater than the chosen significance level α = 0.05. In particular,
the p-values found by the executed Kruskal–Wallis tests ranged between 0.448 ≤ p ≤ 0.996
for all the analyzed metrics. Therefore, post hoc pairwise Dunn tests were not executed.

Furthermore, the forecasting performances of all the possible combinations of AutoML
models and input features were ranked by providing them a performance score: The
score AutoMLscore(m, f , l) was calculated for each combination of AutoML model m, input
feature f , and time-lag l, by taking the sum of the absolute differences between the test
set performance of the AutoML model m and the optimum value for each employed
performance metric (value 0 for MAE, RMSE, and BIAS; value 1 for NSEI and KGEI). The
obtained scores were then summed over the time-lag values l to obtain the total score
AutoMLT

score(m, f ) for each combination of AutoML model m and feature f . The lower the
total score, the better the considered combination of model and feature. In Table 5, the
AutoMLT

score is reported for each combination of AutoML model and feature.
Finally, the top performing AutoML model for each input feature was additionally run

on the test data for each of the selected time-lag, 1 ≤ l ≤ 3. The latter data were unseen by
the trained AutoML models for all the selected input features. According to Table 5, the top
performing AutoML models for each input feature set according to the AutoMLT

score metric
were, respectively, H2O AutoML for Thiessen, auto-sklearn for PERSIANN, H2O AutoML
for PERSIANN-CCS, AutoKeras for PERSIANN-CDR, and auto-sklearn for PDIR-Now.
The average streamflow observed data and predictions obtained from the AutoML models
were reported in Figure 8.

Regarding Figure 8, the performance of the AutoML models was evaluated across
different seasons to understand their robustness and reliability under varying climatic
conditions. The Amazon basin experiences distinct wet and dry seasons, which significantly
influence streamflow patterns. During the wet season (October to April), the models
demonstrated higher prediction accuracy due to the increased availability of rainfall data,
which is a primary driver of streamflow. Conversely, during the dry season (May to
September), the prediction accuracy slightly decreased, reflecting the reduced rainfall input
and the increased reliance on historical streamflow data. This seasonal variation highlights
the models’ dependency on accurate and timely rainfall data for optimal performance.
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Figure 8. Average streamflow observed data and predictions obtained from the top performing AutoML model for each input feature. In the figure, AutoML models
were evaluated on the data contained in the respective test set kept for each feature set (refer to Table 3) and for each selected time-lag l (1 ≤ l ≤ 3). The latter data
were unseen by the trained AutoML models for all the selected input features. The reported top performing AutoML models and respective input features according
to the AutoMLT

score metric were H2O AutoML for Thiessen, auto-sklearn for PERSIANN, H2O AutoML for PERSIANN-CCS, AutoKeras for PERSIANN-CDR, and
auto-sklearn for PDIR-Now. Observed average streamflow data were reported in red color, while time-series data predicted from AutoML models were reported
with blue dashed lines. Horizontal thick black lines define the boundaries outside which predictions were not computed (since data were contained in the training
set or were not available for the considered feature set).
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Table 5. The AutoML models and respective input features ranked by the AutoMLT
score score. For

the sake of readability, the table is sorted in ascending order according to the computed score. The
ranking of the combinations, from 1 to 25, is reported in the first column. Furthermore, a horizontal
line divides the table relying on the two groups of models found with the Dunn post hoc tests: Group
1 includes auto-sklearn, AutoKeras, and H2O AutoML; Group 2 includes TPOT and MLBox.

Ranking AutoML Model Input Features AutoMLT
score

1 auto-sklearn PDIR-Now 23.79
2 AutoKeras PDIR-Now 23.81
3 H2O AutoML PERSIANN-CCS 23.83
4 H2O AutoML Thiessen 24.40
5 auto-sklearn PERSIANN 26.13
6 H2O AutoML PDIR-Now 26.15
7 auto-sklearn PERSIANN-CCS 26.19
8 AutoKeras PERSIANN-CDR 26.40
9 auto-sklearn PERSIANN-CDR 28.97
10 H2O AutoML PERSIANN 30.14
11 auto-sklearn Thiessen 30.42
12 H2O AutoML PERSIANN-CDR 30.78
13 AutoKeras PERSIANN 32.25
14 AutoKeras PERSIANN-CCS 37.32
15 AutoKeras Thiessen 38.48

16 TPOT PERSIANN-CCS 64.02
17 MLBox Thiessen 79.74
18 TPOT PERSIANN-CDR 90.26
19 MLBox PDIR-Now 96.56
20 MLBox PERSIANN 98.70
21 MLBox PERSIANN-CCS 106.76
22 TPOT PERSIANN 113.39
23 MLBox PERSIANN-CDR 113.65
24 TPOT Thiessen 117.77
25 TPOT PDIR-Now 133.17

5. Discussion

The experimental results confirmed that the usage of time-delayed rainfall and stream-
flow data provided reliable input features to train AutoML models designed to forecast
future streamflow. Indeed, rainfall data plays a crucial role within hydrological forecasting
models, being the primary way of water influx into a hydrographic basin [19,66]. More-
over, the time-delayed streamflow provides a representation of the moisture condition in
watersheds, given that runoff happens post-soil saturation [19,67]. As previously noted
by De Sousa et al. [19] and Filho et al. [20], the application of ML for predicting the daily
streamflow in the Amazon basin offers significant benefits, particularly due to the lack of
available hydrometeorological data. Indeed, even the findings described in the present
study indicate that ML-based models are a viable solution in the context of basins with
inadequate hydrological monitoring and a lack of fundamental information required for
the proper implementation of physical and/or conceptual rainfall-runoff models.

According to the results shown in Figure 6, the executed Dunn post hoc tests revealed
two groups of AutoML models with similar in-group median forecasting performances:
Group 1 includes auto-sklearn, AutoKeras, and H2O AutoML, while Group 2 includes
TPOT and MLBox. In addition to the results of the executed Dunn tests, even the computed
AutoML model score AutoMLT

score highlighted the difference in forecasting performance
between the two found groups of AutoML models: Regarding the scored combinations of
employed models and features reported in Table 5, over the 15th ranked position (included)
only combinations with AutoML models within Group 1 do appear. On the other hand,
under the 16th ranked position (included), only combinations with models within Group
2 are listed. Indeed, it must be noted that if pairwise score differences are computed
between the sorted scored combinations, the highest score difference found is between
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the 15th and 16th combination, with a score difference of 25.54. As already described
in Section 4, not only did the AutoML models within Group 1 show median forecasting
performances superior with respect to the models contained in Group 2, but they even
achieved a minimal loss of median forecasting performance when increasing the time-lag
prediction l up to l = 3. Indeed, for the models contained in the first group, median test
forecasting performances were contained in the same order of magnitude for MAE and
RMSE for each set lag. On the other hand, for the AutoML models contained in the second
group the order of magnitude of the latter two metrics tended to increase by one unit when
increasing the prediction time-lag up to l = 3. Minimal variations were observed with
respect to the Bias metric. Regarding NSEI and KGEI, the median performances of AutoML
models within Group 1 were greater than the value of 0.90 for each employed time-lag,
while for models of Group 2, they tended to reach inferior values, even below 0.80.

The structural differences between the AutoML models led to varying performances
in streamflow forecasting. Indeed, auto-sklearn, AutoKeras, and H2O AutoML consistently
outperformed TPOT and MLBox across most of the employed metrics. The superior
performance of auto-sklearn, AutoKeras, and H2O AutoML can be attributed to their
advanced optimization techniques and the ability to integrate a broader range of ML
algorithms and hyperparameters. In contrast, TPOT’s reliance on genetic programming
and MLBox’s limited model selection and feature processing capabilities resulted in less
optimal predictions. Such differences underscore the importance of selecting appropriate
AutoML models based on their structural characteristics to achieve reliable and accurate
streamflow forecasts.

Regarding the above-reported findings, as already noted by previous literature, it
was found that TPOT could underperform if compared to other AutoML models due to
several reasons: (1) The TPOT training phase is highly computationally expensive [68].
Indeed, the TPOT GP search process involves evolving a potentially huge population of ML
models and respective configurations over several generations, which can be significantly
more time-consuming with respect to the techniques leveraged by other AutoML models.
The latter point is particularly relevant in the case when large datasets or complex ML
models are employed; (2) The TPOT performance can be highly sensitive to the difficult
setting of its GP-related parameters, such as population size and mutation rate, which can
lead to sub-optimal results [69]; (3) Last, but not least, TPOT may not perform optimally
in situations where the optimal ML pipeline requires advanced ML models that are not
included in the TPOT available configuration, such as advanced DL models. Indeed, the
pipeline elements leveraged by TPOT only include algorithms and ML models borrowed
from the well-known Python scikit-learn library [55].

As with TPOT, MLBox may underperform if compared to other AutoML models for
several reasons: (1) One of the primary reasons is represented by the lack of available
ML models to be leveraged, with respect to the other employed AutoML models in the
present study [58]. Indeed, MLBox only includes LightGBM, RF, Extra Trees, Trees, Bagging,
AdaBoost, and Linear ML models. The limited availability of usable ML models could limit
the MLBox capability of capturing complex patterns in the training data that more advanced
ML models are capable of, such as Stacking, SVM, ANNs, and DL models; (2) Additionally,
the MLBox feature selection process is limited to standard feature processing techniques,
which could lead to sub-optimal feature sets being used for ML models training; (3) Finally,
while the MLBox limited amount of adjustable parameters could be seen as an advantage
towards the fast developing of ML models, it could also represent a drawback in scenarios
where a careful selection of the ML pipeline settings is required. As a result, the high
MLBox emphasis on ease of usage may result in a trade-off with the resulting ML model
performance, particularly when complex or large-scale datasets are leveraged.

The AutoML models employed in the present research were selected based on their
proven effectiveness in handling limited training data and their previous remarkable
performances reported in the previous literature [23–25]. Moreover, the employed dataset
and forecasting performance metrics were selected according to the previous work of De
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Sousa et al. [19], which focused on streamflow forecasting with ML models in the same
Amazon sub-region analyzed in the present study. Furthermore, the same forecasting
metrics were even leveraged by Filho et al. [20], which even focused on the Amazon basin.
In particular, the first group of AutoML models showed, for each employed time-lag,
median forecasting performances better of an order of magnitude with respect to the ones
reported in De Sousa et al. [19], in terms of MAE and RMSE. Comparable performances
were reached in terms of BIAS, NSEI, and KGEI. It must be noted that even regarding the
second group of AutoML models, TPOT and MLBox reached superior median forecasting
performances regarding MAE and RMSE with respect to De Sousa et al. [19] for each
employed time-lag. Superior median test performances were even obtained with respect
to De Oliveira et al. [30], which focused on the same sub-region of the present study in
terms of the computed NSEI and Bias metrics. Comparable forecasting performances
were obtained with respect to Filho et al. [20], which computed predictions within another
sub-region of the Amazon basin relying on the PDIR-Now product and ANNs. However,
in the latter case, it must be noted that in contrast with De Sousa et al. [19] and De Oliveira
et al. [30], the employed dataset was based on an Amazon sub-region different with respect
to the one analyzed by the present study, since the authors focused on data related to the
Branco River basin. As a result, it is difficult to compare the ML model performances
reported by Filho et al. [20] with the ones of the present research. Last, but not least, it
must be noted that the authors developed an ANN-based forecasting model with a forecast
horizon only limited to a 1 day time-lag.

According to the results shown in Figure 7, the Kruskal–Wallis test performed in
Section 4 indicated no statistically significant differences in the AutoML model’s median
performances with respect to all the employed features. In particular, the performance
related to the remotely sensed estimated products (PERSIANN, PERSIAN-CSS, PERSIANN-
CDR, and PDIR-Now) showed considerable promising results as input factors for predicting
the streamflow with AutoML models. Indeed, such features based on remote sensing can
augment the data used for training and testing ML models, particularly in wide areas
like the Amazon basin, therefore enhancing the reliability of streamflow forecasts for the
management of HPPs. The latter features could serve as a viable alternative to mitigate the
uncertainties arising from the sparse distribution of rainfall gauge stations, thus leading to
limited data available. Moreover, it must be noted that remotely sensed estimated products
could have a superior representation of average rainfall in the considered basin. Indeed, it
must be noted that the rainfall in the Amazon basin is primarily convective, characterized
by high intensity, brief duration, and limited spatial distribution [70]. As a result, the
average rainfall recorded by surface pluviometric stations could be skewed, especially in
the considered area where hydrological data-monitoring networks are sparse. It must be
finally noted that new fluviometric and pluviometric stations were installed in the upper
Teles Pires River basin, but they registered only a few years of data for training and testing
of ML models. Hence, we decided not to employ the available data related to the latter
stations, as done by the previous recent study of De Sousa et al. [19].

Satellite rainfall products have been successfully employed in the past literature as
input data for hydrological models to forecast the streamflow [19,20,66,71]. In addition
to the products employed in the present study, other products were leveraged in the past
literature, such as the Tropical Rainfall Measuring Mission (TRMM) products [72]. How-
ever, within the present research, we opted not to employ the TRMM product since it has
been no longer in operation since 2015. Furthermore, it must be noted that sometimes, the
process of updating remotely sensed databases is time-consuming, and it is carried out
with several days of delay, rendering it impractical for short-term streamflow predictions.
Indeed, the products selected for the present study (refer to Table 2) are mostly promptly
updated, facilitating reliable predictions for HPPs, except for the PERSIANN-CDR, which
was last updated in September 2020. Thus, the latter product may represent a secondary
option when deciding to employ one of the AutoML models and feature sets developed in
the present study. To facilitate the selection of which AutoML models and input feature sets
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researchers could employ, it must be noted that recent studies compared the hydrological
application and reliability of the employed satellite rainfall products: Eini et al. [73] re-
ported that PERSIANN-CDR and PDIR-Now tend to show better estimates if compared to
other products, while the PERSIANN product tends to be less reliable in daily precipitation
and runoff modeling. Similarly, Baig et al. [74] found that PERSIANN-CDR and PDIR-Now
tend to provide better rainfall estimates with respect to other products, particularly in
terms of capturing extreme rainfall events and the spatial distribution of rainfall. Hence,
even though the results found by the present study indicated no statistically significant
differences in the AutoML models median performance with respect to all the employed
input features, we suggest relying on AutoML models where input features are represented
by the PDIR-Now product. In particular, not only the last product is currently updated
constantly every 15–60 min (refer to Table 2), but with respect to the PERSIANN-CDR prod-
uct, it is still currently updated and maintained. Moreover, according to the AutoMLT

score
performance evaluation reported in Table 5, both the two highest ranked combinations of
employed AutoML models and features leveraged PDIR-Now as input feature, respectively,
with the auto-sklearn and AutoKeras AutoML models.

It must finally mentioned that the current study on daily streamflow forecasting
using AutoML presents a few limitations: (1) the study relies heavily on the availability
and accuracy of remote-sensing data, which, even if data are usually validated, can be
subject to errors and inconsistencies, particularly in regions with dense forest cover like
the Amazon. The sparse distribution of ground-based hydrometeorological stations in the
Amazon basin further exacerbates this issue, as it limits the ability to validate and calibrate
remote-sensing data effectively. Additionally, the study’s focus on a specific sub-region
of the Amazon basin means that the findings may not be generalizable to other areas
with different hydrological and climatic conditions. The use of historical data for model
training also poses a limitation, as it may not fully capture the impacts of recent land use
changes and climate variability on streamflow patterns. Moreover, while the AutoML
models employed in the study automate many aspects of the machine-learning pipeline,
they still require significant computational resources and a certain, even if limited, level
of expertise to set up and interpret the results. The present study also acknowledges that
the transformation of rainfall into runoff is a complex, nonlinear process influenced by
numerous factors, which may not be fully captured by the models used. Finally, the reliance
on daily average rainfall and streamflow data may overlook important sub-daily variations
and extreme events that could significantly impact streamflow forecasting accuracy. The
reported limitations highlight the need for ongoing improvements in data collection, model
development, and computational techniques to enhance the reliability and applicability of
streamflow forecasts in the Amazon basin and similar regions.

6. Conclusions and Future Directions

The objective of the present research was to assess the effectiveness of AutoML models
and remote-sensing-estimated rainfall datasets in forecasting the daily streamflow in the
upper reaches of the Teles Pires River in the Amazon basin. Moreover, the aim was to
improve the existing forecasting results obtained by the previous research works which
addressed the same task in the context of the considered Amazon sub-region. A final
review of the above-reported findings underscores the following main points:

• The employed AutoML models have proven to be effective in forecasting the daily
streamflow of the upper Teles Pires River up to 3 days. A specific group of AutoML
models, including auto-sklearn, AutoKeras, and H2O AutoML, showed superior
median performance in streamflow forecasting. Thus, the latter AutoML models
represented a practical solution for predicting the daily streamflow in basins that lack
extensive hydrometeorological data, like the Amazon one.

• The streamflow of the upper Teles Pires River can be predicted using precipitation
data estimated through remote sensing. Indeed, all the employed products showed
comparable forecasting performances when they were used as input features for the
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AutoML models, even if PDIR-Now represented a preferable input feature due to its
highest obtained performance score, fast refresh rate, and current active maintenance.

In addition to the above-mentioned findings, in the present study, we introduced
several novel approaches to enhance the application of AutoML for daily streamflow
forecasting in the Amazon biomes. Such innovations include:

• Customized feature engineering: we developed a novel feature engineering pipeline
that integrates both time-lagged streamflow and the latest remote-sensing-estimated
rainfall data. Such a pipeline was specifically tailored to address the challenges posed
by the limited hydrological data available in the Amazon basin.

• Hybrid data integration: unlike traditional approaches that rely solely on ground-
based measurements, we incorporated multiple remote-sensing products, i.e., PER-
SIANN, PERSIANN-CCS, PERSIANN-CDR, and PDIR-Now, to enrich the training
dataset. This hybrid integration significantly improved the AutoML models’ ability to
generalize and predict streamflow accurately.

• Advanced model selection and hyperparameter tuning: a multi-stage AutoML pro-
cess was employed. Such an approach not only automated the model selection and
hyperparameter tuning but also ensured that the most optimal models were selected
based on a comprehensive evaluation of multiple performance metrics.

• Performance metrics customization: the standard performance metrics built in the
AutoML models were customized to include MAE, RMSE, Bias, NSEI, and KGEI. Such
a comprehensive set of metrics provided a holistic evaluation of the model’s predictive
capabilities.

• Strong statistical analysis: an extensive statistical analysis was performed, including
the Kruskal–Wallis test and Dunn post hoc test, to rigorously compare the performance
of different AutoML models and feature sets. Such level of statistical scrutiny, to the
best of our knowledge not done in previous studies, ensured the robustness and
reliability of the presented findings.

These innovative approaches underscore the significant contributions of our research
in advancing the application of AutoML for hydrological forecasting in data-scarce regions
like the Amazon basin.

The developed AutoML models demonstrated reliable streamflow forecasts up to
3 days, serving as potential tools for decision-makers, particularly in relation to the ap-
propriate planning and management of water resources within the Amazon basin. The
ultimate goal of the latter is to improve the efficiency of reservoir operations for various
purposes, including the hydroelectric production of electricity, flood control, providing
water for human consumption, and proper irrigation.

Despite the promising reported results, future developments could still arise from
the present study. In particular, future works could take into account remote sensing and
reanalysis data as input for ML models aimed at streamflow predictions. For instance,
Lian et al. [75] employed Evapotranspiration (ET) data to limit the uncertainty of ET and
enhance streamflow predictions, showing that incorporating additional variables could
enhance the outcome of the forecasts. Furthermore, Touseef et al. [76] also reported that the
usage of ET data obtained through remote sensing could improve streamflow forecasting.

Furthermore, in the present research, time-lagged streamflow and daily average rain-
fall data were leveraged as input features. However, for future works, it might be interesting
to include the surface runoff as an additional input feature. To achieve the latter point,
the underground flow component could be eliminated using numerical filters, as done
in previous research works which employed daily precipitation and runoff with a 2 day
lag to forecast the streamflow in mountainous regions [77–79]. The latter method could
potentially enhance the prediction of peak streamflows in the basin. Finally, despite the
obtained satisfactory results in predicting the streamflow using rainfall data derived from
remote sensing, the employed data were not calibrated with respect to surface data. Lack
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of calibration could lead to estimation errors caused by the global scale of the employed
products. Therefore, calibrating data could enhance the effectiveness of the used products.
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Appendix A

The present appendix reports the settings defined on the Python libraries employed
for executing each of the selected AutoML models. In particular, the set Python parameters
are, respectively, reported for auto-sklearn (Table A1), TPOT (Table A2), H2O AutoML
(Table A3), AutoKeras (Table A4), and MLBox (Table A5). Within the reported tables,
each Python parameter is categorized according to its designed purpose. Notice: only the
Python parameters set with different values with respect to the default ones are listed.

Table A1. Employed configuration for the auto-sklearn AutoML model. The reference to the used
library is available on: https://automl.github.io/auto-sklearn/ accessed on 1 September 2024.

Parameter Value Purpose

time_left_for_this_task 259,200 (s)
per_run_time_limit 21,600 (s) Runtime Configuration

initial_configurations_
via_metalearning 50 (configurations) Meta-learning

ensemble_nbest 100 (models) Ensemble Configuration

resampling_strategy cv (i.e., cross-validation)
resampling_strategy_arguments {“folds”: 10} Resampling Strategy

memory_limit 4096 (MB per job)
n_jobs −1 (using all processors) Resource Configuration

max_models_on_disc 5000 (models) Storage Configuration

metric

mean_absolute_error,
root_mean_squared_errorC,
bias_mtrC, NS_EIC, KG_EIC,
Ccustom-defined metrics

Model Evaluation

dask_client dask.distributed.Client (obj.) Hardware Acceleration

Table A2. Employed configuration for the TPOT AutoML model. The reference to the used library is
available on: http://epistasislab.github.io/tpot/ accessed on 1 September 2024.

Parameter Value Category

warm_start, True
max_time_mins 4320 (min)
max_eval_time_mins 360 (min)

Runtime Configuration

early_stop 100 (generations) Stopping Criteria

generations 100 (generations)
population_size 50 (models)
offspring_size 50 (models)
mutation_rate 0.8 (fraction)
crossover_rate 0.2 (fraction)

GP Configuration

cv 10 (folds) Resampling Strategy

https://automl.github.io/auto-sklearn/
http://epistasislab.github.io/tpot/
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Table A2. Cont.

Parameter Value Category

n_jobs −1 (using all processors) Resource Configuration

scoring

neg_mean_absolute_error,
neg_root_mean_squared_errorC,
neg_bias_mtrC, neg_NS_EIC,
neg_KG_EIC,
Ccustom-defined metrics

Model Evaluation

use_dask True Hardware Acceleration

Table A3. Employed configuration for the H2O AutoML model. The reference to the used library is
available on: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html accessed on 1 Septem-
ber 2024.

Parameter Value Category

max_runtime_secs 259,200 (s)
max_runtime_secs_per_model 21,600 (s) Runtime Configuration

max_models 5000 (models)
stopping_rounds 100 (rounds)
stopping_tolerance 0.01 (fraction)

stopping_metric
MAE, RMSE, bias_mtrC,
NS_EIC, KG_EIC,
Ccustom-defined metrics

Stopping Criteria

nfolds 10 (folds) Resampling Strategy

sort_metric
MAE, RMSE, bias_mtrC,
NS_EIC, KG_EIC,
Ccustom-defined metrics

Model Evaluation

max_mem_size 64G (size in GB)
nthreads −1 (using all processors) Resource Configuration

Table A4. Employed configuration for the AutoKeras model. The reference to the used library is
available on: https://autokeras.com/ accessed on 1 September 2024.

Parameter Value Category

max_trials 1000 (trials) Runtime Configuration

epochs 500 (epochs)
batch_size 64 (samples)

loss
MeanAbsoluteError,
MeanSquaredError, Mean-
SquaredLogarithmicError

Training Configuration

metrics

MeanAbsoluteError,
RootMeanSquaredError,
bias_mtrC, NS_EIC, KG_EIC,
Ccustom-defined metrics

Model Evaluation

tuner greedy, Bayesian, hyperband,
random (methods) Hyperparameter Tuning

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://autokeras.com/
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Table A5. Employed configuration for the MLBox AutoML model. Reference for MLBox:
https://mlbox.readthedocs.io/en/latest/ accessed on 1 September 2024.

Parameter Value Purpose

strategy variance, l1,
rf_feature_importance

threshold (selection) 0.1 (fraction)
threshold (drift) 0.8 (fraction)

Feature Selection

strategy
LightGBM, RandomForest,
ExtraTrees, Tree, Bagging, and
AdaBoost

Model Configuration

n_folds 10 (folds) Resampling Strategy

metrics

mean_absolute_error,
root_mean_squared_error,
bias_mtrC, NS_EIC, KG_EIC,
Ccustom-defined metrics

Model Evaluation
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