
Citation: Anandanadarajah, N.;

Talukder, A.; Yeung, D.; Li, Y.;

Umbach, D.M.; Fan, Z.; Li, L.

Detection of Movement and

Lead-Popping Artifacts in

Polysomnography EEG Data. Signals

2024, 5, 690–704. https://doi.org/

10.3390/signals5040038

Academic Editor: Manuel Duarte

Ortigueira

Received: 31 July 2024

Revised: 12 September 2024

Accepted: 10 October 2024

Published: 22 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Detection of Movement and Lead-Popping Artifacts in
Polysomnography EEG Data
Nishanth Anandanadarajah 1,* , Amlan Talukder 1 , Deryck Yeung 1, Yuanyuan Li 1, David M. Umbach 1 ,
Zheng Fan 2 and Leping Li 1,*

1 Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences,
Research Triangle Park, NC 27709, USA

2 Division of Sleep Medicine, Department of Neurology, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27514, USA

* Correspondence: nishyniehs@gmail.com (N.A.); li3@niehs.nih.gov (L.L.)

Abstract: Polysomnography (PSG) measures brain activity during sleep via electroencephalography
(EEG) using six leads. Artifacts caused by movement or loose leads distort EEG measurements. We
developed a method to automatically identify such artifacts in a PSG EEG trace. After preprocessing,
we extracted power levels at frequencies of 0.5–32.5 Hz with multitaper spectral analysis using 4 s
windows with 3 s overlap. For each resulting 1 s segment, we computed segment-specific correlations
between power levels for all pairs of leads. We then averaged all pairwise correlation coefficients
involving each lead, creating a time series of segment-specific average correlations for each lead.
Our algorithm scans each averaged time series separately for “bad” segments using a local moving
window. In a second pass, any segment whose averaged correlation is less than a global threshold
among all remaining good segments is declared an outlier. We mark all segments between two outlier
segments fewer than 300 s apart as artifact regions. This process is repeated, removing a channel
with excessive outliers in each iteration. We compared artifact regions discovered by our algorithm
to expert-assessed ground truth, achieving sensitivity and specificity of 80% and 91%, respectively.
Our algorithm is an open-source tool, either as a Python package or a Docker.
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1. Introduction

Electroencephalography (EEG) measures the electrical activity of the brain by attach-
ing electrode leads to the surface of the scalp. Electrical signals generated in the brain
travel through the skull and are channeled by leads to electronic recording devices. The
electric potentials of EEG signals are low, measured in micro volts (µV), and subject to
distortion caused by extraneous signals. Such EEG artifacts can come from other intrin-
sic/physiological activities within the body or extrinsic/non-physiological electric signals
from the environment [1,2]. Physiological artifacts include electric signals generated from
organs or muscles associated with pumping blood, breathing, or eye movements. Non-
physiological artifacts include signals from electric currents in nearby electric circuits and
power lines. EEG artifacts can also arise when the recoding electrode leads become loose or
detached (often referred to as “popped”), perhaps from head movements. Depending on
their source, artifacts may occur in only one channel or in several channels simultaneously,
and they may distort an EEG signal over a brief or prolonged period. Loose leads tend
to result in artifacts that last from seconds to minutes and to be present in individual
EEG channels.

Although physiological artifacts are largely unavoidable, researchers have devel-
oped methods to identify and/or minimize their effects (for reviews, see [1–3]). Notable
approaches include independent component analysis (ICA) [4,5], canonical correlation
analysis [6], and empirical mode decomposition [7].
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Most artifact detection methods were designed for high-density routine EEGs that use
21–128 scalp electrodes to monitor subjects for 20–120 min; however, methods designed
for routine EEGs may not always be suitable for overnight polysomnography (PSG) EEGs.
PSG EEGs monitor subjects during an overnight sleep of, typically, 7–8 h but use a lower
density of scalp electrodes—typically six channels. The longer duration during sleep opens
a PSG EEG to additional physiological artifacts not seen in routine EEGs, such as those
from bruxism and chewing. In addition, methods for outlier removal in routine EEGs that
assume stationary brain activity may not work for PSG EEGs because sleep cycles render
brain-wave activity during sleep inherently non-stationary.

Among the artifact detection methods specifically designed for PSG EEG [8–16], sev-
eral subdivide the time axis into epochs, each of which contains multiple readings, and
use epoch-specific measures of correlation [10,11,13,14]. Durson and colleagues [10,11]
proposed the elimination of eye movement artifacts based, in part, on the correlation of
EEG potentials with electro-oculogram (EOG) potentials, with epochs with high corre-
lations evidencing contaminated signals. Garbaldi et al. [13] similarly used correlation
between electromyography (EMG) potentials and EEG potentials and between EOG and
EEG potentials to detect EMG- or EOG-related artifacts in EEG signals. Although these
methods were designed to detect epoch-specific EOG- or EMG-induced artifacts, they do
not explicitly address specific channels.

Only three works in the literature with respect to PSG EEG methods [14–16] explic-
itly state how their proposed method can identify both channel-specific and epoch-level
artifacts. Of these three methods, some base artifact detection on the time sequence of
EEG potentials, while others process the sequence of potentials into a spectrogram that
represents the EEGs as epoch-specific power spectra covering a range of frequency bands,
then use both potentials and power spectra.

Ktonas et al. [16] proposed a two-step method for artifact detection applied to 30-s
epochs containing 128 samples/s of the EEG potential. The first step removes epochs
containing high-amplitude EEG potentials. The second step probes whether the distribution
of potentials within each remaining epoch approximates a Gaussian distribution using a
chi-square goodness-of-fit statistic with a heuristically determined cutoff. The procedure
removes any epochs declared non-Gaussian as artifacts.

Durka et al. [14] developed procedures to identify specific artifacts, such as those
from eye movement, breathing, muscle movement, or a popped electrode. They estimated
different functions of a spectrogram, each focusing on one type of artifact. For example,
to detect eyeblink artifacts in 1.5 s epochs, the function that the authors chose is pairwise
correlation in EEG power between certain pairs of leads; they declared epochs to contain
artifacts when the correlation was below a heuristic threshold. For other types of artifacts,
the authors defined the relevant threshold either heuristically or statistically.

Although designed for high-density, routine EEGs, FASTER (Fully Automated Statis-
tical Thresholding for EEG artifact Rejection) [17] employs correlations in an interesting
way for the detection of artifactual channels [17]. The algorithm identifies artifacts, epoch
by epoch and channel by channel, using five steps. In one of the steps, FASTER uses the
mean of the channel’s correlation coefficients with other channels as one of several criteria
to identify artifactual channels. The premise is that signals (e.g., total EEG power) from
neighboring channels should be highly correlated, and deviation from the presumed high
correlation is indicative of the presence of outlier channels [17].

Wallant et al. [15] followed a complex multi-module strategy promoted by Nolan
et al. [17] for the detection of artifacts in routine EEGs; however, Wallant et al. used
different component modules because their focus was on PSG EEGs. In their method, after
preprocessing, a first module screens for channels that are unusually flat or unusually noisy
within 30 s epochs, a second module extracts features of the power spectrum, and the final
module focuses on three types of artifacts—popping, movement, and arousal—within 1 s
epochs. For the popping artifacts, the authors employed an approach that looks for rapid
changes of large amplitude in potential [14]. To detect movement and arousal artifacts, the
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authors used an approach, like that proposed by Brunner [9] that focuses on power in the
beta band (16–30 Hz) with an adaptive threshold.

Normal sleep includes cycles with alternating periods of non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep. None of the above-mentioned approaches
appear to explicitly consider sleep cycles when using correlation between channels to detect
sleep-stage-specific artifacts—at least, in part, because their goal is to remove artifacts as
a preparation for automated sleep-stage classification [10,11,13]. Moreover, none of them
unifies the correlation-based approaches for both channel- and epoch-specific artifacts.
Instead, a correlation-based approach is considered either for the identification of epochs
containing a specific type of artifact or for the detection of problematic channels.

In this study, we propose an iterative procedure to identify artifacts in PSG EEG signals
from individual channels. Based on the premise that signals from neighboring channels
should be highly correlated [10,11,13,17], we reasoned that the EEG power spectra at each
time stamp should also be highly correlated between channels and that a pattern of low
correlations suggests that lead popping or movement artifacts may have occurred during a
given period. The algorithm uses the spectrogram for every channel to create a time series
of average correlations between power spectra for each channel. Segments of time where a
channel’s average correlation lies below data-based thresholds are declared artifacts. This
manuscript describes the algorithm in detail. We compared its performance in identifying
artifacts with artifacts detected by an expert using the overnight EEG trace from a real PSG
study. We close with a discussion of the benefits and the shortcomings of our algorithm.

2. Methods
2.1. Algorithm
2.1.1. Overview

First, our algorithm (Figure 1) preprocesses the EEG potential signal to prepare for
later analyses [1,3]. Next, it applies multitaper analysis to the signal from each channel
(4 s intervals with 3 s overlap) to create a spectrogram that provides, for each 1 s segment,
a vector of power values, with one value corresponding to each 0.25 Hz frequency band
between 0.5 and 32.5 Hz. It computes the Spearman correlation coefficient between the
power vectors for each 1 s segment for every pair of channels, yielding 15 time series of
correlations in power—one time series for each pair of channels. From these 15 pair-specific
time series, the algorithm creates six channel-specific time series of average correlations by
averaging the five pairwise correlations that share a common channel segment by segment.
In each channel-specific average time series, the algorithm identifies “bad” segments using
a moving window-based local threshold approach [9] and considers all remaining segments
“good” segments. A channel-specific global threshold for outlier detection is derived using
the pool of “good” segments for that channel.

In a second pass, a 1 s segment within a channel is declared an outlier using a global
threshold based on the pool of all “good” segments for the channel. Any segments falling
between two outliers that are within 5 min (10 epochs) of each other are also declared
outliers. Because the average correlation between any given channel and each of the other
five channels can be affected by outliers in any one of the five, the algorithm proceeds
iteratively. A channel with more than 5% of its segments declared as outliers is excluded
from subsequent channel-specific averages of pairwise correlations but is not declared an
outlier channel yet. The process is repeated until no additional channels can be excluded
(Figure 1).
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Figure 1. Overall workflow of the proposed method. For raw EEG data, the algorithm first performs
the preprocessing step. Next, the algorithm computes pairwise correlation coefficients in EEG power
between every pair of channels. For each channel, the correlations with the other channels are
averaged. Based on the correlation coefficients, the algorithm iteratively identifies channels with
excessive outliers and recomputes the average correlation. Finally, outlier segments are identified
and annotated.

2.1.2. Step-by-Step Description
Preprocessing

Our data preprocessing procedure is designed to make the input time series of poten-
tials amenable to subsequent analyses. The algorithm uses EEG signals from six channels
(F3, F4, C3, C4, O1, and O2) and preprocesses each one separately. First, it identifies 30 s
epochs labeled as “Nan” or “inf” and recodes them as “NaN”, thereby making them irrele-
vant for downstream analysis. Each channel is re-referenced with respect to its opposite
mastoid channel (M1 or M2) by subtraction, e.g., F3-M2 and F4-M1. The algorithm applies
a zero-phase notch filter to remove power-line noise (60 Hz). Then the algorithm applies a
band-pass filter to keep signals within the frequency range of 0.5–32.5Hz. It removes 30 s
epochs with excessive flat signals, that is, epochs with amplitudes one standard deviation
less than 1 µV or less than 0.2 µV for five consecutive second. To minimize movement
artifacts, it also removes epochs with signal amplitudes exceeding 500 µV.

Spectral Analysis

Next, we carried out multitaper spectrogram (MT-spectrum) analysis [18] on the
preprocessed EEG signals. For each channel, we extracted the EEG power spectrum with
seven Slepian tapers using a moving window of 4 s with 3 s overlap; we indexed the period
corresponding to each 4 s spectrum, termed a “segment,” to its initial second. Consequently,
a segment is 1 s in duration. The spectrum for each segment consists of absolute EEG power
in 128 bands, each with a 0.25 Hz resolution. Thus, we regard each segment as having a
vector of power values with 128 elements.

Segment-Specific Correlation between Pairs of Channels

For a given pair of channels, we have two vectors of EEG power for each segment,
as described above. Using those vectors, we compute the Spearman correlation for each
segment of the sleep period, thereby creating a time series of correlations for the pair of
channels. We create a corresponding pairwise correlation time series for all 15 possible
pairs from the six channels.

Each of the six channels is paired with five other channels. We average the five
correlations, segment by segment, to create a time series of average correlations for each
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index channel. For example, for index channel C3, we averaged all correlations involving
C3, i.e., correlations between C3-C4, C3-F3, C3-F4, C3-O1, and C3-O2.

In subsequent iterations, pairwise correlations that involve a channel that subsequently
recognized as having an excessive number of outlying segments (see below for definition
of artifact channel) are excluded from the calculation of average correlations. Thus, after
the first iteration, the average correlation for a given channel may involve fewer than five
pairwise correlations.

Identification of “good” and “bad” segments. For a given channel, the algorithm char-
acterizes each segment as “good” or “bad” using a local moving window-based approach
applied to the channel’s average correlation time series. We chose a window size of 60 s
(two 30 s epochs) and a sliding time of 1 s. Following Brunner et al. [9], we employed
a locally adaptive threshold. We designate a segment in the moving window as a “bad”
segment when its average correlation is less than half of the median of the average correla-
tion for all segments in the window. Each segment declared “bad” is placed in the “bad”
segment pool. All remaining segments, considered “good” segments, are placed in the
“good” segment pool. Accordingly, each channel has its own two pools; “good” segments
constitute one pool, and “bad” segments constitute the other.

Scanning each channel for outliers. Segments declared “bad” are immediately desig-
nated as outliers. To detect outlier segments among the pool of “good” segments for each
channel, we adapted a global threshold approach. We derived the global threshold based
on the distribution of average correlation among the “good” segments. Specifically, we
considered one-fourth of the 75th percentile value of the correlations in the “good” segment
pool as the threshold. Using this cutoff, we rescanned the “good” segment pool from
each channel for outliers. A “good” segment was considered an outlier when its average
correlation was below the cutoff. As a result, each segment in a channel was labeled as “1”
(outlier) or “0” (not outlier).

Artifact regions and outlier channel(s). If the distance between two outliers (a and
b) is less than 5 min (300 segments, 10 epochs), all segments between a and b are marked
as outliers, creating an artifact region. If the total length of artifact regions in a channel
exceeds 5% of the channel’s length after preprocessing, the channel is excluded in the next
round of average correlation calculation; nevertheless, the channel is not considered an
outlier channel at this stage.

2.1.3. Iteration

The above steps, starting from the calculation of the average correlation for each
channel to the detection of artifact regions and outlier channels, is iteratively repeated until
no additional outlier channels are detected. The algorithm can be applied to the entire
EEG record without regard to sleep stage or it can be applied to signals from the REM and
NREM sleep stages separately.

2.1.4. Data

We downloaded de-identified EEG data from 9641 in-laboratory PSG studies carried
out between January 2019 and March 2023 in an American Academy of Sleep Medicine
(AASM)-accredited sleep laboratory at the University of North Carolina at Chapel Hill.
Each study included an electroencephalogram with at least six channels (frontal, F3 and
F4; central, C3 and C4; occipital, O1 and O2; reference channels, M1 and M2), two electro-
oculograms, submental and bilateral tibialis surface electromyograms, and an electrocar-
diogram. The multi-channel polysomnograms were recorded digitally and stored using
a Natus polygraph. Studies were manually scored by American Association for Sleep
Medicine Board (AASM)-certified sleep technicians following guidelines from the AASM
scoring manuals and interpreted by physicians certified by the American Board of Sleep
Medicine. We extracted the six-channel EEG data and their corresponding sleep and wake
stages (N3, N2, N1, R, and W) from the EDF files using the Python MNE package [19].
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Use of these data was approved by the Institutional Review Board of the University of
North Carolina at Chapel Hill (UNC-CH) (IRB #21-1984).

2.1.5. Expert-Assessed Ground Truth

We demonstrated our algorithm’s performance using a single PSG EEG recording,
for which we established a ground truth based on another expert’s re-examination of the
de-identified EEG data. This recording was obtained in 2021 from a 19-year-old female
subject. For the PSG EEG recording used for comparison, the artifacts in the PSG EEG
from one of the six channels (C3) were manually annotated by an AASM-certified sleep
physician. We considered the expert-annotated signal the ground truth for evaluation
of algorithm performance. All subsequent discussions on performances are related this
specific subject.

The expert did not attempt to annotate the entire recording at a 1 s resolution; instead,
the expert identified ranges for all movement-related and loose-lead-related artifacts. Since
the expert denoted the start and end positions of each artifact region, we labeled all
segments from the start to the end of the artifact region as expert-identified artifacts. We
counted the number of segments out the total of 46,422 that agreed in annotations between
the expert and the algorithm as belonging to artifact regions. In calculating the comparison,
we considered two thresholds for the local moving-window cutoff and two thresholds for
the global cutoff. The comparison was restricted to NREM and REM epochs; it excluded
arousal epochs.

3. Results
3.1. Channels with an Excessive Proportion of Outliers

Among 15 correlation time-series correlation plots that compare channels pairwise,
the nine time-series plots for pairs where either C3 or F3 is one of channels involved show a
noticeably different pattern relative to the remaining six plots (Figure A1), suggesting that
channels C3 and F3 somehow behave differently from other channels, especially later in the
sleep period, when the nine plots involving C3 or F3 exhibit a dramatic drop in correlation.
Limiting the visualization to pairs among channels C3, F3, and F4 but adding a side-by-side
view of their spectrograms reinforces the unusual features of C3 and F3 (Figure 2 compared
with Figure A2). The spectrograms for C3 and F3 are similar but distinct from that for
F4 and show extended stretches of unusual EEG signal beginning around 9 h of sleep.
We interpret these patterns as indicating that the electrodes for the two left-hemisphere
channels (C3 and F3) may be popped during this period.

Indeed, our algorithm first identified C3 as having an excessive proportion of outlying
segments (>5%) and subsequently removed it from the calculation of average correlation.
In the subsequent iteration, our algorithm identified F3 as having excessive outliers and
excluded it from the next calculation of average correlation. Besides channels C3 and F3,
no additional channels were identified with excessive outliers, and iteration stopped. After
removing C3 and F3 from the calculation of the F4 average correlation time series, the
resulting plot lacked evidence for a large bolus of segments with low correlations in the
later stages of sleep (Figure 3).
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Figure 2. An illustration of an electrode lead popped during recording. The left panel shows the three
pairwise correlations among channels C3, F3, and F4 plotted against sleep time for a single subject.
Each blue dot represents the Spearman correlation coefficient between the EEG power levels in two
channels in one segment. The right panel shows the overnight spectrograms for the three channels.
Colors from cool to warm indicate low to high power, respectively.

Figure 3. An illustration of the effect of sequentially eliminating channels found to have an excessive
number of outlier segments on the average correlation time series for a given channel. Each panel
represents a time series of average correlations for channel F4. Top panel: average calculated from all
five pairwise correlations that include channel F4. Middle panel: average calculated from four of five
pairwise correlations (omitting the F4–C4 correlation). Bottom panel: average calculated from three
of five pairwise correlations (omitting F4–C4 and F4–F3 correlations). Each blue dot represents the
average of pairwise Spearman correlation coefficients appropriate to the particular panel.
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3.2. Segment Outliers

The PSG EEG data for the test subject were 47,733 s long (47,733 segments) (≈13.3 h),
among which 46,422 segments were NREM or REM sleep. With its local threshold only, the
algorithm detected 93 and 703 “bad” segments for the F3 and C3 channels, respectively,
but it detected only 15–78 “bad” segments in each of the other channels (Table A1).

After applying the global threshold, the algorithm identified 103 and 718 outlier
segments for the F3 and C3 channels, respectively (Table A2). The numbers of outliers for
the other four channels remained close to the number of “bad” segments in each of those
channels. Next, all segments in a region between two outliers that spanned fewer than
10 epochs (5 min) were marked as outliers. Finally, this annotation resulted in 4820 and
13,362 segments being designated as outliers for channels F3 and C3, respectively. Most
outlier segments occurred during the last hour of recording (Figure 4), when the leads for
the left-hemisphere recording (C3 and F3) were likely popped (Figure A3).

Figure 4. An illustration comparing expert-annotated artifact regions and algorithm-identified artifact
regions in channel C3 for a single subject. Top panel: timing of NREM and REM sleep cycles. Second
panel from top: spectrogram with frequency (Hz) on the Y axis, time on the X axis, and EEG power
color-coded with cool to warm representing low to high power. Third panel from top: algorithm-
identified artifact regions marked as black bands. Bottom panel: expert-annotated artifact regions
marked as black bands.

4. Comparison with the Expert-Assessed Ground Truth

The expert-assessed ground truth was based on the manual annotation of the C3 chan-
nel of the PSG EEG by an AASM-certified sleep physician. The PSG EEG had 1848 epochs.
Some of the NREM and REM artifact epochs identified in the preprocessing step were
excluded from the comparison. As a result, the comparison involved 46,422 segments (1562
of the 1848 total epochs) during NREM and REM sleep. We compared expert-annotated
artifact regions with those identified by the algorithm by counting segments that the two
classifications had in common.

The performance of the algorithm as measured by kappa and accuracy was largely
insensitive to the choices of the two thresholds (Table 1). For the default choices, the overall
accuracy was around 88%, with sensitivity and specificity of 80% and 91%, respectively. Sys-
tematic performance comparisons for additional local and global thresholds are presented
in Tables A3 and A4.
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Table 1. Comparative performance in identification of outlying segments between annotation by an
expert and the use of the proposed algorithm with different thresholds.

Local 1

Threshold
Global 2

Threshold
Confusion Matrix Kappa Accuracy

(%)TP FP FN TN

2/3 1/2 11,259 4198 1700 29,265 0.702 87.3
1/4 11,216 4198 1743 29,265 0.699 87.2

1/2 1/2 11,112 3751 1847 29,712 0.713 87.9
(default) 1/4 (default) 10,343 3019 2616 30,444 0.701 87.9

TP: true positive; FP: false positive; FN: false negative; TN: true negative. 1 Local threshold is set at the stated
fraction of the median of the average correlation for all segments in the window for the channel. 2 Global
threshold is set at the stated fraction of the 75th percentile of all average correlations in the “good” segment pool
for that channel.

5. Software Tool

We provided an open-source software tool for the algorithm. The software sets the
default threshold for the local cutoff as half of the median correlation value of a moving
window (default: 60 s). The default threshold for the global cutoff is one-fourth of the 75th
percentile of the correlation values of all “good” segments. The choices for all parameters
can be set by the user.

As for the output, the tool provides annotations for the identified artifacts in a separate
file in the ascii text format. Additional capabilities of the software tool can also be found
in the software package deposited on GitHub (https://github.com/nishanthCACS/EEG_
PSG_loose_lead_test, accessed on accessed on 13 October 2024) and Docker (https://hub.
docker.com/r/nishyanand/loose_lead_test, accessed on 13 October 2024).

6. Discussion

PSG EEG artifacts are unavoidable. Although some PSG EEG artifacts are detected by
sleep technicians, additional artifacts are likely, despite technicians’ best efforts. Not only is
manual inspection of a large number of PSG studies not feasible [16], but manual artifact
annotation can be inconsistent among technicians [3].

Automated methods for EEG artifact removal can be categorized into artifact minimization
and artifact identification methods [3]. Not all published works explicitly state which of these
two categories the proposed method falls into. This matters because artifact minimization tries
to remove contaminated signals in EEG but not epochs where contamination is present. On the
other hand, artifact identification methods usually designate epochs as artifacts and subsequently
eliminate those epochs entirely from further consideration in the downstream analysis. Methods
for artifact minimization include those proposed in [4,5,10,11,20–22]. A notable method for
artifact minimization is the ICA method [4,5], which assumes that intrinsic EEG signals and
artifacts are independent components of the data signal [3]; however, if a channel is an outlier
channel, i.e., with an excessive number of epochs containing artifacts, including such a channel
in the ICA analysis can be problematic. Thus, it is important that channels with excessive
outliers be identified first and removed before applying ICA.

A limited number of artifact identification and immunization methods for PSG EEG
data have been reported [8–10,12,13]; however, those methods largely focus on identifying
contaminated epochs but not on identifying artifactual EEG channels.

In this study, we developed a correlation-based approach for outlier detection. Our
method is different from the existing methods in several ways. First, our method can be
applied uniformly to the entire overnight sleep period or separately to NREM and REM
sleep periods using sleep-period-specific local and global cutoffs. Secondly, our method
uses an iterative procedure to identify and remove channels with excessive outliers to
obtain an accurate representation of the channel-specific correlations with other channels.
Thirdly, our streamlined method applies the same iterative procedure to all channels to
identify artifacts, unlike some of the existing methods that use different procedures for
different channels and different types of artifacts. Lastly, our method identifies potential
outliers ranging in duration from seconds to minutes, channel by channel.

https://github.com/nishanthCACS/EEG_PSG_loose_lead_test
https://github.com/nishanthCACS/EEG_PSG_loose_lead_test
https://hub.docker.com/r/nishyanand/loose_lead_test
https://hub.docker.com/r/nishyanand/loose_lead_test
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Our idea is similar to that of the FASTER algorithm [17], which was designed for
high-density routine EEGs. We took a similar approach by computing the correlation in
the EEG spectra between two channels at each time stamp but not the correlation between
one channel and another channel across time. Specifically, we computed the correlation
between the EEG power spectra in a frequency range of 0.5 Hz to 32.5 Hz at a given 1 s
time segment from one channel (e.g., F3) and the EEG powers at the same frequency range
at the same time segment but from another channel (e.g., C3), resulting in one correlation
coefficient per time segment.

Our algorithm identified artifacts in the frequency domain (after multitaper spectro-
gram analysis), and the expert annotated artifacts in the time domain. Small misalignments
can occur. Nonetheless, we showed that our method can effectively identify and label out-
lying segments and amalgamate them into artifactual regions that reflect expert annotation.
Depending on their needs, users can choose to ignore individual outlying segments or very
short, isolated artifactual regions.

Our paper has limitations. First, we were unable to thoroughly evaluate our method’s
performance using additional expert-annotated examples. Secondly, our method may
perform poorly if all channels experience artifactual regions simultaneously because of a
common disturbance; then, the correlations between channels in those regions may remain
nearly as high as correlations in non-artifactual regions. Any method would likely perform
poorly in situations like that. However, we believe that such situations are rare.

7. Conclusions

Methods for artifact identification in PSG EEGs are needed. We presented an approach
that is based on the premise that normal EEG power spectra at the same time should be highly
correlated between any two channels, whereas a substantial reduction in correlation may be
indicative of an artifact. Using this approach, we showed that individual outliers at each time
segment or longer-duration artifactual regions can be identified using an iterative approach.
We evaluated the performance of our method using an expert-annotated EEG recording. We
showed that our method achieved a sensitivity and specificity of 80% and 91%, respectively.
We also developed a software package for the tool for public use, which is deposited on
GitHub (https://github.com/nishanthCACS/EEG_PSG_loose_lead_test, accessed on 13 Oc-
tober 2024)and Docker (https://hub.docker.com/r/nishyanand/loose_lead_test, accessed on
13 October 2024).
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Appendix A

Figure A1. Time-series plots of correlation coefficients for all 15 possible pairs of the six channels for
one subject. Each blue dot represents the Spearman correlation coefficient between the EEG power
levels in two channels at one 1 s time segment. Bars at the top of each column indicate the sleep stage
(NREM or REM).
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Figure A2. Spectrograms for each of the six channels for one subject, together with graphical
depictions of sleep stage (NREM vs. REM or, more finely, Wake, REM, N1, N2, and N3).

Table A1. Number of segments declared outliers out of 46,422 for each of the six channels using nine
different tuning parameter settings with three local window sizes and three local thresholds, without
invoking the global threshold.

Local Window
(min)

Local 1

Threshold
Number of Declared Outlier Segments by Channel

F3 F4 C3 C4 O1 O2 Total

60 2/3 353 122 1242 204 178 184 184
60 1/2 93 15 703 78 41 36 36
60 1/4 11 0 282 8 4 4 4
90 2/3 372 123 1251 207 179 189 189
90 1/2 101 16 715 77 41 38 38
90 1/4 12 0 290 8 4 4 4
180 2/3 372 129 1257 217 183 188 188
180 1/2 99 16 716 78 41 38 38
180 1/4 13 0 288 9 4 4 4

1 Thresh (threshold) is set at the stated fraction of the median of the average correlation for all segments in the
window for the channel.

Table A2. Number of segments declared outliers out of 46,422 for each of the six channels using nine
different tuning parameter settings involving three local window sizes, three local thresholds, and
one global threshold.

Local Window
(min)

Local 1

Thresh
Global 2

Thresh
Number of Declared Outlier Segments by Channel

F3 F4 C3 C4 O1 O2 Total

60 2/3 1/4 357 122 1249 204 178 184 184
60 1/2 1/4 103 15 718 78 41 36 36
60 1/4 1/4 40 0 448 16 4 6 6
90 2/3 1/4 372 123 1258 207 179 189 189
90 1/2 1/4 110 16 729 77 41 38 38
90 1/4 1/4 41 0 451 16 4 6 6

180 2/3 1/4 372 129 1257 217 183 188 188
180 1/2 1/4 108 16 733 78 41 38 38
180 1/4 1/4 41 0 448 16 4 6 6

1 Local thresh is set at the stated fraction of the median of the average correlation for all segments in the window
for the channel. 2 Global thresh is set at the stated fraction of the 75th percentile of all average correlations in the
“good” segment pool for that channel.
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Figure A3. Artifact regions as annotated by the algorithm for each of the six channels. Black vertical
bars mark artifact regions.

Table A3. Comparative performance in identification of artifactual regions between annotation
by an expert and the use of the proposed algorithm with different local window sizes, different
thresholds, and different distance cutoffs for the joining of outlier segments into an artifactual
region. Performance comparisons between the expert-annotated artifacts and the algorithm-identified
artifacts. Confusion matrix entries indicate the number of segments out of 46,422. The algorithm
has four tuning parameters (local window size, local threshold, global threshold, and distance cutoff
for the joining of individual artifacts into a continuous region of artifacts). Only a Kappa > 0.65 is
presented for fixed local window sizes 60 s and 90 s.

Local
Window

(min)

Local 1

Thresh
Global 2

Thresh

Distance
b-a

(min)

Confusion Matrix
Kappa Accuracy

(%)TP FP FN TN

60

2/3 1/2 5 11,259 4198 1700 29,265 0.702 87.3
2/3 1/2 6 11,470 5590 1489 27,873 0.655 84.8
1/2 1/2 4 11,429 5590 1530 27,873 0.652 84.7
1/2 1/2 5 11,112 3751 1847 29,712 0.713 87.9
1/2 1/2 6 11,268 4509 1691 28,954 0.689 86.6
1/4 1/2 5 11,112 3751 1847 29,712 0.713 87.9
1/4 1/2 6 11,268 4509 1691 28,954 0.689 86.6
2/3 1/4 4 11,470 5590 1489 27,873 0.655 84.8
2/3 1/4 5 11,216 4198 1743 29,265 0.699 87.2
2/3 1/4 6 11,429 5590 1530 27,873 0.652 84.7
1/2 1/4 4 11,268 4509 1691 28,954 0.689 86.6
1/2 1/4 5 10,343 3019 2616 30,444 0.701 87.9
1/2 1/4 6 10,343 3019 2616 30,444 0.701 87.9
1/4 1/4 4 11,268 4509 1691 28,954 0.689 86.6
2/3 1/10 4 11,429 5590 1530 27,873 0.652 84.7
2/3 1/10 5 11,216 4198 1743 29,265 0.699 87.2
2/3 1/10 6 11,429 5590 1530 27,873 0.652 84.7
1/2 1/10 5 10,343 3019 2616 30,444 0.701 87.9
1/2 1/10 6 10,452 3838 2507 29,625 0.671 86.3
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Table A3. Cont.

Local
Window

(min)

Local 1

Thresh
Global 2

Thresh

Distance
b-a

(min)

Confusion Matrix
Kappa Accuracy

(%)TP FP FN TN

90

2/3 1/2 6 11,470 5588 1489 27,875 0.655 84.8
1/2 1/2 4 11,429 5588 1530 27,875 0.652 84.7
1/2 1/2 5 11,429 5588 1530 27,875 0.652 84.7
1/2 1/2 6 11,268 4510 1691 28,953 0.689 86.6
1/4 1/2 4 10,452 3839 2507 29,624 0.671 86.3
1/4 1/2 5 10,452 3839 2507 29,624 0.671 86.3
1/4 1/2 6 11,268 4510 1691 28,953 0.689 86.6
2/3 1/4 4 11,470 5588 1489 27,875 0.655 84.8
2/3 1/4 5 11,470 5588 1489 27,875 0.655 84.8
2/3 1/4 6 11,429 5588 1530 27,875 0.652 84.7
1/2 1/4 4 11,268 4510 1691 28,953 0.689 86.6
1/2 1/4 5 11,268 4510 1691 28,953 0.689 86.6
1/2 1/4 6 10,452 3839 2507 29,624 0.671 86.3
1/4 1/4 4 11,268 4510 1691 28,953 0.689 86.6
1/4 1/4 5 11,268 4510 1691 28,953 0.689 86.6
2/3 1/10 4 11,429 5588 1530 27,875 0.652 84.7
2/3 1/10 5 11,429 5588 1530 27,875 0.652 84.7
2/3 1/10 6 11,429 5588 1530 27,875 0.652 84.7
1/2 1/10 4 10,452 3839 2507 29,624 0.671 86.3
1/2 1/10 5 10,452 3839 2507 29,624 0.671 86.3
1/2 1/10 6 10,452 3839 2507 29,624 0.671 86.3

TP: true positive; FP: false positive; FN: false negative; TN: true negative. 1 Local threshold is set at the stated
fraction of the median of the average correlation for all segments in the window for the channel. 2 Global
threshold is set at the stated fraction of the 75th percentile of all average correlations in the “good” segment pool
for that channel.

Table A4. Comparative performance in identification of artifactual regions between annotation by an
expert and the use of the proposed algorithm for a fixed local window size (60s), fixed local threshold,
and fixed global threshold but with different distance cutoffs for the joining outlier segments into an
artifactual region. Confusion matrix entries indicate the number of segments out of 46,422.

Local 1

Thresh
Global 2

Thresh
Distance b-a

(min)
Confusion Matrix

Kappa Accuracy
(%)TP FP FN TN

1/2 1/4 1 11,268 4509 1691 28,954 0.689 86.6
1/2 1/4 2 11,268 4509 1691 28,954 0.689 86.6
1/2 1/4 3 11,268 4509 1691 28,954 0.689 86.6
1/2 1/4 4 11,268 4509 1691 28,954 0.689 86.6
1/2 1/4 5 10,343 3019 2616 30,444 0.701 87.9
1/2 1/4 6 10,343 3019 2616 30,444 0.701 87.9
1/2 1/4 7 10,343 3019 2616 30,444 0.701 87.9
1/2 1/4 8 11,202 6044 1757 27,419 0.621 83.2

TP: true positive; FP: false positive; FN: false negative; TN: true negative. 1 Local threshold is set at the stated
fraction of the median of the average correlation for all segments in the window for the channel. 2 Global
threshold is set at the stated fraction of the 75th percentile of all average correlations in the “good” segment pool
for that channel.
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