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Abstract: Many natural signals exhibit quasi-periodic behaviors and are conveniently modeled as
combinations of several harmonic sinusoids whose relative frequencies, magnitudes, and phases vary
with time. The waveform shapes of those signals reflect important physical phenomena underlying
their generation, requiring those parameters to be accurately estimated and modeled. In the literature,
accurate phase estimation and modeling have received significantly less attention than frequency or
magnitude estimation. This paper first addresses accurate DFT-based phase estimation of individual
sinusoids across six scenarios involving two DFT-based filter banks and three different windows. It
has been shown that bias in phase estimation is less than 0.001 radians when the SNR is equal to or
larger than 2.5 dB. Using the Cramér–Rao lower bound as a reference, it has been demonstrated that
one particular window offers performance of practical interest by better approximating the CRLB
under favorable signal conditions and minimizing performance deviation under adverse conditions.
This paper describes the development of a shift-invariant phase-related feature that characterizes
the harmonic phase structure. This feature motivates a new signal processing paradigm that greatly
simplifies the parametric modeling, transformation, and synthesis of harmonic signals. It also aids in
understanding and reverse engineering the phasegram. The theory and results are discussed from a
reproducible perspective, with dedicated experiments supported by code, allowing for the replication
of figures and results presented in this paper and facilitating further research.

Keywords: phase estimation; harmonic phase structure; harmonic magnitude and phase parametric
modeling; harmonic signal processing

1. Introduction
1.1. Motivation

Many natural and synthetic quasi-periodic signals, including speech, singing, physio-
logical signals such as ECG, music, and acoustic waves from mechanical system vibrations,
have a harmonic structure of sinusoids whose magnitudes, phases, and underlying funda-
mental frequencies vary over time.

Harmonic phases are crucial in defining the waveform shape of quasi-periodic signals
and are therefore immensely informative about the physical phenomena that generate them.
Examples include the periodic glottal excitation signal, which illuminates the physiological
processes governing vocal fold vibrations in the larynx; and periodic acoustic signals from
mechanical systems, which provide insights into whether these systems are operating
correctly within predefined safety margins.

Given that harmonic phases depend explicitly on time, they vary much faster than har-
monic magnitudes and fundamental frequencies; this is challenging from the perspectives
of signal analysis, estimation, interpretation, modeling, transformation, and synthesis [1–4].
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Since accurate frequency and magnitude estimation of sinusoids have been extensively
discussed in the literature [5–13], in this paper, we assume that these factors have been
addressed and will instead focus on two problems related to phase. The first concerns
the practical and accurate DFT-based phase estimation of individual sinusoids. This is
instrumental in addressing a second problem: the parametric modeling of sinusoid phases
within a harmonic structure in a way that is time-shift invariant, interpretable, insightful,
and simplifies harmonic signal processing. To the best of our knowledge, this is the first
time such a combined perspective is presented in a manner that is easily apprehensible and
extensively illustrated.

This paper demonstrates that these problems can be tackled practically, facilitated by
Matlab code that replicates the main results and illustrations presented.

1.2. Problem Statement

This paper focuses on practical methods for representing quasi-periodic signals
through the concepts of structure and parametric modeling. By ‘structure’, we mean
an identifiable form or organization, and by ‘parametric modeling’, we mean a simple
mathematical formulation that captures and models the organization using a limited num-
ber of controllable parameters. We acknowledge in this paper that the signals discussed are
quasi-periodic and locally stationary. Quasi-periodicity means that the waveform shape
in a periodic signal varies slowly among at least three adjacent periods, even though the
period length may vary. Local stationarity means that harmonic parameters, such as sinu-
soidal magnitude and frequency, vary slowly over time, allowing them to be considered
approximately constant within a short, windowed region of the observed signal.

In this paper, we focus on phase representation, estimation, and parametric modeling.
We first address the concept of structure based on the three aspects that define a stationary
periodic signal: (i) frequency, (ii) magnitude, and (iii) phase.

Let us consider a real-valued signal x(t) that consists of L sinusoids, as follows:

x(t) =
L−1

∑
ℓ=0

Aℓ sin(Ωℓt + ϕℓ) + s(t) , (1)

where Aℓ and Ωℓ represent, respectively, the magnitude and frequency of the ℓth sinusoid,
ϕℓ represents the starting phase of the ℓth sinusoid, and s(t) represents a random signal
without any relevant phase structure. It is well known from the basic Fourier theory that
the sinusoids in a periodic signal are harmonically related [14]. Hence, in our context, we
have the following:

Ωℓ = (ℓ+ 1)Ω0 , (2)

i.e., the frequency of each sinusoid is a multiple integer of a fundamental frequency rep-
resented by Ω0. Thus, this frequency organization represents a frequency-related feature
that is intrinsic and, therefore, structural, to any periodic signal. This means that the only
information in the frequency structure that is truly unique is the fundamental frequency.

A second structural aspect that defines a periodic signal consists of the organization
of the magnitudes of the different harmonics and can be given by the ratio between the
magnitude of each harmonic (Aℓ) and that of the fundamental frequency magnitude (A0).
If the latter is looked at as a gain, then a given periodic signal is characterized by a
normalized magnitude-related feature vector, where the first value is one, and all other
values (Aℓ/A0) help to define the waveform shape of the periodic signal. This magnitude-
related feature vector expresses the magnitude structure of a periodic signal, independently
of time, and the fundamental frequency of the signal, provided that the waveform shape is
locally preserved.

A third aspect that contributes to defining the particular waveform shape of a periodic
signal involves the relationships between the starting phases of the different harmonics,
ϕℓ. Ideally, it would be interesting to characterize the waveform shape of a given periodic
signal based on a normalized phase-related feature vector that, similar to the magnitude-
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related feature vector, is independent of time and the fundamental frequency. This paper
aims to show that such a time-shift invariant phase-related feature exists and that it can
be extracted using fairly conventional spectrum analysis. Moreover, it can be modeled in
simple and insightful ways.

To this end, two problems need to be addressed. The first one involves estimating
the harmonic starting phase values, ϕℓ, from a short segment of x(t) that is representative
of the periodic signal. By ‘representative’, we mean that the short segment contains a
few periods with a similar waveform shape, but its duration is not related to the period
of the periodic signal. The second aspect involves establishing a model based on the
estimated harmonic starting phases, which, when combined with harmonic magnitude
information, helps to fully explain a given waveform shape in a way that is time-shift
invariant and independent of Ω0. The next section further discusses these challenges from
a practical perspective and motivates a paradigm in harmonic signal processing oriented
toward the harmonic magnitude and phase structure, greatly facilitating signal modeling,
transformation, and synthesis.

1.3. A Practical Approach to Harmonic Signal Processing

The problem we address falls within the realm of spectrum estimation using Fourier
analysis. Given our aim for practical signal processing that is suitable for real-time operation
on low-cost platforms, we highlight simple technical approaches that utilize the discrete
Fourier transform (DFT). This choice allows for the benefit of efficient realization algorithms
(e.g., the FFT [15]). In addition, we exclude non-causal or iterative processing in order to
accommodate real-time operation on low-cost platforms.

Thus, in a practical setting, simple spectrum estimation typically implies three opera-
tions: (1) sampling, (2) time–frequency (T-F) transformation, and (3) frequency, magnitude,
as well as phase estimation:

1. A discrete-time version of the signal represented by Equation (1) is first obtained
using a convenient sampling frequency (FS), i.e., we have the following:

x[n] = x(t)|t=nTS=
n

FS
, (3)

where TS represents the sampling period and corresponds to the reciprocal of the
sampling frequency (FS).

2. A T-F transformation (using e.g., the DFT) is computed on a windowed region of
the discrete-time signal containing N samples. We assume that N is a power of two
numbers. If the window is represented by w[n] (and we assume is symmetric), this
means that, in the case of the DFT, we compute the following:

X[k] =
N−1

∑
n=0

x[n]w[n]e−j 2π
N kn, k = 0, 1, . . . , N − 1 , (4)

where j =
√
−1.

3. Finally, a suitable estimation procedure is used that takes the spectral coefficients, X[k],
as input and delivers robust estimates of all the harmonic frequencies, magnitudes,
and phases.

These simple spectrum estimation steps enable the identification of important harmonic
parameters such as the normalized fundamental frequency, ω0 = Ω0TS. On the other hand,
if the parametric representation of harmonic magnitudes and phases is done in such a
way that it does not depend on time or the fundamental frequency, it paves the way for a
harmonic signal processing paradigm that promotes simplification, flexibility, and even
insight in algorithms.

In fact, in many applications, such as speech enhancement and time-scale or pitch-scale
modification of speech [3], and special effects in singing and music [2], harmonic sinusoids
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are individually modified in terms of their frequency, magnitude, and phase trajectories, as
suggested by Figure 1.

T/F
harmonic

analysis modification

signal harmonic

synthesis

y[n]
w[n]

x[n]

Aℓ

ω0

ϕℓ ϕS
ℓ

AS
ℓ

ωS
0

Figure 1. In many harmonic signal processing applications, individual harmonics are processed
separately. Signal modification converts the original fundamental frequency (ω0), the original
harmonic magnitudes (Aℓ), and phases (ϕℓ), into new values (ωS

0 , AS
ℓ , ϕS

ℓ ) in the synthesis process.

However, this approach requires careful unwrapping of the phases of all harmonics
such that their modifications are correct and do not suffer from the errors that may result
from the wrapped phase representation in the interval [−π, π]. In addition, phase unwrap-
ping, which is carried out for all harmonics on an individual basis and in a ‘horizontal’
manner, i.e., along the time axis, is itself prone to estimation errors. The most critical aspect
of this approach, however, is that it is not insightful, i.e., it does not capture the overall, or
holistic, harmonic phase structure, which means that, most likely, it does not explicitly con-
trol it. As a result, although phase coherence may be obtained on an individual sinusoidal
basis, ‘vertical’ coherence may not be controlled and artifacts may result, the most common
being known as ‘phasiness’ [16].

A more convenient paradigm in harmonic signal processing is represented by the
block diagram illustrated in Figure 2.

harmonic
phase

modeling

magnitude
harmonic

modeling

harmonic

synthesis
T/F
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analysis modification

signal

PMS

y[n]
w[n]

x[n]

Aℓ
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ϕℓ ϕ0

A0

ωS
0
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0
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0

PM
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Figure 2. A convenient paradigm in harmonic signal processing: a holistic harmonic magnitude and
phase structure represented by a shift-invariant and fundamental frequency-independent magnitude
model (MM), and phase model (PM), respectively. Signal transformation just involves modifications
to these models.

According to this paradigm, harmonic magnitude and phase models are extracted that
represent the holistic harmonic structure (or ‘vertical’ structure) in a way that is time-shift
invariant, and independent of the fundamental frequency. This approach not only promotes
insight into the harmonic signal structure but also greatly facilitates signal transformation.
For example, the magnitude model (MM) and the phase model (PM) may change arbitrarily
or may be interpolated in simple ways. Or, if the waveform shape is to be preserved, they
may remain unchanged, and only the changes in the synthesis affect the fundamental
frequency parameters (ωS

0 , AS
0 , ϕS

0 ). In addition, the synthetic phase ϕS
0 may be decoupled

from the original phase ϕ0 since it can be easily synthesized using the value of ωS
0 .

1.4. Paper Structure

This paper is divided into two major parts. The first part, corresponding to Section 2,
is devoted to the estimation of the phases of individual sinusoids using light but robust
DFT-based analysis procedures. Two commonly used DFT filter banks and three window
functions are considered. Robust phase estimators are found, taking into consideration the
specificities of the filter banks and window functions, notably their frequency responses.
It has been shown that the relative performance of the six-phase estimation alternatives
mainly depends on the main lobe width of the magnitude of those frequency responses
and the associated near-end and far-end leakage properties. In particular, using the lower
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bound for the error variance of any unbiased estimator, which is set by the Cramér–Rao
lower bound (CRLB) [17], it has been demonstrated that the performance of one of the
studied windows is not only closer to the CRLB when conditions are favorable but also
exhibits a lower performance deviation when signal conditions are adverse.

In the second part of the paper, corresponding to Section 3, we address the computa-
tion of a time-shift invariant harmonic phase model (HPM) that implements the holistic
PM represented in Figure 2 and validates the harmonic signal processing paradigm that
the block diagram of Figure 2 substantiates. Using the concepts of vertical phase coher-
ence, as well as detailed and interpretable test cases, both ground truth and estimated
PM are illustrated and compared under various test conditions. This section concludes
with an illustration of the Harmonic Phase Model (HPM) of actual natural voice signals
and an explanation of its usefulness in demystifying the phasegram of a representative
periodic signal. Finally, Section 4 concludes this paper with a summary of the most signifi-
cant concepts and results presented, in addition to a perspective on further research and
application scenarios.

2. Robust DFT-Based Phase Estimation of Individual Sinusoids

The purpose of this section is to estimate the starting phases (ϕℓ) of all sinusoids in a
harmonic signal, as in (1), after the signal has been subject to simple uniform sampling, as
in (3), multiplied by a window (w[n]); the result is transformed into a discrete-frequency
Fourier domain, such as in (4). As shown in Section 1.1 and illustrated in Figures 1 and 2,
we rely on a pre-existing harmonic analysis framework that can deliver not only an accurate
fundamental frequency estimate (ω0) but also harmonic magnitude estimates (Aℓ). In our
simulations, in this paper, we use ground-truth test signals such that those parameters are
known beforehand. This is equivalent to assuming that these parameters are estimated
without error.

Given a certain magnitude spectrum describing a harmonic signal, it is tempting to
think that the estimated harmonic starting phases can be taken as the phases of the DFT
spectral lines (or DFT bins) corresponding to local maxima in the magnitude spectrum. In
other words, if X[k], k = 0, 1, . . . , N − 1 represents the Fourier spectrum of the windowed
harmonic signal, and if kℓ = argmax

k
|X[k]| with ℓ = 0, 1, . . . , L − 1 denotes a DFT bin index

representing a local maximum in the magnitude spectrum, and corresponding to harmonic
ℓ, it is tempting to believe that ϕℓ can be estimated as ϕ̂ℓ = ∠X[kℓ]. In fact, this equation
is not correct given those estimations must take into consideration the specificity of the
time–frequency transformation, the specificity of the window, and the relation between
each spectral peak in the magnitude spectrum and fundamental frequency.

As an important contribution of this paper, this section highlights that phase estimation
does not depend on accurate frequency estimation of individual sinusoids. In fact, as stated
by Rife and Boorstyn, the most practical DFT-based accurate frequency estimators involve
a two-step approach: a coarse search followed by a fine search [12]. The first step is almost
trivial as it involves only peak picking and the second is what determines the accuracy
of the frequency estimator [5]. Usually, sinusoidal magnitude estimation depends on the
result of the fine search step in frequency estimation; consequently, the accuracy of the
former depends on the accuracy of the latter. In this section, we show that accurate phase
estimation does not depend on this fine search step in frequency estimation and, therefore,
its accuracy depends mainly on the severity of the signal-to-noise ratio (SNR).

In order to illustrate different possibilities, we consider six cases that result from the
combination of two different DFT-based filter banks and three different windows.

In order to simplify results and facilitate their comparison, in all six cases, we consider
the analysis of one harmonic sinusoid in (1), i.e., after sampling—according to (3)—our
signal is as follows:

x[n] = Aℓ sin(ωℓn + ϕℓ) + s[n] . (5)
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In this equation, we have the following:

ωℓ = ΩℓTS =
2π

N
(kℓ + ∆ℓ) , (6)

where kℓ represents the bin index (or sub-band channel) corresponding to a local maximum
in the magnitude spectrum, and ∆ℓ represents fractional frequency. Depending on the type
of T-F transformation and the window that is used, the continuous interval of ∆ℓ may be
either [−0.5, 0.5[ or [0.0, 1.0[. The rationale for this is explained next.

2.1. DFT and the Rectangular Window

In this subsection, the frequency domain representation of our signal (5) is obtained
by computing the DFT according to (4) when the window is the rectangular window:

w[n] = wR[n] = 1, n = 0, 1, . . . , N − 1 . (7)

Figure 3 represents the magnitude of the frequency response of the rectangular win-
dow, i.e.,

∣∣WR
(
ejω)∣∣ = ∣∣∣∑N−1

n=0 wR[n]e−jωn
∣∣∣, in the range −8π/N ≤ ω ≤ 8π/N, and after

the gain is normalized such that the maximum gain is the unity. Two other frequency re-
sponses are also represented in Figure 3, which will be discussed in subsequent subsections.
The frequency axis in Figure 3 is normalized by 2π/N such that integer numbers in this
normalized axis can be read as bin indices in a DFT filter bank interpretation.

Figure 3. Normalized magnitude of the frequency response of the rectangular, sine, and Hanning
windows in the range −8π/N ≤ ω ≤ 8π/N. The frequency axis (ω) is normalized by 2π/N.

Given that both x[n] and w[n] in (4) are real-valued, then X[k] is known to be conjugate-
symmetric, i.e., X[k] = X∗[N − k], k = 1, 2, . . . , N/2 − 1, where (·)∗ denotes complex
conjugation. This means that unique information provided by X[k] lies in the range
k = 0, 1, . . . , N/2. Using Euler trigonometric relations and ignoring the Dirichlet kernel
(i.e., a function with the form sin(θ)/ sin(θ/N)) that is centered outside this range of k and
that causes spectral leakage, we are left with the following:

X[k] ≈ A
2

ej(ϕℓ− π
2 +π(kℓ+∆ℓ−k)(1− 1

N )) sin π(kℓ + ∆ℓ − k)
sin π

N (kℓ + ∆ℓ − k)
. (8)
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Given that the width of the main lobe of the frequency response of the rectangular window
is 4π/N, as apparent in Figure 3, then, depending on the value of ∆ℓ, at most two spectral
lines with a non-zero magnitude fall within that main lobe width. If ∆ℓ ∈ [−0.5, 0.5], then
the spectral line k = kℓ corresponds to a local maximum in the magnitude spectrum, as
illustrated in Figure 4:

kℓ kk

|X[kℓ]|

kℓ kℓ + 1kℓ k

Figure 4. When ∆ℓ ∈ [−0.5, 0.5[, the magnitude spectrum of the DFT of a rectangular-windowed
sinusoid exhibits a local maximum for k = kℓ. The plots illustrate the case when ∆ℓ = −0.5 + ϵ (left),
when ∆ℓ = 0.0 (center), and when ∆ℓ = 0.5 − ϵ (right), where ϵ < 0.5 is a small real positive number.

This means that this spectral line is more likely to be less affected by noise and leakage,
which makes it particularly suitable for phase estimation. In fact, if k = kℓ, then from (8),
we obtain ∠X[kℓ] = ϕℓ − π

2 + π∆ℓ

(
1 − 1

N

)
, which leads to the following:

ϕℓ = ∠X[kℓ] +
π

2
− π∆ℓ

(
1 − 1

N

)
. (9)

Despite being usable, this result presents one practical difficulty since it requires that the
fractional frequency (∆ℓ) be estimated as accurately as possible [5,18]. This means that
frequency estimation errors may propagate to the phase estimation. In order to avoid this,
a more robust approach is available if, instead of estimating phase with respect to the origin
of the time segment, estimation is performed with respect to the group delay of the DFT
filter bank. Given that the window is symmetric, the group delay is constant and given by
τ = (N − 1)/2. Therefore, using this result and (6) and (9), we obtain the following:

ϕ̂ℓ = ∠X[kℓ] +
π

2
− π∆ℓ

(
1 − 1

N

)
+ ωℓτ

= ∠X[kℓ] +
π

2
+ πkℓ

(
1 − 1

N

)
, (10)

which represents a more robust phase estimator that just depends on the bin index of the
spectral line corresponding to the local maximum in the magnitude spectrum, and on the
phase of that spectral line.

A perspective on the estimation error that is associated with (10) can be given by a
simple metric that evaluates the cumulative distance, or error, between the estimated ϕ̂,
and the corresponding ground-truth value, ϕ, when the latter varies in the range [−π, π].
For illustration purposes, we use the error metric as in (11), we create a ground-truth signal
using (5), and configure the noise (s[n]) such that the SNR is 30 dB in one case, and 10 dB in
another case. In each case, we evaluate the cumulative phase estimation error as a function
of the fractional frequency, ∆ℓ:

ERROR =
∫ π

−π

∣∣∣ejϕ − ejϕ̂
∣∣∣dϕ (11)

Figure 5 represents the results when N = 128 and ℓ = 13.
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Figure 5. Cumulative phase estimation error as a function of the fractional frequency ∆ℓ, when the
DFT and the rectangular window are used. In the illustrated cases, N = 128, ℓ = 13, SNR = 30 dB
(left) and SNR = 10 dB (right).

It can be seen that the estimation error distribution is consistent with the relative
magnitudes of adjacent spectral bins as illustrated in Figure 4. In fact, when ∆ℓ approaches
−0.5, or 0.5, the cumulative error increases relative to the case when ∆ℓ = 0, which is a
consequence of the fact that the magnitudes of two adjacent spectral lines become com-
parable and significantly lower than the maximum value they can reach (when ∆ℓ = 0),
which not only exacerbates leakage effects but also increases vulnerability to the noise influ-
ence. Due to the specific frequency response of the rectangular window, as Figures 3 and 4
highlight, then, when ∆ℓ = 0 and the SNR is infinity, the spectral leakage is zero, and
the phase is estimated without error. The Matlab code generating Figure 5 is available
(estimatePHASE_DFT_rect.m), which facilitates experimentation with other values of N, ℓ,
or SNR.

2.2. DFT and the Sine and Shifted Hanning Windows

Other windows that provide better main-to-side lobe attenuation compared to the
rectangular window are frequently used in spectrum estimation and FIR filter design [15].
Although standard Hamming or Hanning windows could be used in our analysis, we
employ two related windows that are particularly significant in perfect reconstruction filter
banks [19,20], such as those that are frequently used in audio coding and general analysis
synthesis [21]. One window is known as the sine window and is defined as follows:

wS[n] =
√

wH [n] = sin
π

N
(n + 0.5), n = 0, . . . , N − 1 , (12)

where wH [n] represents the shifted Hanning window, defined as follows:

wH [n] =
1
2

[
1 − cos

2π

N
(n + 0.5)

]
, n = 0, . . . , N − 1 . (13)

When the sine window is used in the DFT analysis according to (4), where x[n] is a noisy
sinusoid given by (5), then, using an approach that is similar to that used in the previous
subsection, the spectral line corresponding to the relevant local maximum in the magnitude
spectrum (|X[kℓ]|) can be approximated by the following:

X[kℓ] ≈
A
4

ej(ϕℓ− π
2 +π∆ℓ(1− 1

N ))F(∆ℓ) , (14)

where we have the following:

F(∆ℓ) =
sin π

(
∆ℓ +

1
2

)
sin π

N

(
∆ℓ +

1
2

) +
sin π

(
∆ℓ − 1

2

)
sin π

N

(
∆ℓ − 1

2

) . (15)
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In the case of the shifted Hanning window, the local maximum in the magnitude spectrum
can be approximated by the following:

X[kℓ] ≈
A
4

ej(ϕℓ− π
2 +π∆ℓ(1− 1

N ))G(∆ℓ) , (16)

where we have the following:

G(∆ℓ) = 2
sin π∆ℓ

sin π
N ∆ℓ

+
sin π(∆ℓ + 1)
sin π

N (∆ℓ + 1)
+

sin π(∆ℓ − 1)
sin π

N (∆ℓ − 1)
. (17)

It can be easily concluded that the F(∆ℓ) and G(∆ℓ) functions have the same polarity when
∆ℓ ∈ [−0.5, 0.5] and, thus, they do not affect the phase in this particular range of ∆ℓ. On
the other hand, comparing (14), (16), and (8), when k = kℓ, it can be concluded that the
phase is governed by the same function, which is a consequence of the fact that all three
windows share the same linear-phase property and the same group delay. This also means
that in all three cases, the phase can be estimated using Equation (10), although the quality
of the phase estimation depends on each window due to its specific near-end and far-end
leakage characteristics.

As apparent in Figure 3, the width of the main lobe of the frequency response is 6π/N
in the case of the sine window, and 8π/N in the case of the shifted Hanning window [5,11].
This implies that, depending on the value of ∆ℓ, at most three spectral lines with non-zero
magnitude fall within the main lobe width of the sine window frequency response. In the
case of the shifted Hanning window, the number of spectral lines is four. As in the previous
subsection, if ∆ℓ ∈ [−0.5, 0.5], then the spectral line k = kℓ corresponds to a local maximum
in the magnitude spectrum when the sine window or the shifted Hanning window is used.
Figure 6 illustrates the case corresponding to the sine window.

kkk kℓkℓ kℓ + 1kℓ

|X[kℓ]|

Figure 6. When ∆ℓ ∈ [−0.5, 0.5], the magnitude spectrum of the DFT of a sine-windowed sinusoid
exhibits a local maximum for k = kℓ. The plots illustrate the case when ∆ℓ = −0.5 + ϵ (left), when
∆ℓ = 0.0 (center), and when ∆ℓ = 0.5 − ϵ (right), where ϵ < 0.5 is a small real positive number.

Although this figure resembles Figure 4, two important aspects are worth noting.
First, the side lobe attenuation decay (not shown in these figures) is stronger for the sine
window, when compared to the rectangular window [5]. Second, because the main lobe of
the frequency response of the sine window is wider than the main lobe of the rectangular
window, this means that when ∆ℓ is such that the magnitudes of the spectral lines k = kℓ − 1
and k = kℓ become comparable, or the magnitudes of the spectral lines k = kℓ and k = kℓ+ 1
become comparable, these magnitudes are closer to the maximum value they can reach
(which takes place for ∆ℓ = 0.0) than what happens for the rectangular window. These
concurrent reasons make it that relative to the case of the rectangular window, phase
estimation using the sine window is likely to be more immune to the noise influence and
to suffer fewer leakage effects. This can be confirmed by making a simple study on the
phase estimation error, as it was described in the previous subsection for the rectangular
window. Using the same simulation conditions, and the same phase estimation function
(Equation (10)), we obtain the cumulative phase estimation error results that are illustrated
in Figure 7.
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Figure 7. Cumulative phase estimation error as a function of the fractional frequency ∆ℓ, when the
DFT and the sine window are used. In the illustrated cases, N = 128, ℓ = 13, SNR = 30 dB (left) and
SNR = 10 dB (right).

When compared to the results in Figure 5, it can be concluded that phase estimation
appears to be more accurate when the sine window is used, especially when the SNR
is high, which is a natural consequence of the smaller leakage caused by this window.
Results are similar if the shifted Hanning window is considered instead. As we shall see in
Section 2.5, more informative conclusions will emerge from a study of the phase estimation
error variance.

2.3. ODFT and the Rectangular Window

An N-point DFT corresponds to a filter bank whose N sub-bands are ‘evenly stacked’,
i.e., their center frequencies correspond to π

N (2k), k = 0, 1, . . . , N − 1. An alternative option
involves ‘oddly stacked’ sub-bands, i.e., their center frequencies correspond to π

N (2k + 1),
k = 0, 1, . . . , N − 1. In this case, the time–frequency transformation results as

X[k] =
N−1

∑
n=0

x[n]w[n]e−j 2π
N n(k+ 1

2 ), k = 0, 1, . . . , N − 1 , (18)

and is known as Odd-frequency DFT, or just Odd-DFT [22]. We also abbreviate this
designation to ODFT. Although it is not too much different from the basic DFT, it has
several advantages that make it preferable in certain contexts. For example, assuming
that the window is real-valued and symmetric, and if x[n] is also real-valued, then the
conjugate-symmetric property is expressed as X[k] = X∗[N − 1 − k], k = 0, 1, . . . , N/2 − 1,
i.e., only N/2 values of X[k] are unique, instead of N/2 + 1, as in the case of the DFT. This
subtle difference facilitates, for example, signal modification by avoiding the special cases
of the DFT corresponding to k = 0 and k = N/2. In particular, the ODFT facilitates signal
integration in the frequency domain because none of the sampled frequencies is zero, which
avoids the singularity that occurs in the case of the DFT when k = 0 [23].

When the sinusoidal signal (5) is multiplied by the rectangular window (7) and the
result is ODFT-transformed, then the relevant maximum that exists in the magnitude
spectrum and that occurs for k = kℓ, is given by the following:

X[kℓ] ≈
A
2

ej(ϕℓ− π
2 +π(∆ℓ− 1

2 )(1− 1
N ))

sin π
(

∆ℓ − 1
2

)
sin π

N

(
∆ℓ − 1

2

) . (19)

However, in this case, the fact that the sampled frequencies of the ODFT rotate by π/N
relative to those of the DFT, makes that the phase can be estimated from the same lo-
cal maximum as long as ∆ℓ ∈ [0.0, 1.0]. This means that the illustration of the spectral
magnitudes surrounding the local maximum in Figure 4 is also valid in this context, ex-
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cept that it applies to this new ∆ℓ range. Under this assumption, from (19) we obtain
∠X[kℓ] = ϕℓ − π

2 + π
(

∆ℓ − 1
2

)(
1 − 1

N

)
, which leads to the following:

ϕℓ = ∠X[kℓ] +
π

2
− π

(
∆ℓ −

1
2

)(
1 − 1

N

)
. (20)

As in the previous two subsections, we can avoid the dependence on the prior estimation
of ∆ℓ by considering a time reference corresponding to the group delay of the window,
which implies adding ωℓτ to (20), as follows:

ϕ̂ℓ = ∠X[kℓ] +
π

2
− π

(
∆ℓ −

1
2

)(
1 − 1

N

)
+ ωℓτ

= ∠X[kℓ] + π

(
1 − 1

2N

)
+ πkℓ

(
1 − 1

N

)
. (21)

Although this result is different from the one discussed in the previous two subsections,
it reveals the same important property that phase estimation depends on the spectral bin
index of the local maximum in the magnitude spectrum, instead of the fractional frequency
∆ℓ, which adds robustness to the phase estimation process. Figure 8 shows the cumulative
phase estimation error that results from (21) when the test conditions are the same as those
that are considered in Sections 2.1 and 2.2.

Figure 8. Cumulative phase estimation error as a function of the fractional frequency ∆ℓ, when the
ODFT and the rectangular window are used. In the illustrated cases, N = 128, ℓ = 13, SNR = 30 dB
(left) and SNR = 10 dB (right).

When the results in Figure 8 are compared to the results in Figure 5, it can be seen
that no major differences exist, as expected (essentially because the same window is used),
although the results in Figure 8 are slightly better. This is explained by the fact that the
ODFT implicitly performs a small frequency modulation (i.e., an upshift in frequency
by π/N) of the input signal, which improves the frequency separation between the two
Dirichlet kernels, and this slightly reduces the mutual interference due to leakage.

2.4. ODFT and the Sine and Shifted Hanning Windows

When we compute the N-point ODFT (Equation (18)) of the sinusoid (5) and take for
w[n] the sine window (Equation (12)), a relevant local maximum exists in the magnitude
spectrum |X[kℓ]| at k = kℓ whose spectral coefficient can be approximated by the following:

X[kℓ] ≈
A
4

ej(ϕℓ− π
2 +π(∆ℓ− 1

2 )(1− 1
N ))R(∆ℓ) , (22)

where we have the following:

R(∆ℓ) =
sin π∆ℓ

sin π
N ∆ℓ

+
sin π(∆ℓ − 1)
sin π

N (∆ℓ − 1)
. (23)
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In the case of the shifted Hanning window, the local maximum in the magnitude spectrum
can be approximated by the following:

X[kℓ] ≈
A
4

ej(ϕℓ− π
2 +π(∆ℓ− 1

2 )(1− 1
N ))S(∆ℓ) , (24)

where we have the following:

S(∆ℓ) = 2
sin π

(
∆ℓ − 1

2

)
sin π

N

(
∆ℓ − 1

2

) +
sin π

(
∆ℓ +

1
2

)
sin π

N

(
∆ℓ +

1
2

) +
sin π

(
∆ℓ − 3

2
)

sin π
N
(
∆ℓ − 3

2
) . (25)

Given that both (23) and (25) are always positive when ∆ℓ ∈ [0.0, 1.0[, they do not affect
phase in this range of ∆ℓ.

Equations (22) and (24) show that the phase of the ODFT spectral line corresponding
to the local maximum in the magnitude spectrum is the same as that already found for the
ODFT and rectangular window combination. As noted previously, this is expected given
that all three windows share the same linear-phase property and the same group delay. As
a consequence, the phase can be estimated using Equation (21) although it remains true that
the quality of the phase estimation depends on the specific near-end and far-end leakage
characteristics of each window.

Taking the sine window as an example, Figure 9 shows the cumulative phase estima-
tion error arising from phase estimation according to (21) and taking into consideration the
processing conditions in this section.

Figure 9. Cumulative phase estimation error as a function of the fractional frequency ∆ℓ, when the
ODFT and the sine window are used. In the illustrated cases, N = 128, ℓ = 13, SNR = 30 dB (left)
and SNR = 10 dB (right).

When the results in Figure 9 are compared to the results in Figure 7, our results here
are slightly better despite the fact that both relate to the same window. As pointed out in
the previous section, this is due to the fact that the ODFT promotes a wider separation
between Dirichlet kernels, which means that leakage effects become weaker. Results for
the shifted Hanning window do not differ significantly.

Matlab code is available (estimatePHASE_ODFT_sine.m), which generates results and
displays Figure 9.

2.5. Bias and Variance of the Phase Estimation Error

We complete this section (Section 2) with an assessment of the bias, and of the variance
of the phase estimation error that results from the estimators that are explained in Section 2.1
(Equation (10)), and in Section 2.4 (Equation (21)). Bias is computed using mean{ϕ − ϕ̂}.
Variance is computed using var{ϕ − ϕ̂}, and we take as a reference the Cramér–Rao
lower bound (CRLB) for the error variance of an unbiased phase estimator [17] (page 33).
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Assuming that both magnitude and frequency of the sinusoid are known—which is true in
our simulations, this CRLB is given by the following:

var{ϕ − ϕ̂} =
2σ2

NA2 , (26)

where σ2 is the variance of real-valued white Gaussian noise.
As the results in Figures 5 and 9 make clear, the phase estimation error is influenced

by—although it does not directly depend on— the fractional frequency ∆ℓ, which we
represent in this context simply as ∆ given that we are considering just one sinusoid. Hence,
we evaluate the bias and variance of the phase estimation error in two almost extreme
situations: when ∆ = −0.49 or when ∆ = 0.00 in the case of the estimator given by
Equation (10), and when ∆ = 0.01 or when ∆ = 0.5 in the case of the estimator defined
by Equation (21). In our simulations, N = 128 and ℓ = 13. Results are obtained when the
SNR varies from 0 dB to 30 dB in steps of 2.5 dB. For each particular SNR value, the bias
and variance of the phase estimation error are computed when ϕ varies between −π and
+π in 200 steps and, at each step, stable statistics are reached after 100 Monte Carlo runs
accounting for noise contamination.

Figure 10 displays representative results regarding bias. Results reveal that in all six
cases, bias reduces as the SNR increases, as expected. However, there is not a specific
combination of DFT-based filter bank and window that stands out. This remains true even
after multiple runs of the simulations, although a relative degradation can be observed that
persists for the tested rectangular window context (i.e., DFT filter bank and rectangular
window) under more adverse ∆ conditions (i.e., when ∆ approaches −0.5 to 0.5), which is
easily explained by the poor leakage characteristics of the rectangular window.

Figure 10. Mean over 100 Monte Carlo runs of the phase estimation error when N = 128, ℓ = 13, and
when ∆ takes on two extreme values depending on the estimator.

In general, it can be concluded that bias is fairly low, in the order or less than 0.001 ra-
dians for SNR equal to or larger than 2.5 dB. This represents less than 0.016% of the 2π
dynamic range.

The most significant results regard estimation error variance and are shown in Figure 11.
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Figure 11. Variance of the phase estimation error when N = 128, ℓ = 13, and when ∆ takes on
two extreme values depending on the estimator. The Cramér–Rao lower bound is also represented
although it is not too visible since it is overlapped by the DFT-RECT results when ∆ = 0.0.

It is an interesting and somewhat unexpected outcome that the rectangular window
gives rise to the best results when the tested ∆ conditions are more favorable (i.e., when
∆ = 0.0), and to the worst results when the tested ∆ conditions are more adverse (i.e., when
∆ = −0.49).

In the former case, the performance reaches the CRLB because in that ideal case, there is
no leakage, as already noted at the end of Section 2.1, which means that the error variance is
entirely due to noise contamination. It should be noted that in practice, this rarely happens
with real-world, natural, signals as it is quite unlikely that the analyzed frequencies are
exactly aligned with the center frequencies of the sub-bands of the DFT-based filter bank.

In the latter case, the performance shown by the same estimator is quite poor, which
reveals that, in that case, leakage effects due to the rectangular window are quite strong,
as the results in Figures 5 and 8 easily anticipate. In particular, the performance becomes
asymptotic when the SNR exceeds 10 dB, which is commensurate with the known main-to-
side lobe attenuation of the rectangular window, in the order of 13 dB [15].

The performance of the sine and shifted Hanning windows fall in between the two
extreme cases due to the rectangular window. In particular, for the same DFT-based filter
bank and ∆ conditions, the error variance performance of the sine window clearly exceeds
that of the shifted Hanning window in the sense that a closer approximation to the CRLB
is reached. This is more evident under the more favorable ∆ test conditions (e.g., when
∆ = 0.5) than under the more adverse ∆ test conditions (e.g., when ∆ = 0.01).

A possible explanation may be linked to the relationship between the main lobe width
of the magnitude of the frequency responses of those two windows, the relative prominence
of the spectral coefficients inside that main lobe, the association with the discrete frequencies
defining the different DFT channels (or sub-bands), and the near-end and far-end leakage
characteristics of each window.

The most impactful implication of these results is that under more general test condi-
tions, the phase estimation error performance of the sine window is not only closer to the
CRLB but also offers a lower deviation when signal conditions are more adverse. For these
reasons, it can be considered that the performance of the sine window is better behaved
and, thus, it will be used in the remainder of this paper.



Signals 2024, 5 855

As a final note, it should be highlighted that changing ℓ in the simulations produces
a marginal effect on the results. In particular, when ℓ = N/4 − 1, which corresponds to
the ‘sweet spot’ given that leakage effects are minimized, results do not differ apprecia-
bly from those in Figure 11. The Matlab file that generates and displays the results in
Figures 10 and 11 is available (CRLBphivar.m), such that other combinations of parameters
can be tried.

3. An Interpretable Time-Shift Invariant Harmonic Phase Model

In this section, we take advantage of phase estimation of individual sinusoids using
the signal representation in a discrete-time and discrete-frequency Fourier domain, as it
was discussed in the previous section, especially Section 2.4. The objective is to identify a
vertical harmonic phase model that is time-shift invariant, and that can be approximated
by a simple parametric model.

In our development in this section, we use the deterministic part of (1) taking into consid-
eration the harmonic relationship given by (2). Thus, in our analysis, we use the following:

x(t) =
L−1

∑
ℓ=0

Aℓ sin((ℓ+ 1)Ω0t + ϕℓ)

=
L−1

∑
ℓ=0

Aℓ sin((ℓ+ 1)Ω0(t + tℓ))

= A0 sin(Ω0(t + t0)) + v(t) , (27)

where tℓ represents the starting delay of harmonic ℓ, and v(t) represents all harmonics
above the fundamental frequency. If Ω0 = 2π/T0, where T0 is the fundamental period, i.e.,
the reciprocal of the fundamental frequency (F0), a convenient manipulation of v(t) leads
to the following:

v(t) =
L−1

∑
ℓ=1

Aℓ sin((ℓ+ 1)Ω0(t + tℓ))

=
L−1

∑
ℓ=1

Aℓ sin((ℓ+ 1)Ω0(t + t0 − t0 + tℓ))

=
L−1

∑
ℓ=1

Aℓ sin
(
(ℓ+ 1)Ω0(t + t0) + 2π

tℓ − t0

T0/(ℓ+ 1)

)

=
L−1

∑
ℓ=1

Aℓ sin((ℓ+ 1)Ω0(t + t0) + 2πNRDℓ) , (28)

where NRDℓ denotes the normalized relative delay of harmonic ℓ, and is defined as follows:

NRDℓ =
tℓ − t0

T0/(ℓ+ 1)
=

ϕℓ − (ℓ+ 1)ϕ0

2π
. (29)

NRDℓ expresses the difference between the starting delay of harmonic ℓ, and the starting
delay (i.e., the onset) of the fundamental frequency, which is further normalized by the
period of harmonic ℓ [24]. Therefore, in its most intuitive interpretation, NRD can be taken
modulo 1, which means that NRDℓ ∈ [0.0, 1.0]. Equation (29) allows two other important
conclusions. First, by definition, NRD0 = 0. This means that, by definition, the NRD
phase-related feature is intrinsically time-shift invariant. Second, as the second part of (29)
highlights, the NRD does not depend on the fundamental frequency. Therefore, we may
rewrite (27) as follows:

x(t) =
L−1

∑
ℓ=0

Aℓ sin((ℓ+ 1)Ω0(t + t0) + 2πNRDℓ) , (30)
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which highlights the fact that, in terms of phase, all harmonics can be expressed as a part
that depends on the time-varying phase of the fundamental frequency, and on its starting
phase, and another part, the NRD, which is time-shift invariant. Thus, the NRD acts as a
holistic harmonic phase model that is identified in Figure 2 as PM.

Other harmonic phase descriptors that are similar to NRD were proposed by Stylianou
in 1996 (phase envelope [25] (p. 44)), Di Federico in 1998 [26], and Saratxaga in 2009
(relative phase Shift-RPS [27]).

An inspiring metaphor from nature, elucidating the meaning of NRD, is depicted in
Figure 12.

Figure 12. An inspiring metaphor from nature: NRD can be regarded as being similar to the space-
invariant bird formation structure in a flock that is represented by the line connecting the birds in the
upper branch of the illustrated flock.

Each bird in the flock formation is like a harmonic in a harmonic structure, and the
dynamics of the wings of the former are like the dynamics of the phase rotation of the latter.
The NRD feature represents a shift-invariant harmonic phase structure, similar to the space-
invariant bird formation structure of the flock that is represented by the line connecting
the birds in the upper branch of the flock. Ultimately, the whole flock’s flying dynamics
are governed by the position and wing evolution of the leading bird in the flock, since
the whole harmonic dynamics are governed by the phase evolution of the fundamental
frequency in the harmonic structure.

On the other hand, since the NRD inherits the properties of phase, then phase wrap-
ping and phase unwrapping also apply to NRD feature vectors. It should be noted that,
in this case, phase (un)wrapping is vertical, meaning that it is performed along the fre-
quency axis, as opposed to the time axis, which is by far the most common use of phase
(un)wrapping operations.

As a summary, the NRD captures the vertical phase structure (i.e., along the fre-
quency axis) of all the harmonic sinusoids, which just depends on the waveform shape
of the periodic signal they define. It should be stressed that when the (vertical) harmonic
magnitude and (vertical) harmonic phase structure are combined, they uniquely define
the waveform shape of a given periodic signal, independently of its time shift, and its
fundamental frequency.

In the next three subsections, we take inspiration from [23] in order to demonstrate the
practical estimation of three different NRD feature vectors that characterize three different
waveforms, all of them emerging from the sawtooth wave.

3.1. NRD Estimation Example Based on the Sawtooth Wave

In this subsection, and throughout the rest of this paper, we use a convenient ground-
truth signal that consists of the sawtooth waveform. In order to work with realistic NRD
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estimation conditions, the fundamental frequency (F0) is time-varying, and two levels of
noise contamination are considered.

Regarding the time-varying fundamental frequency, we take the average pitch fre-
quency between female and male human speakers, which is around 150 Hz, and subject it
to frequency-modulation (FM) as specified in Equation (31).

F0(t) = 150.0 + FM cos(2π · FM · t) (31)

In our simulations, we consider two FM values: FM = 2.5 Hz, and FM = 0.25 Hz. These
cases of maximum frequency deviation around the mean are illustrated in Figure 13.

Figure 13. Two FM deviation cases characterizing test signals: FM = 2.5 Hz (solid line) and
FM = 0.25 Hz (dashed line).

The sawtooth waveform is illustrated in Figure 14 for two noise contamination sce-
narios that we consider in our simulations: when it is mild (SNR = 30 dB), and when it is
strong (SNR = 10 dB).

Figure 14. Illustration of the influence of noise on the sawtooth test signal when SNR = 30 dB (top),
and when SNR = 10 dB (bottom).

In our simulations, the sampling frequency is 22,050 Hz, the duration of the test
signals is 1 s, and the number of harmonics is L = 20. The time–frequency transformation
is performed as discussed in Section 2.4, with N = 1024, and 50% overlap between
adjacent frames.

Using standard Fourier analysis [14], it is easy to show that the starting phases of the
sawtooth waveform in (1) are all ϕℓ = 0, ℓ = 0, 1, . . . , L − 1, which means that the harmonic
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phase structure is simply given by NRDℓ = 0, ℓ = 0, 1, . . . , L − 1. On the other hand, the
normalized harmonic magnitude ratios that express the harmonic magnitude structure of
the sawtooth waveform are simply given by the following:

Aℓ/A0 =
1

ℓ+ 1
, ℓ = 0, 1, . . . , L − 1 . (32)

Given that we have access to the ground-truth value of the instantaneous fundamental
frequency, as specified by (31), and by adopting the frequency front-end that is assumed in
Section 2.4 (i.e., ODFT and sine window), we may easily obtain the ground-truth spectral
indices (kℓ) of all 20 local maxima in the ODFT magnitude spectrum. These indices allow us
to estimate the individual harmonic phases as specified by (21) and, from these, we estimate
the NRD coefficients for all harmonics. By vertically unwrapping these coefficients, we
obtain interpretable representations that are amenable to simple parametric modeling.

Figure 15 represents an overlay of the magnitude spectra and unwrapped NRD vectors
of our test signal when the maximum frequency deviation around the mean is 0.25 Hz, and
the SNR is 30 dB.

Figure 15. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth signal that is FM modulated (0.25 Hz deviation around the mean) and whose SNR is
30 dB.

It can be seen that, as expected, the magnitude spectra are aligned in a very consistent
way because the FM modulation is small, and the SNR is high. On the other hand, it can
also be seen that the unwrapped NRD vectors are also very closely aligned to the ideal
ground-truth model (NRDℓ = 0, ℓ+ 1 = 1, 2, . . . , 20). In Figure 15 and subsequent figures
the horizontal axis labels ℓ+ 1 = 1, 2, . . . , 20 as the harmonic index.

Figure 16 repeats the overlay representation when the SNR is 10 dB. It can be seen that
higher-order harmonics are strongly contaminated by noise, especially when their magni-
tude approaches the noise floor, which adversely impacts the accuracy of phase estimation.

This is clear in Figure 16 because the unwrapped NRD vectors deviate more from the
ideal ground-truth model as the harmonic order increases. Still, their average follows the
correct model.

Figure 17 represents the results when SNR = 30 dB and FM = 2.5 Hz.
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Figure 16. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth signal that is FM modulated (0.25 Hz deviation around the mean) and whose SNR is
10 dB.

Figure 17. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth signal that is FM modulated (2.5 Hz deviation around the mean) and whose SNR is
30 dB.

It can be seen that, in this case, the blurred aspect of higher-order harmonics in the
magnitude spectrum is a natural consequence of the fact that the frequency deviation is
proportional to the harmonic order. In particular, for ℓ = 19, the maximum frequency
deviation around the mean is 50 Hz, which represents 1/3 of the average fundamental
frequency. It can be confirmed that despite the frequency modulation, the dispersion on the
unwrapped NRD vectors is quite small and quite comparable with the one that is observed
in Figure 15, in which the frequency modulation is negligible. This relevant experimen-
tal outcome unequivocally confirms that the NRD phase-related feature is intrinsically
independent of the fundamental frequency. In other words, the stability of the estimated
unwrapped NRD vectors reflects mainly the fact that the waveform shape of the periodic
signal that is observed in each frame of the signal does not change appreciably.

When FM = 2.5 Hz and SNR = 10 dB, new results are obtained that are represented in
Figure 18.
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Figure 18. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth signal that is FM modulated (2.5 Hz deviation around the mean) and whose SNR is
10 dB.

It is easy to anticipate from the spectral magnitude representation that the strong
noise influence, when it is allied to the significant frequency deviation of high-order
harmonics, paves the way for serious difficulties in phase estimation, which is reflected in
the substantial deviation of the unwrapped NRD vectors relative to the ideal ground-truth
model. In particular, phase estimation errors cause the phase unwrapping algorithm to
introduce sudden jumps of 0.5 in certain unwrapped NRD vectors. However, mitigating
strategies could be easily adopted that could detect and avoid such jumps.

The Matlab code that generates signals and creates the overlay representations, as
illustrated in previous figures, is available (gerawav_v4.m). This facilitates obtaining results
for other simulation parameters.

3.2. NRD Estimation Examples Based on the Sawtooth Wave Derivative

The sawtooth wave is defined by (27) with ϕℓ = 0, ℓ = 0, 1, . . . , L − 1, i.e.,

x(t) =
L−1

∑
ℓ=0

Aℓ sin((ℓ+ 1)Ω0t) , (33)

where Aℓ/A0 is defined by (32). Its derivative is obtained as follows:

d
dt

x(t) =
L−1

∑
ℓ=0

Aℓ(ℓ+ 1)
2π

T0
cos((ℓ+ 1)Ω0t)

=
2πA0

T0

L−1

∑
ℓ=0

sin
(
(ℓ+ 1)Ω0t +

π

2

)
, (34)

and its negative derivative is as follows:

− d
dt

x(t) =
2πA0

T0

L−1

∑
ℓ=0

sin
(
(ℓ+ 1)Ω0t − π

2

)
. (35)

The derivative of the sawtooth wave is illustrated in Figure 19 after magnitude normaliza-
tion and after it has been contaminated by white Gaussian noise at 30 dB and 10 dB SNR.
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Figure 19. Illustration of the derivative of the sawtooth test signal when it is affected by noise at
SNR = 30 dB (top), and at SNR = 10 dB (bottom).

In the case of the sawtooth wave derivative, according to (34), it results that ϕℓ = π/2,
ℓ = 0, 1, . . . , L − 1 and, in the case of the negative of the sawtooth wave derivative,
ϕℓ = −π/2, ℓ = 0, 1, . . . , L − 1. As a consequence, using (29), in the first case we obtain the
following:

NRDℓ =
π
2 − (ℓ+ 1)π

2
2π

= − ℓ

4
, ℓ = 0, 1, . . . , L − 1 , (36)

and, in the second case, we obtain the following:

NRDℓ =
−π

2 + (ℓ+ 1)π
2

2π
=

ℓ

4
, ℓ = 0, 1, . . . , L − 1 . (37)

We illustrate in Figure 20 the experimental results regarding the sawtooth wave derivative
when FM = 2.5 Hz and SNR = 30 dB.

Figure 20. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth derivative signal that is FM-modulated (2.5 Hz deviation around the mean) and whose
SNR is 30 dB.

It can be confirmed that the unwrapped NRD vectors match quite precisely the ground-
truth NRD model according to (36). This model is a simple first-order equation whose
value is NRD = −4.75 when ℓ = 19. This good match happens despite the fact that FM
modulation is substantial, especially for higher-order harmonics. As noted in the previous
subsection, this is a consequence of the fact that NRD is intrinsically independent of the
fundamental frequency.
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Similar conclusions are obtained in the practical estimation of the negative of the
sawtooth derivative signal that is subject to FM modulation and noise contamination, as
in the previous case. The results, when FM = 2.5 Hz and SNR = 30 dB, are displayed in
Figure 21.

Figure 21. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of the negative of a sawtooth derivative signal that is FM modulated (2.5 Hz deviation around the
mean) and whose SNR is 30 dB.

It can be confirmed that the estimated unwrapped NRD vectors closely follow the
ground-truth NRD model as defined in (37) and reach an NRD of NRD = 4.75 when ℓ = 19.

The simulation results for the sawtooth derivative signal, and its negative, when
FM = 2.5 Hz and SNR = 10 dB, are shown in Figure 22 and in Figure 23, respectively.

Figure 22. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of a sawtooth derivative signal that is FM modulated (2.5 Hz deviation around the mean) and whose
SNR is 10 dB.

It can be seen that, in both cases, the unwrapped NRD vectors show some dispersion
which is mainly caused by the increased noise floor, which affects phase estimation more
severely. In any case, even for this poor SNR level, there are no drastic mismatches relative
to the ground-truth NRD model that applies to each case.

These examples suggest that the unwrapped NRD can also be used to detect the
polarity of harmonic signals.
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Figure 23. Overlay representation of magnitude spectra (top), and unwrapped NRD vectors (bottom)
of the negative of a sawtooth derivative signal that is FM modulated (2.5 Hz deviation around the
mean) and whose SNR is 10 dB.

3.3. NRD Estimation Examples Using Natural Voice Signals

An example of NRD-based analysis with real-world signals involves voiced sounds,
i.e., those natural voice sounds that possess a periodic nature as a consequence of the
vibration of the vocal folds in the larynx. Figure 24a illustrates an overlay of NRD vectors
resulting from a sustained vowel (22,050 Hz sampling rate and 1 second long) that was
uttered by a female speaker.

(a) Overlay representation of unwrapped
NRD vectors resulting from a female sus-
tained vowel utterance. The magenta line
represents the mean of the first 20 NRD coef-
ficients.

(b) Representative magnitude spectrum of the
sustained vowel signal whose NRD vectors
are represented in (a). Harmonics are signaled
by red triangles.

Figure 24. Example of a harmonic phase model (a) and harmonic magnitude model (b) pertaining to
a female sustained vowel signal.

It can be seen that NRD vectors are very consistent up to harmonic 22, beyond which,
dispersion in the NRD vectors is apparent. This reflects the fact that phase estimation
is disturbed after harmonic 22, which can be easily understood by observing one repre-
sentative magnitude spectrum of the signal, as represented in Figure 24b. In fact, it can
be confirmed that harmonics 22 and 23, at around 5 kHz, have a very small magnitude,
which makes them particularly vulnerable to the noise influence, and leakage effects, which
obviously adversely affect phase estimation. In any case, the most important harmonics are
correctly characterized in their phase structure, which means reliable NRD models can be
built that can be used in parametric-oriented speech processing, as illustrated in Figure 2.
Our recent research, which assumes this framework, has revealed that when simple NRD
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modeling is used in the synthesis process, signal reconstruction with transparent audio
quality can be achieved, even if the NRD region that exhibits dispersion is replaced by a
simple line resulting from extrapolation based on the reliable NRD region (i.e., for which
the unwrapped NRD coefficients are consistent) [28].

A similar NRD analysis for a sustained vowel that was uttered by a male speaker is
illustrated in Figure 25a.

(a) Overlay representation of unwrapped NRD
vectors resulting from a male sustained vowel
utterance. The magenta line represents the mean
of the first 20 NRD coefficients.

(b) Representative magnitude spectrum of the sus-
tained vowel signal whose NRD vectors are rep-
resented in (a). Harmonics are signaled by red
triangles.

Figure 25. Example of a harmonic phase model (a) and harmonic magnitude model (b) pertaining to
a male sustained vowel signal.

It can be seen that the NRD vectors are quite consistent up to harmonics 43–44, which
are located around 5 kHz. Figure 25b depicts one representative magnitude spectrum of
the vowel signal and it can be confirmed that, similarly to the previous case, the magni-
tudes of higher-order harmonics approach the noise floor, which makes phase estimation
essentially unreliable.

However, the region of the unwrapped NRD vectors that span the most important
voice resonances can be reliably modeled. When this is combined with simple modeling
of higher-order NRD coefficients through interpolation, very high-quality synthesis is
achieved which sounds essentially indistinguishable from the original signal [28].

Our recent research in parametric voice re-synthesis, wideband speech coding, and
speaker identification, highlighted that NRD patterns are idiosyncratic, and that they reflect
more strongly the influence of the glottal excitation (i.e., the glottal pulse) than the influence
of the vocal tract filter [23,28,29]. The fact that “the vocal tract phase during voicing is not
important in achieving naturalness” has been understood already in previous studies ([30],
p. 208).

3.4. Demystifying the Phasegram

DFT-based non-parametric spectrum estimation techniques are commonly used to
analyze, represent, and interpret the spectral properties of a given signal for which no
strong assumptions are made. Given that those spectral properties can be characterized in
terms of magnitude and phase, typically, 2D plots and 3D plots can be used in each case,
although only seldom in the case of phase representation.

In the case of the magnitude spectrum, also known as a periodogram, a 2D plot is
simply obtained by taking the absolute value of the short-time DFT of a windowed region
of the signal as a function of frequency. This is illustrated, for example, in Figure 15. The
graphical representation can be linear or logarithmic, either on the horizontal or vertical
axis, or on both axes.

When the goal is to observe how the magnitude spectrum evolves through time, a 3D
representation is created by abutting several magnitude spectra, next to each other, and
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where a colormap is used to represent power spectral density (PSD). A new magnitude
spectrum is obtained by sliding the short-time DFT window over the signal by a certain
hop size that, typically, is less than the window length. Such a 3D representation is known
as a spectrogram. Usually, the horizontal axis represents time, the vertical axis represents
frequency, and the third dimension, which is perpendicular to the time–frequency plane,
is represented by a specific color of a colormap denoting a suitable PSD range. A simple
example is illustrated in Figure 26a that corresponds to the first four harmonics of a
sawtooth signal and whose fundamental frequency is F0 = 187.34 Hz.

(a) Spectrogram of a sawtooth
signal. Only the first four har-
monics are visible in the dis-
played frequency range.

(b) Phasegram of a sawtooth sig-
nal whose spectrogram is repre-
sented in (a). The displayed fre-
quency range encompasses the
first four harmonics only.

(c) Synthetic phasegram repre-
senting the same net phase infor-
mation as that in (b).

Figure 26. Spectrogram (a), phasegram (b), and synthetic phasegram (c) characterizing the first
4 harmonics of a sawtooth waveform.

This particular example allows us to conclude that the signal is stationary because the
PSD is steady through time. However, since spectrograms are blind to phase, the waveform
could change its shape with time and may be quite different from the expected sawtooth
waveform, albeit the magnitude spectrum remains exactly the same. In other words, the
phase structure of the harmonics of the periodic wave may evolve with time. This can be
detected by means of another three-dimensional representation called phasegram. The idea
of the phasegram is the same as that of the spectrogram, except that the third dimension
represents phase instead of power spectral density.

Although colorful and interesting to look at due to the repetitive patterns at different
scales, the phasegram is difficult to interpret and, therefore, is not very useful. Evidence of
this is that common signal processing-related numerical and graphical environments offer
a callable ‘spectrogram’ function but do not offer a ‘phasegram’ function.

Here, we want to demystify the phasegram in Figure 26b (and that is valid for a
stationary harmonic signal that is not too contaminated by noise) by showing that it is
simply an eye-catching representation of the result of phase interpolation at different scales,
and where the unique information is just the starting phase of the fundamental frequency,
and a shift-invariant phase structure such as NRD.

In fact, the different scales are simply caused by the phase rotation of the different
harmonics. As expected, the time evolution of the phase is periodic and, relative to the
phase periodicity of the fundamental frequency, the time evolution for the second harmonic
is two times as fast, three times as fast for the third harmonic, and so on. Thus, according
to Equation (30), the phase evolution in time regarding the fundamental frequency is
governed by Ω0(t + t0), and the phase evolution in time for any harmonic ℓ is governed by
(ℓ+ 1)Ω0(t + t0) + 2πNRDℓ, which highlights that the only phase-related parameters that
are unique are the starting phase of the fundamental frequency and the NRD coefficients.
This explains the horizontal phase evolution for a given harmonic whose local maximum
in the magnitude spectra has index kℓ. The fact that phase changes abruptly at harmonic
frequencies between spectral index kℓ − 1 and kℓ is explained, for example, with the help of
Equation (8). In fact, such phase change is π(1 − 1/N) which, in practical terms (i.e., for
large N), consists of a phase inversion. Such a phase inversion does not occur for other
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spectral indices because, in those cases, the polarity of the real-valued Dirichlet kernel
function also inverts, thereby canceling out the phase inversion.

The remaining spectral lines are ‘passive’ as far as phase is concerned, which means
that their phases are the result of a simple vertical interpolation between the phases of the
‘active’ spectral lines (i.e., those corresponding to local maxima in the magnitude spectrum).
In order to illustrate this, we show in Figure 26c a simple replica of the phasegram of
Figure 26b, which was built by defining first the horizontal phase evolution of the har-
monics, by performing phase rotation by π(1 − 1/N) for kℓ − 1 spectral indices, and by
performing piecewise vertical phase interpolation for the remaining spectral lines. This
helps to reinforce the point—and conclusion—that in the case of stationary periodic signals,
the phasegram is a highly redundant graphical representation whose unique information
is just the starting phase of the fundamental frequency, and the NRD feature vector.

4. Conclusions

This paper focused on a harmonic signal analysis, modeling, and processing paradigm
that eases significantly the representation, transformation, and synthesis of harmonic
signals, especially from the point of view of the phase information.

In the first part of the paper, practical DFT-based approaches that build on a filter-
bank perspective were discussed for estimating the starting phases of individual sinusoids.
Their performance was characterized by considering the CRLB for the variance of an
unbiased phase estimator. In particular, it was shown that contrary to harmonic frequency
and magnitude estimation, accurate phase estimation depends only on ‘coarse search’
and not on ‘fine search’, which makes the estimation more robust. Six phase estimation
alternatives were studied by combining two DFT-based filter banks and three different
window functions. Results were explained in a reproducible manner.

In the second part of the paper, it was shown that the starting phases of individual
sinusoids that are harmonically related may be converted into a phase-related feature
(NRD) that expresses the holistic phase structure of a harmonic signal, has the advantage of
being time-shift-invariant, helps to explain the waveform shape of a quasi-periodic signal,
and helps to provide insight into the physical process that generates it.

Finally, it was shown that the unique information that exists in a phasegram result-
ing from a stationary harmonic signal consists of the starting phase of the fundamental
frequency and the NRD feature vector.

Matlab code (https://github.com/Anibal-Ferreira/demo_AccPhaseEst, accessed on 1
January 2024) is provided that illustrates the most relevant concepts and results that are
discussed in the paper.

Many application scenarios may benefit from the results in this paper paving the
way for new research results, namely speech coding, pitch, and time-scale modification
of speech, singing, audio, and music; speech enhancement; whispered-speech to voiced-
speech conversion and voice rehabilitation; audio forensics; physiological signal analysis
and diagnosis (e.g., using ECG signals); and monitoring of the operation of mechanical
systems using sound.
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CRLB Cramér–Rao lower bound
DFT discrete Fourier transform
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FFT fast Fourier transform
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NRD normalized relative delay
ODFT odd-frequency discrete Fourier transform
PM phase model
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