Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review
Abstract
:1. Introduction
2. General Background
2.1. Smart Cities and Their Main Characteristics
2.2. Categories of Decision-Making Methods
2.3. Level of Decision-Making
2.4. Phases of Urban Process: From Concept to Model, Experimentation, and Assessment
3. Materials and Methods
3.1. First Search Strategy: The First Filter
3.2. Second Search Strategy: The Second Filter
3.3. Third Filter
3.4. Fourth Filter
4. Results
4.1. Qualitative Review: Data Statistics Generated by VOSviewer
4.2. Quantitative Review: Document Analysis
5. Discussion
5.1. Trend of Publications
5.2. Level of Decision-Making
5.3. Phase of Implementation: From Concept to Model, Experiment and Assessment
5.4. The Involvement of Citizens and Other Stakeholders in Group Decision-Making
6. Conclusions
- -
- Even though smart government with citizen participation is an important characteristic of a smart city, few articles focus on this issue.
- -
- MCDM is a popular method at every level of decision-making and throughout all stages of smart city projects. Meanwhile, MP and AI are widely used for making operational and tactical decisions.
- -
- Regarding the implementation process, several papers cover all phases, from concept to modelling and assessing decision-making tools. However, assessing solutions, the final phase, tends to lack efficient engagement of multi stakeholders, especially citizens.
- -
- The involvement of multi-stakeholders is not considered in most phases of smart city projects. In cases where they are involved, there is a lack of decision-making tools supporting the negotiation between stakeholders.
- -
- As evidenced in Figure 7, the research efforts in this field remain in conceptual ideas and models.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Ref | Main Characteristic | Group of Method | Method | Level of Decision | Phase of Implementation | MS | Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | T | S | C | M | Ex | A | I | G | ||||||
1 | [58] | li | MCDM | DEMATEL | x | x | x | |||||||
2 | [59] | go | AI | Bayesian | x | x | x | |||||||
3 | [50] | li | MP | LP | x | x | x | |||||||
4 | [60] | mo | MP | Machine leaning | x | x | x | |||||||
5 | [61] | mo | MP | MP | x | x | x | x | ||||||
6 | [62] | li | IM | MCDM and AI | x | x | ||||||||
7 | [63] | go | MP | Cognitive maps | x | x | x | |||||||
8 | [46] | mo | IM | LP | x | x | x | |||||||
9 | [42] | eco | AI | AI | x | x | x | |||||||
10 | [40] | en | MP | MP | x | x | x | |||||||
11 | [52] | mo | MP | DEA | x | x | x | |||||||
12 | [64] | mo | IM | IM and MCDM | x | x | x | |||||||
13 | [47] | en | MCDM | MAUT | x | x | x | |||||||
14 | [54] | mo | MP | MP | x | x | x | |||||||
15 | [65] | li | MP | MP | x | x | x | |||||||
16 | [44] | en | AI | ABM | x | x | x | |||||||
17 | [66] | mo | MP | MP | x | x | x | |||||||
18 | [67] | go | MCDM | MCDM | x | x | x | |||||||
19 | [68] | go | MCDM | TOPSIS | x | x | x | |||||||
20 | [69] | li | AI | MAS | x | x | x | |||||||
21 | [70] | li | MP | MP | x | x | x | x | ||||||
22 | [71] | li | AI | Stream reason | x | x | x | |||||||
23 | [72] | en | MP | Edge computing | x | x | x | |||||||
24 | [48] | mo | MCDM | MAUT | x | x | x | x | ||||||
25 | [73] | mo | AI | Artificial network | x | x | x | |||||||
26 | [74] | li | MP | MP | x | x | x | |||||||
27 | [75] | li | MCDM | ANP and DEMATEL | x | x | x | |||||||
28 | [51] | li | MP | MP | x | x | x | |||||||
29 | [76] | mo | MCDM | MAUT | x | x | x | |||||||
30 | [77] | mo | AI | GA | x | x | x | x | ||||||
31 | [78] | mo | AI | MAS | x | x | x | |||||||
32 | [53] | mo | MP | MP | x | x | x | |||||||
33 | [79] | li | MCDM | MAUT | x | x | x | x | ||||||
34 | [80] | mo | AI | AI | x | x | x | |||||||
35 | [81] | mo | MP | MP | x | x | x | |||||||
36 | [82] | en | MCDM | MCDM | x | x | x | |||||||
37 | [83] | mo | MCDM | MAUT | x | x | x | |||||||
38 | [84] | li | MCDM | MCDM | x | x | x | |||||||
39 | [85] | en | MP | Game theoretic | x | x | x | |||||||
40 | [86] | li | MP | Non-LP | x | x | x | |||||||
41 | [87] | mo | MP | MP | x | x | x | |||||||
42 | [88] | mo | MCDM | MAUT | x | x | x | |||||||
43 | [89] | en | MCDM | MCDM | x | x | x | |||||||
44 | [90] | eco | MP | MP | x | x | x | |||||||
45 | [91] | en | MP | MP | x | x | x | x | ||||||
46 | [92] | go | AI | AI | x | x | x | |||||||
47 | [31] | go | AI | AI | x | x | x | x | ||||||
48 | [36] | en | MCDM | MCDM | x | x | x | |||||||
49 | [43] | en | AI | AI | x | x | x | |||||||
50 | [93] | mo | MP | LP | x | x | ||||||||
51 | [94] | en | MCDM | AHP | x | x | x | |||||||
52 | [95] | go | MCDM | MAUT | x | x | x | |||||||
53 | [96] | go | MCDM | MAUT | x | x | x | |||||||
54 | [97] | en | MP | MP | x | x | x | x | ||||||
55 | [98] | en | IM | MCDM and AI | x | x | x | |||||||
56 | [99] | en | AI | GA | x | x | x | x | ||||||
57 | [100] | mo | AI | MAUT | x | x | x | x | ||||||
58 | [101] | en | MCDM | MAUT | x | x | x | x | ||||||
59 | [102] | li | MP | MP | x | x | x | |||||||
60 | [103] | en | MCDM | MAUT | x | x | x | x | ||||||
61 | [104] | en | IM | DEA and MP | x | x | x | |||||||
62 | [105] | mo | MP | MP | x | x | x | |||||||
63 | [106] | li | MP | MP | x | x | x | |||||||
64 | [107] | en | MP | MP | x | x | x | |||||||
65 | [108] | li | AI | MAS | x | x | x | x | ||||||
66 | [45] | en | AI | MAS | x | x | x | x | ||||||
67 | [109] | en | MP | machine leaning | x | x | x | |||||||
68 | [110] | li | MP | MP | x | x | x | |||||||
69 | [111] | li | MP | MP | x | x | x | |||||||
70 | [112] | mo | MCDM | MCDM | x | x | x | |||||||
71 | [113] | en | MCDM | MCDM | x | x | x | |||||||
72 | [114] | pe | IM | MCDM and MAS | x | x | x | x | ||||||
73 | [115] | mo | IM | AHP and LP | x | x | x | |||||||
74 | [49] | mo | IM | AHP and DEA | x | x | x | |||||||
75 | [116] | mo | IM | GA and Swarm | x | x | x | |||||||
76 | [117] | en | AI | Cognitive theories | x | x | x |
References
- Kapelan, Z.; Savić, D.A.; Walters, G.A. Decision-support tools for sustainable urban development. Proc. Inst. Civ. Eng. Eng. Sustain. 2005, 158, 135–142. [Google Scholar]
- Batty, M. The New Science of Cities; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Dupont, L.; Morel, L.; Guidat, C. Innovative public-private partnership to support Smart City: The case of “Chaire REVES”. J. Strat. Manag. 2015, 8, 245–265. [Google Scholar] [CrossRef]
- Kurniawan, F.; Wibawa, A.P.; Munir; Nugroho, S.M.S.; Hariadi, M. Makassar Smart City Operation Center Priority Optimization Using Fuzzy Multi-Criteria Decision-Making. In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–5. [Google Scholar]
- Chai, J.; Liu, J.N.K.; Ngai, E.W.T. Application of Decision-Making Techniques in Supplier Selection: A Systematic Review of Literature. Expert Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Eskelinen, J.; Lindy, I.; Marsh, J.; Muente-kunigami, A. Citizen-Driven Innovation: A Guidebook for City Mayors and Public Administrators; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Lehmann, V.; Frangioni, M.; Dubé, P.; Paraponaris, D.M.S.P.C. Living Lab as knowledge system: An actual approach for managing urban service projects? J. Knowl. Manag. 2015, 19, 1087–1107. [Google Scholar] [CrossRef]
- Giffinger, R. Smart Cities–Ranking of European Medium-Sized Cities Local; Centre of Regional Science, Vienna University of Technology: Vienna, Austria, 2007. [Google Scholar]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building Understanding of Smart City Initiatives. In Proceedings of the International Conference on Electronic Government, Kristiansand, Norway, 3–6 September 2012; Volume 7443, pp. 40–53. [Google Scholar]
- Allam, Z.; Newman, P. Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities 2018, 1, 2. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Ruhlandt, R.W.S. The Governance of Smart Cities: A Systematic Literature Review. Cities 2018, 81, 1–23. [Google Scholar] [CrossRef]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Sanayei, A.; Mousavi, S.F.; Yazdankhah, A. Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst. Appl. 2010, 37, 24–30. [Google Scholar] [CrossRef]
- Wu, N.; Silva, E.A. Artificial Intelligence Solutions for Urban Land Dynamics: A Review. J. Plan. Lit. 2010, 24, 246–265. [Google Scholar]
- Giang, T.T.H.; Camargo, M.; Dupont, L.; Mayer, F. A Review of Methods for Modelling Shared Decision-Making Process in a Smart City Living Lab. In Proceedings of the 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Funchal, Portugal, 27–29 June 2017. [Google Scholar]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Pérez, A.T.E.; Camargo, M.; Rincón, P.C.N.; Marchant, M.A. Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renew. Sustain. Energy Rev. 2017, 69, 350–359. [Google Scholar] [CrossRef]
- Salet, W.; Bertolini, L.; Giezen, M. Complexity and Uncertainty: Problem or Asset in Decision Making of Mega Infrastructure Projects? Int. J. Urban Reg. Res. 2013, 37, 1984–2000. [Google Scholar] [CrossRef]
- Loorbach, D. Transition Management for Sustainable Development: A Prescriptive, Complexity-Based Governance Framework. Governance 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Pereira, G.V.; Macadar, M.A.; Luciano, E.M.; Testa, M.G. Delivering Public Value through Open Government Data Initiatives in a Smart City Context. Inf. Syst. Front. 2017, 19, 213–229. [Google Scholar] [CrossRef]
- Lacroix, J.; Dupont, L.; Guidat, C.; Hamez, G. “Smarterized” Urban Project Process with Living Lab Approach: Exploration through a Case Study. In Proceedings of the 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Funchal, Portugal, 27–29 June 2017. [Google Scholar]
- Zetlaoui-Léger, J. La Programmation Architecturale et Urbaine. Émergence et Évolutions d’une Fonction. Les Cah. la Rech. Archit. Urbaine 2009, 24/25, 143–158. [Google Scholar]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gómez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Dupont, L.; Gholipour, V.; Morel, L.; Bignon, J.C.; Guidat, C. From Urban Concept to Urban Engineering: The Contribution of Distributed Collaborative Design to the Management of Urban Projects. J. Urban Des. 2012, 17, 255–277. [Google Scholar] [CrossRef]
- Griffith, W.T.; Brosing, J.W. Physics of Everyday Phenomena; McGraw-Hill Higher Education: New York, NY, USA, 2001. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Zaslavsky, A.; Sosunova, I.; Fedchenkov, P.; Medvedev, A.; Ntalianis, K.; Skourlas, C.; Rybin, A.; Khoruznikov, S. A stochastic multi-agent system for Internet of Things-enabled waste management in smart cities. Waste Manag. Res. 2018, 36, 1113–1121. [Google Scholar] [CrossRef]
- Zyrianoff, I.; Borelli, F.; Biondi, G.; Heideker, A.; Kamienski, C. Scalability of Real-Time IoT-based Applications for Smart Cities. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 00688–00693. [Google Scholar]
- Abu-Elkheir, M.; Hassanein, H.S.; Oteafy, S.M. Enhancing Emergency Response Systems through Leveraging Crowdsensing and Heterogeneous Data. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 188–193. [Google Scholar]
- Sivarajah, U.; Markaki, O.; Waller, P.; Metelmann, C.; Meissner, K.; Alsaeed, A. Fostering Smart Cities through ICT Driven Policy-Making: Expected Outcomes and Impacts of DAREED Project. Int. J. Electron. Gov. Res. 2014, 10, 1–18. [Google Scholar] [CrossRef]
- Khan, Z.; Anjum, A.; Soomro, K.; Tahir, M.A. Towards cloud based big data analytics for smart future cities. J. Cloud Comput. 2015, 4, 49. [Google Scholar] [CrossRef]
- Fabbiani, E.; Vidal, P.; Massobrio, R.; Nesmachnow, S. Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems. Comput. Vis. 2017, 697, 146–160. [Google Scholar]
- Olszewski, R.; Turek, A.; Tan, Y.; Shi, Y. Application of the Spatial Data Mining Methodology and Gamification for the Optimisation of Solving the Transport Issues of the “Varsovian Mordor”. In Proceedings of the International Conference on Data Mining and Big Data, Bali, Indonesia, 25–30 June 2016; Volume 9714, pp. 103–114. [Google Scholar]
- Carli, R.; Dotoli, M.; Pellegrino, R. A Hierarchical Decision-Making Strategy for the Energy Management of Smart Cities. IEEE Trans. Autom. Sci. Eng. 2017, 14, 505–523. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Lugaric, L.; Krajcar, S. Transforming Cities towards Sustainable Low-Carbon Energy Systems Using Emergy. Energy Policy 2016, 98, 471–482. [Google Scholar] [CrossRef]
- Chen, N.; Chen, Y.; You, Y.; Ling, H.; Liang, P.; Zimmermann, R. Dynamic Urban Surveillance Video Stream Processing Using Fog Computing. In Proceedings of the 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), Taipei, Taiwan, 20–22 April 2016; pp. 105–112. [Google Scholar]
- El-Sayed, H.; Sankar, S.; Prasad, M.; Puthal, D.; Gupta, A.; Mohanty, M.; Lin, C.T. Edge of Things: The Big Picture on the Integration of Edge, IoT and the Cloud in a Distributed Computing Environment. IEEE Access 2018, 6, 1706–1717. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I. Service-Oriented Big Data Analytics for Improving Buildings Energy Management in Smart Cities. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1243–1248. [Google Scholar]
- Saggi, M.K.; Jain, S. A survey towards an integration of big data analytics to big insights for value-creation. Inf. Process. Manag. 2018, 54, 758–790. [Google Scholar] [CrossRef]
- Wang, E.; Attard, S.; Everingham, Y.; Philippa, B.; Xiang, W. Smarter Irrigation Management in the Sugarcane Farming System Using Internet of Things. In Proceedings of the 40th Annual Conference of the Australian Society of Sugar Cane Technologists, Mackay, Australia, 17–20 April 2018; pp. 117–122. [Google Scholar]
- Kraemer, M.; Ludlow, D.; Khan, Z. Domain-Specific Languages for Agile Urban Policy Modelling. In Proceedings of the 27th Conference on Modelling and Simulation, Alesund, Norway, 27–30 May 2013; pp. 673–680. [Google Scholar]
- Khansari, N.; Silverman, B.G.; Du, Q.; Waldt, J.B.; Braham, W.W.; Lee, J.M. An Agent-Based Decision Tool to Explore Urban Climate & Smart City Possibilities. In Proceedings of the 2017 Annual IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–6. [Google Scholar]
- Kettenis, D.; Ligtenberg, A.; Beulens, A.; Bregt, A.K.; Wachowicz, M. Simulating Knowledge Sharing in Spatial Planning: An Agent-Based Approach. Environ. Plan. B Plan. Des. 2009, 36, 644–663. [Google Scholar]
- Moghadam, S.T.; Toniolo, J.; Mutani, G.; Lombardi, P. A GIS-statistical approach for assessing built environment energy use at urban scale. Sustain. Cities Soc. 2018, 37, 70–84. [Google Scholar] [CrossRef]
- Dowling, C.; Walsh, S.; Purcell, S. Operationalising Sustainability within Smart Cities: Towards an Online Sustainability Indicator Tool. Int. J. E Plan. Res. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Vallejo, E.; Criado, C.; Arrizabalaga, E.; Vasallo, A. Sustainable Strategic Urban Planning: Methodology for Urban Renovation at District Level. In Proceedings of the SWC2017/SHC2017 International Conference on Solar Heating and Cooling for Buildings and Industry, Abu Dhabi, UAE, 29 October–2 November 2017; pp. 1–12. [Google Scholar]
- Wey, W.M. Smart Growth Principles Combined with Fuzzy AHP and DEA Approach to the Transit-Oriented Development (TOD) Planning in Urban Transportation Systems. J. Energy Technol. Policy 2013, 3, 251–258. [Google Scholar]
- Bellini, P.; Nesi, P.; Paolucci, M.; Zaza, I. Smart City Architecture for Data Ingestion and Analytics: Processes and Solutions. In Proceedings of the 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg, Germany, 26–29 March 2018; pp. 137–144. [Google Scholar]
- Zelentsov, L.; Mailyan, L. Creation of intelligent management systems in construction. MATEC Web Conf. 2017, 106, 8051. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, S.D.A.; Dos Santos, F.J.; Pinheiro, P.R.; Barbosa, F.R. Dynamic Evaluation of the Energy Efficiency of Environments in Brazilian University Classrooms Using DEA. Sustainability 2017, 9, 2373. [Google Scholar] [CrossRef]
- Agugiaro, G. enabling “energy-awareness” in the semantic 3d city model of vienna. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, IV-4/W1, 81–88. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Painho, M. Smart cities intelligence system (smacisys) integrating sensor web with spatial data infrastructures (sensdi). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W3, 21–28. [Google Scholar] [CrossRef]
- Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D’antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; et al. A Web-based spatial decision supporting system for land management and soil conservation. Solid Earth 2015, 6, 903–928. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Bosch, F.; Aguado, A.; Pino, M. Holistic Model to Analyze and Prioritize Urban Sustainable Buildings for Public Services. Sustain. Cities Soc. 2019, 44, 227–236. [Google Scholar]
- Eräranta, S.; Staffans, A. From Situation Awareness to Smart City Planning and Decision Making. In Proceedings of the International Conference on Computers in Urban Planning and Urban Management, Cambridge, MA, USA, 7–10 July 2015. [Google Scholar]
- Liu, Y.; Wang, H.; Tzeng, G.H. From Measure to Guidance: Galactic Model and Sustainable Development Planning toward the Best Smart City. J. Urban Plan. Dev. 2018, 144, 04018035. [Google Scholar] [CrossRef]
- Ju, J.; Liu, L.; Feng, Y. Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 2018, 42, 881–896. [Google Scholar] [CrossRef]
- Mouchili, M.N.; Aljawarneh, S.; Tchouati, W. Smart City Data Analysis. In Proceedings of the First International Conference on Data Science, E-learning and Information Systems DATA ’18, Madrid, Spain, 1–2 October 2018; p. 33. [Google Scholar]
- Fadda, E.; Gobbato, L.; Perboli, G.; Rosano, M.; Tadei, R. Waste Collection in Urban Areas: A Case Study. Interfaces 2018, 48, 307–322. [Google Scholar] [CrossRef]
- Stefanic, P.; Kimovski, D.; Suciu, G.; Stankovski, V. Non-Functional Requirements Optimisation for Multi-Tier Cloud Applications: An Early Warning System Case Study. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–8. [Google Scholar]
- Pereira, G.V.; Eibl, G.; Stylianou, C.; Martínez, G.; Neophytou, H.; Parycek, P. The Role of Smart Technologies to Support Citizen Engagement and Decision Making. Int. J. Electron. Gov. Res. 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Abastante, F.; Lami, I.M.; Lombardi, P. An Integrated Participative Spatial Decision Support System for Smart Energy Urban Scenarios: A Financial and Economic Approach. Buildings 2017, 7, 103. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M. The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems. Measurement 2018, 124, 47–55. [Google Scholar] [CrossRef]
- Mihăiţă, A.S.; Dupont, L.; Camargo, M. Multi-objective traffic signal optimization using 3D mesoscopic simulation and evolutionary algorithms. Simul. Model. Pract. Theory 2018, 86, 120–138. [Google Scholar] [CrossRef]
- Giacobbe, M.; Di Pietro, R.; Minnolo, A.L.; Puliafito, A. Evaluating Information Quality in Delivering IoT-as-a-Service. In Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018; pp. 405–410. [Google Scholar]
- Gheibi, M.; Karrabi, M.; Mohammadi, A.; Dadvar, A. Controlling air pollution in a city: A perspective from SOAR-PESTLE analysis. Integr. Environ. Assess. Manag. 2018, 14, 480–488. [Google Scholar] [CrossRef]
- Abbasi, M.H.; Majidi, B.; Manzuri, M.T. Deep Cross Altitude Visual Interpretation for Service Robotic Agents in Smart City. In Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, 28 February–2 March 2018; pp. 79–82. [Google Scholar]
- Kinawy, S.; El-Diraby, T.; Konomi, H. Customizing information delivery to project stakeholders in the smart city. Sustain. Cities Soc. 2018, 38, 286–300. [Google Scholar] [CrossRef]
- D’Aniello, G.; Gaeta, M.; Orciuoli, F. An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform. 2018, 35, 68–81. [Google Scholar] [CrossRef]
- Hou, W.; Ning, Z.; Guo, L. Green Survivable Collaborative Edge Computing in Smart Cities. IEEE Trans. Ind. Inform. 2018, 14, 1594–1605. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Mehmood, M.T.; Jabbar, S.; Khalid, S.; Ahmad, A.; Jeon, G. An enhanced framework for multimedia data: Green transmission and portrayal for smart traffic system. Comput. Electr. Eng. 2018, 67, 291–308. [Google Scholar] [CrossRef]
- Manqele, L.; Adeogun, R.; Dlodlo, M.; Coetzee, L. Multi-Objective Decision-Making Framework for Effective Waste Collection in Smart Cities. In Proceedings of the 2017 Global Wireless Summit (GWS), Cape Town, South Africa, 15–18 October 2017; pp. 155–159. [Google Scholar]
- Rad, T.G.; Sadeghi-Niaraki, A.; Abbasi, A.; Choi, S.-M. A methodological framework for assessment of ubiquitous cities using ANP and DEMATEL methods. Sustain. Cities Soc. 2018, 37, 608–618. [Google Scholar]
- Mosannenzadeh, F.; Di Nucci, M.R.; Vettorato, D. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach. Energy Policy 2017, 105, 191–201. [Google Scholar] [CrossRef]
- Rahman, A.; Jin, J.; Cricenti, A.; Rahman, A.; Panda, M. Motion and Connectivity Aware Offloading in Cloud Robotics via Genetic Algorithm. In Proceedings of the 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Fedyanin, D.; Vershinin, Y. On Distributed Reflexive Complex Mechanisms of Decision-making in a Transportation System of a Smart city. Int. J. Eng. Technol. 2018, 7, 164–167. [Google Scholar] [CrossRef]
- El Hendy, M.; Miniaoui, S.; Fakhry, H. Towards Strategic Information & Communication Technology (ICT) Framework for Smart Cities Decision-Makers. In Proceedings of the 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 2–4 December 2015; pp. 1–7. [Google Scholar]
- Yang, Q.; Li, G.; Cai, T.; Wang, Q. Underground Intelligent Logistic System Integrated with Internet of Things. Agreem. Technol. 2018, 11226, 298–302. [Google Scholar]
- Ruiz, X.; Calvet, L.; Ferrarons, J.; Juan, A. SmartMonkey: A Web Browser Tool for Solving Combinatorial Optimization Problems in Real Time; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 74–86. [Google Scholar]
- Eswaran, S.P.; Sripurushottama, S.; Jain, M. Multi Criteria Decision Making (MCDM) based Spectrum Moderator for Fog-Assisted Internet of Things. Procedia Comput. Sci. 2018, 134, 399–406. [Google Scholar] [CrossRef]
- Oswald-Beiler, M.R.O.; Phillips, B. Prioritizing Pedestrian Corridors Using Walkability Performance Metrics and Decision Analysis. J. Urban Plan. Dev. 2016, 142, 4015009. [Google Scholar] [CrossRef]
- Rondini, A.; Lagorio, A.; Pinto, R.; Pezzotta, G. A multi-criteria decision making approach for prioritising product-service systems implementation in smart cities. Int. J. Manag. Decis. Mak. 2018, 17, 415. [Google Scholar]
- Wang, S.; Wu, J.; Zhang, Y. Consumer preference–enabled intelligent energy management for smart cities using game theoretic social tie. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771877323. [Google Scholar] [CrossRef]
- De Maio, C.; Fenza, G.; Loia, V.; Orciuoli, F. Distributed online Temporal Fuzzy Concept Analysis for stream processing in smart cities. J. Parallel Distrib. Comput. 2017, 110, 31–41. [Google Scholar] [CrossRef]
- Abberley, L.; Gould, N.; Crockett, K.; Cheng, J. Modelling Road Congestion Using Ontologies for big Data Analytics in Smart Cities. In Proceedings of the 2017 International Smart Cities Conference (ISC2), Wuxi, China, 14–17 September 2017; pp. 1–6. [Google Scholar]
- Digiesi, S.; Mossa, G.; Mummolo, G.; Verriello, R. A Carbon Footprint Calculator for the Municipal Waste Collection System of Bari. In Proceedings of the XX Summer School “Francesco Turco”—Industrial Systems Engineering, Naples, Italy, 16–18 September 2015; pp. 165–172. [Google Scholar]
- Saaty, T.L.; De Paola, P. Rethinking Design and Urban Planning for the Cities of the Future. Buildings 2017, 7, 76. [Google Scholar] [CrossRef]
- Orłowski, C. Rule-Based Model for Selecting Integration Technologies for Smart Cities Systems. Cybern. Syst. 2014, 45, 136–145. [Google Scholar] [CrossRef]
- Sarkar, M.; Banerjee, S.; Badr, Y.; Sangaiah, A.K. Configuring a Trusted Cloud Service Model for Smart City Exploration Using Hybrid Intelligence. Int. J. Ambient. Comput. Intell. 2017, 8, 1–21. [Google Scholar] [CrossRef]
- D’Asaro, F.A.; Di Gangi, M.A.; Perticone, V.; Tabacchi, M.E. Computational Intelligence and Citizen Communication in the Smart City. Inform. Spektrum 2017, 40, 25–34. [Google Scholar] [CrossRef]
- Latorre-Biel, J.-I.; Faulin, J.; Jiménez, E.; Juan, A.A.; Alba, E.; Chicano, F.; Luque, G. Simulation Model of Traffic in Smart Cities for Decision-Making Support: Case Study in Tudela (Navarre, Spain). In Proceedings of the International Conference on Smart Cities, Malaga, Spain, 14–16 June 2017; Volume 10268, pp. 144–153. [Google Scholar]
- Mokoena, B.T.; Musakwa, W.; Moyo, T. Developing the Well-Located Land Index to Establish Smart Human Settlements for the Ekurhuleni Municipality, South Africa. Lect. Notes Geoinf. Cartogr. 2017, 6, 95–112. [Google Scholar]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Anthopoulos, L.G.; Gerogiannis, V.C.; Fitsilis, P. Supporting the Solution Selection for a Digital City with a Fuzzy-Based Approach. In Proceedings of the KMIS 2011-International Conference on Knowledge Management and Information Sharing, Paris, France, 26–29 October 2011; pp. 355–358. [Google Scholar]
- Kulju, M.; Oksman, V. Developing online illustrative and participatory tools for urban planning: Towards open innovation and co-production through citizen engagement. Int. J. Serv. Technol. Manag. 2017, 23, 445. [Google Scholar] [CrossRef]
- Maktav, D.; Jürgens, C.; Siegmund, A.; Sunar, F.; Esbah, H.; Kalkan, K.; Uysal, C.; Mercan, O.Y.; Akar, I.; Thunig, H.; et al. Multi-Criteria Spatial Decision Support System for Valuation of Open Spaces for urban Planning. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies-RAST2011, Istanbal, Turkey, 9–11 June 2011; pp. 160–163. [Google Scholar]
- Raikov, A.N. Strategic Planning of Science City Socioeconomic Development. In Digital Transformation and Global Society. DTGS 2017; Alexandrov, D., Boukhanovsky, A., Chugunov, A., Kabanov, Y., Koltsova, O., Eds.; Communications in Computer and Information Science, vol 745; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Chowdhary, N.; Kaur, P.D. Increasing Route Availability in Internet of Vehicles Using Ant Colony Optimization. Comput. Vis. 2017, 712, 318–331. [Google Scholar]
- Rall, E.L.; Haase, D. Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landsc. Urban Plan. 2011, 100, 189–201. [Google Scholar] [CrossRef]
- Moreno, V.; Ferrer, J.A.; Díaz, J.A.; Bravo, D.; Chang, V. A Data-Driven Methodology for Heating Optimization in Smart Buildings. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017; pp. 19–29. [Google Scholar]
- Hermans, C.; Erickson, J.; Noordewier, T.; Sheldon, A.; Kline, M. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont. J. Environ. Manag. 2007, 84, 534–546. [Google Scholar] [CrossRef]
- Dos Santos, M.J.P.L. Smart Cities and Urban Areas—Aquaponics as Innovative Urban Agriculture. Urban For. Urban Green. 2016, 20, 402–406. [Google Scholar] [CrossRef]
- Mourshed, M.; Bucchiarone, A.; Khandokar, F. SMART: A Process-Oriented Methodology for Resilient Smart Cities. In Proceedings of the 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–6. [Google Scholar]
- Orłowski, C.; Ziółkowski, A.; Orlowski, A.; Kaplanski, P.; Sitek, T.; Pokrzywnicki, W. KPIs as a Method of Implementing Decision-Making Processes in the Management of Smart Cities. In Transactions on Computational Collective Intelligence XXV; Nguyen, N., Kowalczyk, R., Orłowski, C., Ziółkowski, A., Eds.; Lecture Notes in Computer Science, vol. 9990; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Carli, R.; Dotoli, M.; Andria, G.; Lanzolla, A.M.L. Bi-Level Programming for the Strategic Energy Management of a Smart City. In Proceedings of the 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy, 13–14 June 2016; pp. 1–6. [Google Scholar]
- Fahad, M.; Boissier, O.; Maret, P.; Moalla, N.; Gravier, C. Smart places: Multi-agent based smart mobile virtual community management system. Appl. Intell. 2014, 41, 1024–1042. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Ae Chun, S.; Shafiq, B.; Adam, N.R. Big Data-Based Smart City Platform: Real-Time Crime Analysis. In Proceedings of the 17th International Digital Government Research Conference on Digital Government Research-dg.o ’16, Shanghai, China, 8–10 June 2016; pp. 58–66. [Google Scholar]
- Rolim, O.C.; Rossetto, A.G.D.M.; Leithardt, V.R.; Borges, G.A.; Geyer, C.F.; Dos Santos, T.F.; Souza, A.M. A Novel Engine to Underlie the Data Transmission of Social Urban Sensing Applications. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 677–682. [Google Scholar]
- Kosmides, P.; Adamopoulou, E.; Demestichas, K.; Theologou, M.; Anagnostou, M.; Rouskas, A. Socially Aware Heterogeneous Wireless Networks. Sensors 2015, 15, 13705–13724. [Google Scholar] [CrossRef] [Green Version]
- Foucault, J.P.; Moulier-Boutang, Y. Towards Economic and Social “Sensors”: Condition and Model of Governance and Decision-Making for an Organologocal Smart City. In Proceedings of the 2015 International Conference on Smart and Sustainable City and Big Data, Shanghai, China, 26–27 July 2015; pp. 106–112. [Google Scholar]
- Papastamatiou, I.; Doukas, H.; Psarras, J. An Information Management Software for Assessing Smart Energy Systems Exploiting Cities’ Multidisciplinary Data. IISA. In Proceedings of the 5th International Conference on Information, Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014; pp. 285–290. [Google Scholar]
- Palomares, I.; Martinez, L. A Semi-Supervised Multi-Agent System Model to Support Consensus Reaching Processes. IEEE Trans. Fuzzy Syst. 2013, 22, 762–777. [Google Scholar]
- Meza, J.L.C.; Yildirim, M.B.; Masud, A.S.M. A Model for the Multiperiod Multiobjective Power Generation Expansion Problem. IEEE Trans. Power Syst. 2007, 22, 871–878. [Google Scholar]
- Amini, M.H.; Moghaddam, M.P.; Karabasoglu, O. Simultaneous allocation of electric vehicles’ parking lots and distributed renewable resources in smart power distribution networks. Sustain. Cities Soc. 2017, 28, 332–342. [Google Scholar]
- Khansari, N.; Mostashari, A.; Mansouri, M. Conceptual Modeling of the Impact of Smart Cities on Household Energy Consumption. Procedia Comput. Sci. 2014, 28, 81–86. [Google Scholar] [Green Version]
Field | Option Introduced |
---|---|
Keywords | “decision making” AND (“smart city” OR “smart cities”) |
Search in | Title, abstract, keywords |
Period explored | to 2018 |
Type of documents | Articles and conference papers |
Database | Scopus® |
Cluster | Main Keywords | Other Keywords | Example Reference | Research Trend |
---|---|---|---|---|
1 (green) | Internet of things | fuzzy logic, Smart home, sensors, waste management, context, carbon footprint, simulation | [28,29] | IoT- based application for smart city |
2 (blue) | Decision support system, ICT | e-participation, smart governance, crowdsourcing, emergency response, ontology, semantic web | [30,31] | Decision support system based on ICT for smart governance |
3 (purple) | Big data | deep learning, machine learning, healthcare, intelligent transportation system | [32,33] | The application of big data analysis and data mining algorithms in smart cities |
4 (red) | Optimization | smart grid, energy management, GIS, network, security, visualization, game theory, demand response | [34,35] | Optimization tools for networks in smart cities |
5 (yellow) | Sustainability | infrastructure, innovation, social network, urban planning, earth observation, climate change, MCDM, AHP | [36,37] | Assessment of sustainability of smart cities |
6 (pink) | Cloud computing | artificial intelligence, edge computing, fog computing | [38,39] | Decision based on cloud computing and artificial intelligence methods |
7 (orange) | Data analytics | open data, wireless sensor networks, privacy, classification | [40,41] | Data analytics, a paradigm and solution for decision-making |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran Thi Hoang, G.; Dupont, L.; Camargo, M. Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review. Smart Cities 2019, 2, 433-452. https://doi.org/10.3390/smartcities2030027
Tran Thi Hoang G, Dupont L, Camargo M. Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review. Smart Cities. 2019; 2(3):433-452. https://doi.org/10.3390/smartcities2030027
Chicago/Turabian StyleTran Thi Hoang, Giang, Laurent Dupont, and Mauricio Camargo. 2019. "Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review" Smart Cities 2, no. 3: 433-452. https://doi.org/10.3390/smartcities2030027
APA StyleTran Thi Hoang, G., Dupont, L., & Camargo, M. (2019). Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review. Smart Cities, 2(3), 433-452. https://doi.org/10.3390/smartcities2030027