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Abstract: Change detection in biomedical signals is crucial for understanding physiological processes
and diagnosing medical conditions. This study evaluates various change detection methods, focusing
on synthetic signals that mimic real-world scenarios. We examine the following three methods:
classical statistical techniques (thresholding based on mean and standard deviation), Support Vector
Machine (SVM) classification, and time–frequency analysis using Continuous Wavelet Transform
(CWT). Each method’s performance is assessed using synthetic signals, including nonlinear signals
and those with simulated anomalies. We calculated the F1-score to quantify performance, providing
a balanced measure of precision and recall. Results showed that SVM classification outperformed
both classical techniques and CWT analysis, achieving a higher F1-score in detecting changes. While
all methods struggled with synthetic nonlinear signals, classical techniques and SVM successfully
detected changes in signals with simulated anomalies, whereas CWT had difficulty with both types of
signals. These findings underscore the importance of selecting appropriate change detection methods
based on signal characteristics. Future research should explore advanced machine learning and signal
processing techniques to improve detection accuracy in biomedical applications.

Keywords: biomedical signals; change detection; synthetic data; signal processing; time–frequency
analysis; machine learning; clinical applications

1. Introduction

In the area of biomedical signal processing, detecting changes in signals is paramount
for understanding physiological processes, diagnosing medical conditions, and developing
effective treatments [1–4]. Biomedical signals, encompassing a wide range of modalities,
such as electrocardiography (ECG), electromyography (EMG), electroencephalography
(EEG), and more, encode valuable information about the functioning of biological sys-
tems [5–7] However, these signals are often complex, dynamic, and prone to various
sources of noise and artifacts. Detecting changes in biomedical signals is thus essential for
uncovering meaningful patterns, identifying anomalies, and extracting clinically relevant
information [8–10].

The field of change detection in biomedical signals encompasses a diverse array of
methodologies, ranging from classical statistical techniques to modern machine learning
algorithms [11,12]. These methodologies aim to distinguish between normal physiological
variations and abnormal deviations, providing insights into health status, disease pro-
gression, and treatment efficacy. By leveraging advanced signal processing and pattern
recognition techniques, researchers and clinicians can effectively monitor, analyze, and
interpret biomedical signals in real-time, facilitating early detection, diagnosis, and inter-
vention [12,13]. The application of change detection in biomedical signals spans across
numerous domains of healthcare and biomedical research [11,12]. In cardiology [13–15],
for instance, detecting changes in ECG signals enables the early detection of cardiac ar-
rhythmias, ischemic events, and heart failure, guiding patient management and therapy
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selection [13]. Similarly, in neurology, change detection in EEG signals [16,17] aids in diag-
nosing epilepsy, monitoring brain activity during cognitive tasks, and studying neurological
disorders, such as Alzheimer’s disease and Parkinson’s disease [7,18–20].

Classical statistical techniques for change detection, such as those based on the mean
and standard deviation of the signal, are widely used due to their simplicity and ease of
implementation. These methods, however, have significant limitations, particularly when
applied to non-Gaussian and complex signals often found in biomedical data. Statistical
techniques are sensitive to outliers and assume a Gaussian distribution, which can lead to
inaccurate detection thresholds and failure to identify subtle changes. Outliers can skew
the mean and standard deviation, making small changes undetectable. Non-Gaussian
distributions, common in real-world biomedical signals, result in inaccurate statistical
representations. Additionally, setting an appropriate threshold is difficult: a high threshold
may miss subtle changes, while a low threshold can increase false positives. The reliance on
fixed thresholds further complicates their application, as inappropriate threshold selection
can either overlook important changes or increase the false positive rate [21]. This method
also ignores temporal correlations, making it less effective for detecting gradual trends.

Recently, the field of signal change detection has witnessed significant advancements,
driven by the integration of advanced signal processing techniques and machine learning
algorithms [22–24]. One such technique is time–frequency analysis, which allows for
the decomposition of signals into their time-varying frequency components. Methods
such as the Continuous Wavelet Transform (CWT) and the short-time Fourier transform
(STFT) enable the localization of signal changes in both time and frequency domains,
offering enhanced sensitivity to transient events and non-stationary signals [25,26]. By
capturing changes in signal characteristics over time, time–frequency analysis provides
valuable insights into dynamic physiological processes and pathological events. However,
the effectiveness of CWT is highly dependent on the choice of wavelet function and the
threshold used for change detection [27]. An inappropriate wavelet function can lead to
suboptimal performance, and the complexity of the signal can challenge the CWT’s ability
to accurately detect changes. Therefore, careful tuning of parameters is necessary to balance
sensitivity and specificity. The time–frequency analysis with CWT offers a more dynamic
approach by decomposing signals into time-varying frequency components. Its success
depends on selecting the appropriate wavelet function and threshold. The choice of wavelet
function is critical, as different wavelets capture different signal features. Inappropriate
wavelet selection can lead to poor change detection. Similarly, setting the right threshold
is essential; an improper threshold can miss subtle changes or amplify noise, causing
false positives. While CWT can capture complex signal dynamics, its effectiveness can be
compromised by the inherent complexity and variability of the signal.

Another promising approach is the use of deep learning models for signal change
detection. Deep neural networks, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have shown remarkable success in analyzing
complex patterns and extracting hierarchical features from biomedical signals [28–31]. By
leveraging large-scale datasets and hierarchical representations, deep learning models can
automatically learn discriminative features and detect subtle changes in signals with high
accuracy. Moreover, techniques such as transfer learning and adversarial training enhance
the generalization and robustness of deep learning models, making them valuable tools
for signal change detection in biomedical applications. Machine learning algorithms, such
as Support Vector Machines (SVMs), represent a powerful tool for change detection in
biomedical signals. These methods leverage sophisticated feature extraction and pattern
recognition capabilities to detect changes. The effectiveness of SVMs, however, depends
on the representation of features and the availability of informative training data. In
scenarios with complex signal dynamics and subtle changes, traditional SVM approaches
may struggle without adequate feature engineering. Recent advancements suggest that
integrating deep learning techniques, such as convolutional neural networks (CNNs)
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and hybrid models combining CNNs with transformers, can significantly enhance the
performance of SVMs in detecting changes in biomedical signals [32–34].

Furthermore, Bayesian inference methods offer a principled framework for mod-
eling uncertainty and incorporating prior knowledge into signal change detection algo-
rithms. Bayesian approaches, such as Bayesian filtering, probabilistic graphical models, and
Bayesian networks, provide probabilistic representations of signal dynamics and enable the
integration of domain knowledge and prior beliefs [35]. By explicitly modeling uncertainty
and incorporating prior information, Bayesian inference methods enhance the reliability
and interpretability of signal change detection results, facilitating more informed decision-
making in clinical practice and biomedical research. Despite significant progress, challenges
persist in the field of change detection in biomedical signals. These challenges include the
development of robust algorithms capable of handling noisy and high-dimensional data,
addressing inter-subject variability, and ensuring the interpretability and generalizability of
results across diverse populations [36–38]. Additionally, the integration of multimodal data
and the incorporation of domain knowledge present exciting avenues for future research
and innovation in the field [39]. Efforts to overcome these challenges involve leveraging
advanced machine learning techniques, such as deep learning and reinforcement learning,
as well as exploring novel signal processing approaches, such as compressive sensing and
phase-space reconstruction [40–42]. By addressing these challenges, researchers aim to
enhance the reliability and efficacy of change detection methods in biomedical signals,
ultimately improving healthcare outcomes and advancing our understanding of human
physiology and disease.

In comparison to classical statistical techniques, time–frequency analysis and machine
learning algorithms offer several advantages [43–46]:

• Enhanced sensitivity: These methods can detect subtle changes that may be missed
by classical techniques.

• Robustness to noise: They are less sensitive to noise and artifacts, which is common
in biomedical signals.

• Ability to handle complex signals: They can effectively handle non-linear and non-
stationary signals.

• Scalability: They can handle large datasets and high-dimensional data.

However, these methods also have their limitations:

• Computational complexity: Time–Frequency analysis and machine learning algo-
rithms can be computationally expensive, especially for large datasets.

• Parameter tuning: These methods often require careful tuning of parameters to achieve
optimal performance.

• Interpretability: The results of these methods can be difficult to interpret, especially
for complex models.

Here is the schematic diagram visualizing the application of classical statistical tech-
niques, Continuous Wavelet Transform (CWT), and Support Vector Machine (SVM) for
change detection in biomedical signals (see Figure 1).

In this comprehensive study, we explore the methodologies, applications, and chal-
lenges of change detection in biomedical signals, underscoring its critical importance in
advancing our understanding of human physiology, improving clinical decision-making,
and fostering innovations in healthcare technology. In Section 2 we describe three methods
for detecting changes in nonlinear biomedical signals: classical statistical techniques, time–
frequency analysis using Continuous Wavelet Transform (CWT), and machine learning
with Support Vector Machines (SVMs). In Section 3 we employ a multifaceted approach
to change detection, incorporating classical statistical techniques to identify significant
variations and patterns within the data. Time–Frequency analysis is utilized to dissect
the complex temporal and spectral characteristics of biomedical signals, enabling a more
detailed understanding of dynamic processes. Additionally, we leverage machine learn-
ing algorithms, such as Support Vector Machines (SVMs), to enhance the accuracy and
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robustness of change detection. These algorithms are particularly adept at handling high-
dimensional data and identifying subtle, non-linear patterns that might elude traditional
methods. In Section 4 we discuss the results obtained in Section 3. In Section 5, we continue
our discussion by providing application, challenges, and future directions for each method.
In Section 6, we provide a comprehensive discussion of the strengths and limitations of
each approach. By applying these diverse and complementary techniques, this study lays
the foundation for further exploration and discovery in this dynamic and interdisciplinary
field, paving the way for more precise and reliable biomedical signal analysis.
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Figure 1. Change detection in biomedical signals. This figure illustrates the performance of different
change detection methods on a synthetic signal. The original signal contains a known anomaly
between time points 100 and 150. The classical statistical method uses mean and standard deviation
thresholding to identify changes. The Continuous Wavelet Transform (CWT) method analyzes the
signal in both time and frequency domains to detect anomalies. The Support Vector Machine (SVM)
classifier is trained on the signal to identify changes based on learned patterns. The figure highlights
the detected anomalies by each method, demonstrating their effectiveness in identifying different
types of changes in biomedical signals.

2. Method
2.1. Classical Statistical Techniques

Classical statistical techniques involve analyzing the statistical properties of the signal
to detect changes. One common approach is based on monitoring changes in the mean and
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variance of the signal. Let x(t) represent the signal at time t. The mean µ and standard
deviation σ of the signal can be calculated as follows:

µ =
1
N

N

∑
t=1

x(t) (1)

σ =

√√√√ 1
N

N

∑
t=1

(x(t)− µ)2 (2)

Once the mean and standard deviation are computed, a change can be detected if the
absolute deviation of a data point from the mean exceeds a certain threshold (α × σ), where
α is a user-defined parameter.

2.2. Time–Frequency Analysis

Time–Frequency analysis involves decomposing the signal into its frequency compo-
nents over time to detect changes in the spectral content of the signal. One popular method
is the Continuous Wavelet Transform (CWT). The CWT represents the signal as a function
of both time t and frequency ω, given by:

CWT(a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt (3)

where ψ(t) is the analyzing wavelet function, a is the scale parameter controlling the width
of the wavelet, and b is the translation parameter controlling the position of the wavelet
along the time axis. Changes in the signal can be detected by analyzing the magnitude of
wavelet coefficients across different scales and positions.

2.3. Machine Learning Algorithms

Machine learning algorithms, such as Support Vector Machines (SVMs), learn to
distinguish between different classes of data points, including normal and abnormal
segments of the signal. SVMs, for example, learns a hyperplane that separates the data
points of different classes with the maximum margin. Given a set of training data with
labels (xi, yi), where xi represents the feature vector of the i-th data point and yi represents
its class label, SVMs solve the following optimization problem:

min
ω,b,ξ

1
2
||ω||2 + C

N

∑
i=1

ξi (4)

Subject to:

yi

(
ωTxi + b

)
≥ 1 − ξi, ξi ≥ 0

where ω represents the weight vector, b represents the bias term, ξi represents the slack
variables, and C is a regularization parameter. Changes in the signal can be detected based
on the classification results of the SVM model.

Key steps of the Support Vector Machine (SVM) algorithm (see Figure 2) are as follows:

(a) Input data: Receive a set of labeled training examples.
(b) Feature mapping: Map input feature vectors to a higher-dimensional space using

kernel functions.
(c) Optimization objective: Find the optimal hyperplane that maximizes the margin

between classes in the transformed space.
(d) Soft margin: Introduce a slack variable to allow for misclassification of some data

points, balancing margin maximization and classification error minimization.
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(e) Kernel trick: Efficiently compute dot products in the higher-dimensional space with-
out explicitly transforming feature vectors.

(f) Training: Solve a convex optimization problem to learn the optimal hyperplane
parameters (weights and bias).

(g) Prediction: Predict class labels of new data points based on the sign of the decision func-
tion, which is a linear combination of input features weighted by learned parameters.
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Here is a schematic representation of the change detection methods applied to a ran-
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The blue curve represents the original signal, which is a combination of multiple si-
nusoidal components. 

i. Change detected (statistical method): The red shaded area indicates the region where 
the statistical method detected changes due to shifts in mean and standard deviation. 

ii. Change detected (CWT method): The green shaded area shows where the Continu-
ous Wavelet Transform (CWT) method detected changes, capturing variations in the 
time–frequency domain. 

Figure 2. Support Vector Machine (SVM) workflow. An SVM classifies data by finding the optimal
hyperplane that separates two classes with maximum margin. Kernel functions map data into
a higher-dimensional space to improve separability. The soft margin approach allows for some
misclassification, balancing accuracy and generalization. The kernel trick efficiently computes dot
products in the transformed space. The SVM training process involves solving a convex optimization
problem to learn the hyperplane parameters. Once trained, the SVM can predict class labels for new
data points based on their distance from the hyperplane.

Here is a schematic representation of the change detection methods applied to a
randomly generated biomedical signal (see Figure 3).
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Continuous Wavelet Transform (CWT), and Support Vector Machine (SVM). Changes detected by
the statistical method are highlighted in the red shaded area, indicating sensitivity to shifts in mean
and standard deviation. Changes identified by the CWT method are shown in the green shaded area,
demonstrating the method’s ability to capture time–frequency variations. The SVM-detected changes
are marked by black arrows, showcasing its capability to recognize subtle and complex patterns
in the signal. This visualization underscores the varying effectiveness of each method in different
contexts of signal complexity and change characteristics.

The blue curve represents the original signal, which is a combination of multiple
sinusoidal components.

i. Change detected (statistical method): The red shaded area indicates the region where
the statistical method detected changes due to shifts in mean and standard deviation.

ii. Change detected (CWT method): The green shaded area shows where the Continuous
Wavelet Transform (CWT) method detected changes, capturing variations in the
time–frequency domain.

iii. Change detected (SVM): The black arrows highlight points where the Support Vector
Machine (SVM) detected changes, effectively identifying subtle and complex patterns
in the signal.

3. Data and Application
3.1. Data

In this study, we generate synthetic nonlinear signals to evaluate the effectiveness of
various change detection methods. The generation process involves combining sine waves
of different frequencies and applying nonlinear transformations to introduce complex
behaviors that are representative of real-world biomedical signals.

To generate the synthetic nonlinear signal, we start with a combination of sine waves,
as described below:

(a) Base frequencies: We start by generating three sine waves with distinct frequen-
cies: 5 Hz, 10 Hz, and 20 Hz. These frequencies were chosen to provide a mix of
low, medium, and high frequency components, simulating the variety of oscillatory
behaviors seen in biomedical signals.

(b) Mathematical representation: The synthetic signal x(t) is initially defined as:

x(t) = sin(2π.5.t) + sin(2π.10.t) + sin(2π.20.t)

To introduce the non-linear behavior, we perform the following steps:

(a) Nonlinear transformation: To incorporate nonlinear characteristics, we apply a nonlin-
ear function to one of the sine wave components. In this case, we square the amplitude
of the 20 Hz component.

(b) Transformed signal: The modified signal y(t) becomes:

y(t) = sin(2π.5.t) + sin(2π.10.t) + (sin(2π.20.t))2

(c) Effect: This squaring operation introduces harmonic distortions and amplitude modu-
lation, which are characteristic of nonlinear systems.

To generate the anomalous signal and to evaluate the performance of change de-
tection algorithms, we introduce anomalies into the synthetic nonlinear signal. These
anomalies simulate deviations from typical patterns, such as those caused by pathological
events in biomedical contexts. To introduce the base anomalous signal, we perform the
following steps:

(a) Primary pattern: The anomalous signal retains the fundamental sinusoidal pattern but
at a consistent frequency of 10 Hz, replicating a basic form of brain electrical activity.
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(b) Mathematical representation: Initially, the anomalous signal z(t) is represented as:

z(t) = sin(2π.10.t)

3.2. Method 1: Classical Statistical Techniques (e.g., Mean and Standard Deviation)

This method involves calculating the mean and standard deviation of the signal and
then comparing each data point to a threshold derived from these statistics. Points where
the absolute deviation from the mean exceeds the threshold are identified as changes in the
signal (see Figure 4).

While Method 1 provides a straightforward approach to change detection based on
statistical properties of the signal, its effectiveness can be limited by the presence of outliers,
non-Gaussian distribution, suboptimal threshold selection, and lack of consideration for
temporal dynamics. As a result, alternative methods that address these limitations may be
more suitable for detecting changes in certain types of signals.

We have displayed the result of the second example in Figure 5.

3.3. Method 2: Time–Frequency Analysis (e.g., Wavelet Transform)

This algorithm performs change detection on a synthetic nonlinear signal using Con-
tinuous Wavelet Transform (CWT). It computes the CWT of the signal, decomposing it into
frequency components across different scales. A threshold is then applied to the wavelet
coefficients to detect significant changes in the signal. Changes exceeding the threshold are
identified, and the results are visualized as an image, with time on the x-axis and frequency
on the y-axis. Darker regions in the image represent higher magnitudes of change.

The first example related to the CWT is displayed in Figure 6.
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Figure 4. Change detection using mean and standard deviation method. (Top) Synthetic nonlinear
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characterized by variations and fluctuations in amplitude. (Bottom) The red line represents the
results of change detection using the mean and standard deviation method.



Signals 2024, 5 744

Signals 2024, 5, FOR PEER REVIEW  9 
 

 

characterized by variations and fluctuations in amplitude. (Bottom) The red line represents the re-
sults of change detection using the mean and standard deviation method. 

While Method 1 provides a straightforward approach to change detection based on 
statistical properties of the signal, its effectiveness can be limited by the presence of outli-
ers, non-Gaussian distribution, suboptimal threshold selection, and lack of consideration 
for temporal dynamics. As a result, alternative methods that address these limitations may 
be more suitable for detecting changes in certain types of signals. 

We have displayed the result of the second example in Figure 5. 

 
Figure 5. Change detection using mean and standard deviation method. (Top) Synthetic nonlinear 
signal plotted against time and shown in blue. This signal exhibits complex behavior over time, 
characterized by variations and fluctuations in amplitude. (Bottom) The red line represents the re-
sults of change detection using the mean and standard deviation method. 

3.3. Method 2: Time–Frequency Analysis (e.g., Wavelet Transform) 
This algorithm performs change detection on a synthetic nonlinear signal using Con-

tinuous Wavelet Transform (CWT). It computes the CWT of the signal, decomposing it 
into frequency components across different scales. A threshold is then applied to the 
wavelet coefficients to detect significant changes in the signal. Changes exceeding the 
threshold are identified, and the results are visualized as an image, with time on the x-
axis and frequency on the y-axis. Darker regions in the image represent higher magni-
tudes of change. 

The first example related to the CWT is displayed in Figure 6. 

Figure 5. Change detection using mean and standard deviation method. (Top) Synthetic nonlinear
signal plotted against time and shown in blue. This signal exhibits complex behavior over time,
characterized by variations and fluctuations in amplitude. (Bottom) The red line represents the
results of change detection using the mean and standard deviation method.

We have displayed the result of the second example in Figure 7.

3.4. Method 3: Machine Learning Algorithms (e.g., Support Vector Machines)

The first example shows a synthetic nonlinear signal generated as a combination of
sinusoidal components with added nonlinearity (see Figure 8).

In Figures 8 and 9, the SVM classifier attempts to detect these changes based on the
features extracted from the signal. The accuracy of the change detection calculated as the
percentage of correctly classified instances is shown in the title of the subplot.

A new example of the SVM method is represented in Figure 10.
In the top subplot of Figure 10, the synthetic signal is plotted over time. The amplitude

spikes, representing changes in the signal, are highlighted in red. These spikes indicate
moments where significant deviations from the normal pattern occur. In the bottom
subplot, the true labels (indicating the presence of changes) are plotted in green, while
the predicted labels generated by the SVM classifier are plotted as red dashed lines. The
agreement between the true and predicted labels is visualized, showing how well the
classifier identifies changes in the signal. The accuracy of change detection using SVM
classification is provided in the title, indicating the percentage of correctly classified samples.
This accuracy metric quantifies the performance of the machine learning approach in
detecting changes in the synthetic data.
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and fluctuations in amplitude. (Bottom) The bottom subplot displays the results of change detection
using the Wavelet Transform method. Changes in the signal are represented by localized regions of
high wavelet coefficients, indicating deviations from the background signal.
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(Top) Synthetic nonlinear signal plotted against time and shown in blue. This signal exhibits complex
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detection results using Support Vector Machine (SVM) classifier, where red indicates predicted change
points based on the trained model.
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4. Discussion of the Comparison Results

Method 1: This calculates the mean and standard deviation of the time series data to
characterize the signal. The mean value represents the average amplitude of the signal
over time. It gives an idea of the central tendency of the signal. The standard deviation
quantifies the amount of variation or dispersion in the signal. A small standard deviation
indicates that the data points tend to be close to the mean, while a large standard deviation
indicates that the data is spread out over a wider range of values. This section, which
was based on statistical properties, failed to detect changes in the first example. Therefore,
Method 1, which relies on the mean and standard deviation of the signal, may fail to detect
changes in certain scenarios due to its sensitivity to outliers and its assumption of Gaussian
distribution. In the first example with the synthetic signal, the changes introduced to
the signal were random perturbations added to specific time points. These changes were
essentially outliers compared to the rest of the signal, which made them detectable using
classical statistical techniques such as thresholding based on mean and standard deviation.
However, in the second example with the nonlinear signal, the changes are inherent in the
signal itself. The signal is a combination of multiple sinusoidal components with varying
frequencies, including a nonlinear component (0.5sin(2π20t)2). In this case, the changes
are not outliers but rather intrinsic features of the signal. Classical statistical techniques
based on mean and standard deviation are not suitable for detecting such changes because
they are not caused by random perturbations but are part of the signal’s structure.

To detect changes in signals with intrinsic nonlinearities or complex structures like the
one in the second example, more sophisticated techniques may be required. Such methods
can capture the dynamic and non-stationary nature of the signal and identify changes
based on shifts in frequency content, temporal patterns, or other relevant features.

Method 2: The short-time Fourier transform (STFT) is used to analyze the frequency
content of the signal as it changes over time. The time series is divided into overlapping
segments (windows) to compute the Fourier transform of each segment. This allows
us to observe how the frequency content of the signal evolves over time. The output
of the STFT is a time–frequency representation (spectrogram), which shows how the
amplitude of different frequency components changes over time. It is particularly useful for
analyzing non-stationary signals, like EEG, which can exhibit varying frequency content.
In the provided examples, the second method attempts to detect changes in the synthetic
EEG signal using time–frequency analysis, specifically the Continuous Wavelet Transform
(CWT). However, it is important to note that the ability of the CWT to detect changes
depends on various factors, including the characteristics of the signal, the choice of the
wavelet function, and the threshold applied for change detection.

Method 3: This involves the use of a Support Vector Machine (SVM) classifier for
change detection in the time series data. Features are extracted from sliding windows
of the time series data. In this case, the mean and standard deviation of the signal are
used as features. These features are computed for segments of the signal to help the
SVM model learn the characteristics of “normal” versus “changed” states in the signal.
The SVM classifier is trained using the extracted features and their corresponding labels
(normal/spike). Then the SVM model is created. Once trained, the SVM model predicts
labels for the entire time series based on the feature matrix, allowing for the detection of
changes over time (in this case, whether spikes or other anomalies are present). In example
1, the Support Vector Machine (SVM) classifier failed to effectively detect changes in the
synthetic nonlinear signal but successfully detected changes in the synthetic signal. In the
first example with the synthetic nonlinear signal, the features used for training the SVM
classifier are the signal values themselves. Since the nonlinear signal does not exhibit clear
patterns or distinct features associated with the changes, the SVM classifier may struggle to
learn a discriminative decision boundary to separate the change and non-change regions.
The synthetic nonlinear signal is a combination of sinusoidal components and a squared
sinusoidal component. The changes introduced in this signal may not significantly alter its
overall shape or characteristics, making them difficult for the SVM classifier to discern from
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the background signal fluctuations. In the first example, the SVM classifier is trained on the
entire nonlinear signal without explicitly providing information about the location or timing
of the changes. This lack of specific training data related to the changes may hinder the
classifier’s ability to learn meaningful patterns associated with the changes. In contrast, the
synthetic signal in the second example exhibits abrupt changes introduced at random time
points. These changes manifest as outliers or deviations from the underlying sinusoidal
pattern, which can be discerned by the SVM classifier. Additionally, the SVM classifier
is trained on features extracted from the EEG signal, which may capture characteristics
indicative of the changes, such as sudden shifts in the amplitude or frequency content. The
effectiveness of the SVM classifier for change detection depends on the characteristics of
the signal, the representation of features, and the availability of informative training data.
In scenarios where the changes are subtle or the signal dynamics are complex, alternative
methods or feature representations may be more suitable for detecting changes effectively.

5. Application, Challenges, and Future Directions

In biomedical signal processing, various methods are employed for detecting changes
in signals, each with distinct advantages and applications. Classical statistical techniques,
such as mean and standard deviation calculations, are commonly used due to their sim-
plicity and robustness, making them suitable for scenarios where interpretability is crucial.
Time–Frequency analysis methods, including the Continuous Wavelet Transform (CWT)
and short-time Fourier transform (STFT), are valuable for analyzing dynamic physiological
processes, offering insights into both time and frequency domains. These methods are
particularly useful in applications such as EEG analysis, where understanding the temporal
dynamics of brain activity is essential. Machine learning algorithms, such as Support
Vector Machines (SVMs) and deep neural networks (DNN), provide high accuracy and
automation, making them ideal for large-scale data analysis and real-time monitoring in
clinical settings [47–49].

Despite their effectiveness, each change detection method in biomedical signals faces
specific challenges. Classical statistical techniques often struggle with noisy and high-
dimensional data, limiting their applicability in complex biomedical signal environments.
Time–frequency analysis methods, while powerful, require careful parameter tuning and
can be computationally intensive, which may pose challenges for real-time applications.
Machine learning algorithms, despite their high accuracy, often lack interpretability and
require large amounts of labeled data for training, which can be a significant barrier in
biomedical contexts where data labeling is costly and time-consuming. Bayesian inference
methods, which incorporate prior knowledge and uncertainty modeling, are computa-
tionally demanding and sensitive to the choice of prior distributions, making their imple-
mentation complex. Furthermore, integrating multimodal data, such as combining EEG
with functional magnetic resonance imaging (fMRI), offers complementary information but
introduces challenges related to data alignment, synchronization, and sophisticated data
fusion techniques.

Advancements in signal processing and machine learning continue to drive innovation
in change detection methods. Techniques such as compressive sensing offer the ability
to efficiently sample and reconstruct signals from limited data, although they require
careful selection of sensing matrices and sparsity constraints. Phase-space reconstruction
methods provide insights into the underlying dynamics of physiological systems but may
be sensitive to noise and require parameter optimization. Future research should focus on
developing more robust algorithms capable of handling noisy and high-dimensional data,
improving the interpretability of machine learning models, and enhancing data fusion
techniques for multimodal signals. By leveraging the complementary strengths of various
methods and addressing their limitations, researchers can advance our understanding of
physiological processes and improve healthcare outcomes. The integration of advanced
signal processing techniques, machine learning algorithms, and Bayesian inference methods
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has the potential to revolutionize signal change detection, unlocking new insights into
human health and disease.

This research contributes to the advancement of biomedical signal processing by pro-
viding a comprehensive evaluation of different change detection methods and highlighting
their strengths and limitations. The findings have implications for improving clinical
decision-making and advancing healthcare technology.

Future directions:

Real-world applications:
Apply these methods to real-world biomedical signals
from various domains (e.g., electrocardiograms,
electroencephalograms) to validate their effectiveness.

Advanced machine learning:
Explore more advanced machine learning algorithms,
such as deep learning, for improved change
detection performance.

Multimodal analysis:
Integrate multiple types of biomedical signals to gain a
more comprehensive understanding of
physiological processes.

6. Discussion

In this study, we assessed the effectiveness of three methods for detecting changes
in nonlinear biomedical signals: classical statistical techniques, time–frequency analysis
using Continuous Wavelet Transform (CWT), and machine learning with Support Vector
Machines (SVMs). Each method showed varying degrees of success based on signal
characteristics and the nature of the changes. The comparative analysis of these methods
reveals that each has specific strengths and limitations influenced by signal characteristics
and the nature of changes. Classical statistical techniques are simple but can fail in the
presence of outliers or non-Gaussian distributions. Time–Frequency analysis using CWT
offers detailed insights but requires careful selection of wavelets and thresholds. SVMs
were used for change detection, showing mixed results. In the first example with synthetic
nonlinear signals, using raw signal values as features did not help the SVMs detect changes
due to the lack of distinct patterns. The complexity of the signal’s dynamics further
complicated detection. In contrast, in the second example with synthetic signals exhibiting
abrupt changes, SVMs performed better when trained on features indicative of changes,
such as shifts in amplitude or frequency. This highlights the importance of feature extraction
and specific training data for effective SVM-based change detection. SVMs provide a
powerful machine learning approach but depend heavily on feature representation and
training data quality. For effective change detection in nonlinear biomedical signals, a
hybrid approach that combines these methods, leveraging their complementary strengths,
may offer the most robust solution.

Classical statistical techniques, while straightforward to implement, may struggle with
complex biomedical signals that deviate from Gaussian distributions or contain outliers.
Time–Frequency analysis, such as the Continuous Wavelet Transform (CWT), offers a more
dynamic approach by analyzing signals in both the time and frequency domains. However,
CWT performance depends on careful parameter tuning. Support Vector Machines (SVMs)
can be effective for change detection, but their performance relies on feature extraction and
the availability of informative training data [46–49].

By comparing these methods, we can see the trade-offs involved. Classical statistical
techniques are simple but often ineffective for complex signals. Time–Frequency analysis
offers more detailed insights but requires careful parameter selection. Machine learning
approaches like SVMs can be powerful but depend heavily on the quality of feature
extraction and training data (see Figures 11 and 12).
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detection: This subplot depicts the predicted labels for the EEG signal using a Support Vector Ma-
chine (SVM) model. The green line indicates detected changes across the time series, with �1’ repre-
senting no spike and �2’ indicating spike events. The visualization helps demonstrate the effective-
ness of the SVM algorithm in identifying significant changes (spikes) in the EEG data. 

Figure 11. Analysis of synthetic EEG signal and change detection. (Top) Mean and standard deviation
of EEG signal: This subplot displays the mean (red dashed line) and one standard deviation above
and below the mean (black dashed lines) of the generated EEG signal over time. The underlying
blue line represents the raw EEG-like time series data, showcasing the variations around the average
signal level. (Middle) Time–Frequency analysis (Spectrogram): The spectrogram in this subplot
illustrates the time–frequency representation of the EEG signal using the short-time Fourier transform
(STFT). The x-axis denotes time (in seconds), while the y-axis represents frequency (in Hz). The
color intensity indicates the magnitude of the frequency components in decibels (dB), revealing the
distribution of power across different frequency bands over time. (Bottom) SVM change detection:
This subplot depicts the predicted labels for the EEG signal using a Support Vector Machine (SVM)
model. The green line indicates detected changes across the time series, with ‘1’ representing no spike
and ‘2’ indicating spike events. The visualization helps demonstrate the effectiveness of the SVM
algorithm in identifying significant changes (spikes) in the EEG data.
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Figure 12. Analysis of synthetic sine wave signal and change detection. (Top) Original synthetic
sine wave signal with a base frequency of 1 Hz (in blue), along with calculated mean (in green) and
standard deviation (in red) lines. The abrupt changes in amplitude are highlighted in the signal
plot between the vertical dashed lines. (Middle) Time–Frequency representation of the synthetic
sine wave signal obtained via short-time Fourier transform (STFT). The spectrogram illustrates
the frequency content over time, showing how the signal’s energy distribution shifts during the
introduced changes. (Bottom) Change detection using Support Vector Machine (SVM) classification.
The colored regions indicate the predicted states of the signal (baseline vs. changed amplitude),
demonstrating the SVM’s ability to identify segments with different characteristics. The SVM was
trained using features (mean and standard deviation) extracted from the signal.

7. Conclusions

The analysis of the simulated EEG-like time series through three distinct methods—the
evaluation of mean and standard deviation, time–frequency analysis using a spectrogram,
and change detection employing a Support Vector Machine (SVM)—demonstrates a com-
prehensive approach to understanding the underlying dynamics of EEG signals. The mean
and standard deviation provide insights into the overall signal characteristics and variabil-
ity, while the time–frequency analysis using CWT effectively reveals the frequency content
and its temporal evolution, highlighting dominant alpha and beta rhythms. The SVM
model achieves promising performance in detecting changes (spikes) within the signal,
indicating its potential utility in identifying significant events. However, limitations exist:
the simulated data does not capture all the complexities and noise typically present in
real EEG recordings, the choice of parameters for the SVM can significantly influence the
results, and the reliance on sliding window features may overlook nuanced information
that occurs outside the analyzed windows. Thus, while the methodologies are useful for
basic analysis and change detection, they require careful parameter tuning and validation
against real-world data to ensure robustness and applicability in clinical settings.

In conclusion, this study highlights the critical role of change detection in biomedical
signal processing for understanding physiological processes and diagnosing medical con-
ditions. Through an investigation of different methods using synthetic signals mimicking
real-world scenarios, including classical statistical techniques, Support Vector Machine
(SVM) classification, and Continuous Wavelet Transform (CWT) time–frequency analysis,
insights were gained into their efficacy. While all methods struggled to detect changes in
synthetic nonlinear signals, classical statistical techniques and SVM classification proved
effective in detecting changes in signals with simulated anomalies. However, CWT-based
time–frequency analysis encountered difficulties in detecting changes in both synthetic
nonlinear signals and signals with simulated anomalies. These findings emphasize the
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necessity of carefully selecting appropriate methods for change detection in biomedical
signal processing, considering the unique characteristics of the signals and the specific
requirements of the detection task. Future research endeavors may focus on exploring
advanced machine learning algorithms and signal processing techniques to further enhance
the accuracy of change detection in biomedical applications. Moving forward, several
avenues for future research and development in change detection in biomedical signals can
be pursued. Firstly, exploring hybrid approaches that combine the strengths of different
methods, such as integrating classical statistical techniques with machine learning algo-
rithms or incorporating domain knowledge into time–frequency analysis, could improve
detection accuracy and robustness. Additionally, investigating advanced signal processing
techniques, such as deep learning architectures tailored for biomedical signals, may offer
novel insights and enhance detection performance. Furthermore, the validation and bench-
marking of change detection methods using real-world biomedical data are crucial for
assessing their efficacy and generalizability. Collaborative efforts to establish standardized
datasets and evaluation metrics would facilitate the comparison and validation of differ-
ent methods across diverse applications and datasets. Lastly, the translation of research
findings into clinical practice and healthcare applications through the development of
user-friendly software tools and decision support systems holds promise for improving
patient outcomes and advancing the field of biomedical signal processing. By advancing
methodological approaches, validating findings with real-world data, and translating re-
search into practical applications, researchers can continue to enhance our ability to detect
changes in biomedical signals and ultimately contribute to improving healthcare delivery
and patient care.

Key contributions:

Comprehensive methodological exploration:

We employed a multifaceted approach,
combining classical statistical techniques,
machine learning algorithms, and
time–frequency analysis to address the
challenges of biomedical signal processing.

Advanced understanding of
physiological processes:

Our study provides valuable insights into the
underlying dynamics of biomedical signals,
aiding in a deeper understanding of
physiological processes.

Improved clinical decision-making:
By accurately identifying significant changes in
biomedical signals, our research can contribute
to more informed clinical decision-making.

Innovation in healthcare technology:

Our findings pave the way for the
development of new tools and techniques for
biomedical signal analysis, potentially leading
to advancements in healthcare technology.

Addressing key challenges:

We successfully addressed the challenges of
high-dimensional data handling and the
identification of subtle, non-linear patterns in
biomedical signals.

Robust and accurate change detection:
Our study demonstrates the effectiveness of
the combined methods in achieving robust and
accurate change detection.
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