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Abstract: Device-free localization (DFL) has become a hot topic in the paradigm of the Internet
of Things. Traditional localization methods are focused on locating users with attached wearable
devices. This involves privacy concerns and physical discomfort especially to users that need to wear
and activate those devices daily. DFL makes use of the received signal strength indicator (RSSI) to
characterize the user’s location based on their influence on wireless signals. Existing work utilizes
statistical features extracted from wireless signals. However, some features may not perform well in
different environments. They need to be manually designed for a specific application. Thus, data
processing is an important step towards producing robust input data for the classification process.
This paper presents experimental procedures using the deep learning approach to automatically
learn discriminative features and classify the user’s location. Extensive experiments performed in an
indoor laboratory environment demonstrate that the approach can achieve 84.2% accuracy compared
to the other basic machine learning algorithms.

Keywords: device-free localization; machine learning classifier; deep learning; big data; wireless
networks; classification; received signal strength

1. Introduction

The Internet of Things (IoT) has become a widespread phenomenon due to its progressive
capabilities [1]. Areas that have been well investigated in this field include wireless sensor networks
(WSNs), radio frequency identification (RFID) and mobile computing. Particularly, the WSN provides
various advanced technologies such as sensor development, wireless communication and distributed
information processing and because of this, it has received a great amount of attention in IoT
communities. Often, a number of sensor nodes are deployed in WSN applications. These sensors are
connected through wireless communication to perform several tasks such as sensing, recognizing,
and monitoring. These tasks are used in many applications, for example, object tracking [2], intruder
detection [3], indoor fire detection [4] and human localization as well as activity recognition in indoor
environments [5,6].

So far, indoor human localization has made a major breakthrough in WSN services. Most of
the localization systems can be divided into two types: active and passive communication systems [7].
The former requires users to carry or wear terminal devices such as sensors or RFID tags in order
to be located. Some use a cellular-based signal to locate the user’s location through smartphones
while some utilize satellite signals to provide accurate localization points. Although these systems are

Smart Cities 2020, 3, 24; doi:10.3390/smartcities3020024 www.mdpi.com/journal/smartcities

http://www.mdpi.com/journal/smartcities
http://www.mdpi.com
https://orcid.org/0000-0002-3226-6423
https://orcid.org/0000-0002-2547-3934
https://orcid.org/0000-0002-7108-215X
http://www.mdpi.com/2624-6511/3/2/24?type=check_update&version=1
http://dx.doi.org/10.3390/smartcities3020024
http://www.mdpi.com/journal/smartcities


Smart Cities 2020, 3, 24 1 of 12

usually great at providing a location-based service, they still suffer a certain amount of localization
errors [8]. Furthermore, most of the systems encounter some challenges where it is difficult to be
applied, especially in cases where humans do not want to attach or mount any sensors to their body.

As technologies progress, passive communication systems are able to solve the problem. These
systems do not need any devices to be carried in order to be detected or located. Recent research has
seen a rising trend towards this technology. It can also be known as device-free localization (DFL) or
sensor-less sensing. Most of the work utilizes radio frequency (RF) to create a wireless sensor network,
where specifically the propagation of the radio is actually the sensors [9]. In particular, a received
signal strength indicator (RSSI) can also be used to measure signal variations between sensor nodes.
The presence of a human can be detected when the person goes into the monitoring area because
the movement will reflect, scatter and absorb the RSSI signal [10]. Therefore, using this method, it
is possible to infer a person’s location by analyzing its influence on the wireless signals. This has
promising prospects as it does not require users to be equipped with any terminal devices and thus,
eliminates the privacy issues. Furthermore, the systems have a large sensing range, which make them
an attractive technique for various applications.

The major element of this work is to characterize and classify the influence of the user’s location
on the wireless signals using RSSI values. Traditionally, researchers used to extract statistical features
from sensor raw data such as mean, variances, energy and entropy based on time and frequency
domains [11]. Then, the features have to be processed in order to study the relationship between
them and their target locations. However, in practice, the location-features relationship is not directly
accessible. The variations in RSSI values caused by a moving target are usually weak and furthermore,
noises in the environment degrade its classification results. This results in labour-intensive and
time-consuming work to produce reliable features to suit the target location.

To address the problem, this paper presents a device-free localization method to classify the user’s
location in an indoor environment. The work mainly proposes an experimental procedure for obtaining
input data for a deep learning approach in the form of RSSI values. They are treated as matrix indices,
which represent patterns of movement for a person in each location. The basic principle is that different
moving arrangements will produce different patterns in the RSSI matrix indices. A deep learning
model is then used to classify the patterns of RSSI data with the movement of a person in its target
location and produce a classification model. The performance of the model is compared with several
machine learning algorithms in terms of accuracy, precision, recall and F-measure. As a summary,
the contributions of this paper are as follows:

1. A device-free localization system is proposed, which consists of offline and online training phases.
The offline phase is used to build a deep learning model that can identify the difference in RSSI
value in the form of matrix indices. The matrix represents patterns when the person moves
around in predetermined locations. Meanwhile, the online phase predicts the exact location of
a person based on the real-time obtained values of RSSI based on the Wi-Fi signal.

2. A procedure for obtaining matrix indices that act as input data for the deep learning model is
presented. The procedure includes steps in data processing to obtain patterns and features for
the deep learning model to compute classification and measure its performance.

3. A Wi-Fi-based hardware testbed is designed to evaluate the proposed method. It consists of
12 sensor nodes that work as transmitter and receiver simultaneously. The collected data is then
sent to a server for monitoring purpose and used to perform localization. The experiments are
computed in an indoor environment for a single user.

The remainder of the paper is structured as follows. Section 2 presents related work on DFL
techniques as well as deep learning models. Section 3 discusses hardware development and the data
collection process to obtain input data for the deep learning model. Section 4 describes experimental
procedures to classify sensor data using the deep learning technique and Section 5 presents the obtained
results and its discussion. Finally, Section 6 summarizes the conclusion and future work.
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2. Related Work

Recent advances in wireless sensing technologies have allowed DFL to receive a considerable
amount of attention from IoT-based researchers. The area provides significant advantages compared to
other technologies as there is no requirement for the user to carry a device for location monitoring. In past
decades, different approaches have been proposed to develop an efficient indoor localization system.

The principle idea of DFL is based on observing the influence of the shadowing effect of a user
on wireless signals. For example, [12], presented an approach based on radio tomographic imaging
(RTI). It worked by imaging the RSS attenuation caused by physical objects in wireless links. It used
an RF signal that could travel through obstructions such as walls and trees, where optical or infrared
imaging cannot perform well. Then, statistical analysis related to variance was used to estimate spatial
locations of movement for motion image estimation. This pioneering work established further interest
for the DFL community. Based on this, studies have been carried out to improve the performance of
DFL in different environments. For instance, [13] applied RSS signal using RTI to generate an image of
the scene and used segmentation algorithms to label target tracking. Meanwhile, [14] measured RSS
signal on multiple frequency channels and combined them using the weighted average method for
multiple target tracking.

Most of these approaches allowed the wireless signal itself to become a sensor, which could be
used to perceive the context of the environment [15]. This enabled traditional wireless sensors to
turn into intelligent networks and to have the ability to not only perform human localization but also
activity and gesture classification simultaneously. In fact, machine learning methods were among
the well-known approaches to classify sensor data [16]. Features were extracted to characterize different
influences on users based on the collected wireless signals. However, these features were manually
selected and had to be handcrafted as the environment changed [17]. For instance, a k-NN classifier
was used on the RF signal to recognize multiple conducted activities in different locations [13]. Hybrid
features from time and frequency domains were then manually extracted and supplied to the classifier.

To make localization systems readily deployable in practical applications, deep learning techniques
have been introduced in this paper. They are inspired by human brain architecture and considered
as an extension method of machine learning techniques that perform higher-level inference and
abstractions [18]. In contrast with other machine learning tools, deep learning models can perform
well by automatically extracting meaningful and discriminative features for the classification process.
The complex and deep-level architecture allows trained models to be transferred to new tasks where
there are only a few labelled data, or where certain domain knowledge is required. This makes them
feasible to be deployed and used in supervised training using an end-to-end neural network [19].

3. Proposed Method

In this study, the proposed localization system is illustrated in Figure 1. First, the sensor nodes are
deployed in an indoor monitoring area. The system uses RSSI data that is transmitted and received
simultaneously by wireless nodes to create a wireless network mesh. When a person is moving,
the wireless links detect interference on the RSSI value and this can create influence on the signal to
identify exactly where the person is located.
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Figure 1. Proposed system.

The system consists of two stages: offline and online. The former trains the RSSI value to build
a classification model based on patterns formed by each location. Meanwhile, the online stage allowa
real-time data to predict accurately where the person is located. This paper also introduces data
processing techniques that can help the deep learning model to capture patterns effectively and
accurately identify the location.

3.1. Hardware Implementation

An RSSI-based localization device was designed using three types of Wi-Fi serial transceiver
modules (ESP 12-F). The device is called a WiLoc (Wi-Fi Location) stick, which is made in the form
of the USB stick shown in Figure 2. The size of the stick is 8.8 cm length × 2.8 cm width × 1.5 cm
height. It was designed with the purpose of making it easy to implement and connect with any power
supply. The combination of three ESP 12-F Wi-Fi modules in a single board as shown in Figure 3 allows
minimization of the data transmission rate by eliminating the switching module in the switching mode.
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In this condition, the first module (module 1) acts as the access point and broadcasts the RSSI
signal while the second module has been set as the client. This module scans and captures all the Wi-Fi
signals around it and measures the RSSI. The second module (module 2) then sorts the signal and
passes to the last module for data transmission to the cloud server. After the second module has
scanned and sorted all the Wi-Fi RSSI signal, it passes it to the last module (module 3) which connects
to the internet to push the aggregated RSSI signal to the cloud database. The sampling time to the cloud
database of each data is three seconds. The WiLoc stick is operated on the 5 V power supply and it is
easy to power up using a 5 V USB adaptor or any USB socket like a computer or a TV box. The average
power consumption is about 215 mA during the signal transmission operation and it is based on
a 2.4 GHz Wi-Fi frequency channel.

For the transmission process, module 3 is pre-loaded with the Wi-Fi manager function as shown in
Figure 3 to make it user-friendly. This can be used to connect to any Wi-Fi (with internet) for pushing
up the data to the cloud server and database. The WiLoc stick has a 2 min power up before it can act
as the access point, and the user can connect to the stick using their own username and password.
The interface of the main page Wi-Fi manager is shown in Figure 4a. After selecting the configuration
panel, the Wi-Fi configuration window appears as in Figure 4b. It is composed of different Wi-Fi
network signals that exist in the environment. The Wi-Fi manager lists all the Wi-Fi signals within
the WiLoc stick coverage. The user then needs to select the relevant Wi-Fi SSID name with the internet
connection and put in the password. After 2 min, the device automatically switches to client mode and
connects to the Wi-Fi SSID name that has already been configured beforehand.
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3.2. Data Collection

A 12-unit of WiLoc sticks were implemented inside the wireless sensor network (WSN) area at
a laboratory environment located in University Malaysia Perlis (UniMAP). The implementation layout
for the location of the WiLoc sticks is presented in Figure 5. The environment was designed into M × N,
or in this case 6.4 m × 12 m. The spacing of WiLoc sticks was 1 m apart from each other and 1 m from
the ground. Using the USB form, each WiLoc stick was mounted to the power socket on the wall or
power extension plug.



Smart Cities 2020, 3, 24 5 of 12

Smart Cities 2020, 3 FOR PEER REVIEW  6 

Smart Cities 2020, 3, Firstpage-Lastpage; doi: FOR PEER REVIEW  www.mdpi.com/journal/smartcities 

monitoring the changes of RSSI of the WiLoc stick was accessible through the link 

https://wifi.ceastech.com/. 

 

Figure 5. Location of the WiLoc sticks inside the wireless sensor network (WSN) area. 

The experiment was further continued by collecting the data using the WiLoc sticks. Each of the 

sticks received and transmitted the Wi-Fi signal simultaneously. The stick was mounted to the power 

supply socket using a USB adapter. The collected data was then used to perform a classification 

process based on four predetermined locations. These locations were set depending on the placement 

of the wireless sensor nodes shown in Figure 6a. Meanwhile, Figure 6b shows the connected link 

signal between each node. The wireless signal was evenly distributed inside the experiment area. 

Suppose a person is standing at location 1, they would shadow some of the wireless links, for example 

from nodes 3 to 9, 3 to 8 and 2 to 9. The person stands stationary for a period of time and then moves 

to the next location. Finally, all the sensor data were collected and sent to be processed in the main 

router. The router then sent the data to the remote server for data visualization.  

  

Figure 6. Data collection process: a) predetermined location; b) wireless links between each node. 

3.3. Data Retrieval 

The collected RSSI data was saved in the server. In order to sort and retrieve the wireless sensor 

data, MySQL Workbench was used [20]. Figure 7 presents a snapshot of the workbench consisting of 

the collected data.  

Figure 5. Location of the WiLoc sticks inside the wireless sensor network (WSN) area.

Each WiLoc stick node created its own access point to allow other WiLoc stick nodes to scan their
RSSI signal. After the WiLoc sticks finished collecting the RSSI value from the other 11 nodes, they
pushed the aggregated RSSI data to the cloud database. The response time of the scanned RSSI, as well
as the aggregated RSSI reading to the cloud database, was as fast as 3 s. The duration was sufficient to
monitor any massive changes that occurred. The web-based user interface for monitoring the changes
of RSSI of the WiLoc stick was accessible through the link https://wifi.ceastech.com/.

The experiment was further continued by collecting the data using the WiLoc sticks. Each of
the sticks received and transmitted the Wi-Fi signal simultaneously. The stick was mounted to the power
supply socket using a USB adapter. The collected data was then used to perform a classification
process based on four predetermined locations. These locations were set depending on the placement
of the wireless sensor nodes shown in Figure 6a. Meanwhile, Figure 6b shows the connected link signal
between each node. The wireless signal was evenly distributed inside the experiment area. Suppose
a person is standing at location 1, they would shadow some of the wireless links, for example from
nodes 3 to 9, 3 to 8 and 2 to 9. The person stands stationary for a period of time and then moves to
the next location. Finally, all the sensor data were collected and sent to be processed in the main router.
The router then sent the data to the remote server for data visualization.
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3.3. Data Retrieval

The collected RSSI data was saved in the server. In order to sort and retrieve the wireless sensor
data, MySQL Workbench was used [20]. Figure 7 presents a snapshot of the workbench consisting of
the collected data.Smart Cities 2020, 3 FOR PEER REVIEW  7 
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3.4. Data Processing

The raw data received by the wireless nodes contained various information such as number id,
time when the signal was captured, signal counter and RSSI value for each node. However, the raw
data needed to be processed to obtain information about the person’s location. Data processing
helped to analyze the original data by parsing them into several steps. The first step involved filling
in the missing (NULL) value by taking into account the previous value at (t–1). The missing data
happened as the signal could be lost during the transmission process. If the signal was lost, it was
unable to create a complete network mesh to build patterns based on the person’s location. The process
can be represented in Equation (1):

RSSIt =
(∣∣∣rssi(t−1)

∣∣∣) (1)

where t indicates the current time and t− 1 represents the previous RSSI value.
The second step was to concatenate the RSSI value into several packet samples. The samples were

measured by taking the average value of RSSI based on the captured time. In this case, the RSSI values
were concatenated in a one minute duration of time. The duration was enough to capture the patterns
of the person’s movement. For example, the RSSI value was averaged between t = o until t = 60s.
Then, the following period of time was averaged in the same way. The main idea of concatenation is to
deal with the missing RSSI values from the wireless nodes at certain times and to obtain a uniform
packet sample of data. Obviously, it is difficult to classify the data with its label if it is not in a uniform
state. The sample packets can be expressed in Equation (2):

RSSIt =
(∣∣∣Avg rssit1=0, t2=60s

∣∣∣, ∣∣∣Avg rssit3=61s,t4=120s
∣∣∣, . . . , ∣∣∣Avg rssiti,t j

∣∣∣) (2)

where t indicates the current time and ith nodes jth denotes the maximum period of time in
the data collection.

The last process was to extract the wireless sensor data in the form of frames and to compile them
into RSSI matrix indices with the dimensions of L × L. In this respect, the row of the matrix represented
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the sensor node that received the signal while the column represented the sensor node that transmitted
the Wi-Fi signals. The RSSI matrix can be represented in Equation (3).

RSSIt =


1 RSSI1,2 · · · RSSI1,L

RSSI2,1 2 . . . RSSI2,L
...

...
. . .

...
RSSIL,1 RSSIL,2 · · · L

 (3)

where t indicates the current time, L is the number of nodes and RSSIi, j is the RSSI value at certain nodes.

4. Classification Using Deep Learning Algorithm

In this work, a deep multi-layer perceptron (DMLP) neural network was used to train and classify
the sensor data. The network consisted of three layers: input, hidden and output layers. It was
considered as a feed-forward neural network that fed information through a series of mathematical
operations in nodes. Figure 8 shows the architecture of a deep neural network.
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Traditionally, a simple MLP usually consists of one or two hidden layers. A deep neural
network, on the other hand, refers to a neural network model with multiple n number of hidden
layers; usually, more than two hidden layers are employed. The model learns the input data from
the input-output relationship of the process embedded during the training phase through a supervised
learning technique.

In this work, each hidden layer contains the same number of hidden nodes. The model corresponds
to a linear transformation and uses a rectified-linear unit (ReLU) as the activation function. The ReLU is
preferred because it can address the vanishing gradient problem that affects the network. The function
works by limiting the input of negative hidden nodes to zero. In addition, softmax cross-entropy
is used as the loss function—where it calculates the loss value to determine whether the model is
trained well or not. Then, the Adam optimizer is used to adjust the amount of update based on the loss
value. For the training process, mini-batch training is proposed, where the input data is divided into
s samples of batch sizes which correspond with respect to the class distribution in the training set.
Table 1 presents detailed information on the parameters used for this neural network model.
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Table 1. Parameters used in deep learning model.

Parameter DMLP

Learning rate 0.01
Batch size 50
Optimizer Adam

Activation function ReLU
No. of iterations 100

No. of hidden units 100
No. of hidden layers 3

The implementation of the model was based on the Python language and GPU-based Tensor
Flow library framework, which used Nvidia-GeForce RTX series. The parameters in the above table
were then applied to the model to test the performance rates. To determine the best configurations
and parameters for the deep learning models, different values of the learning rate, batch sizes and
the number of hidden units were used through the brute-force approach. These values were obtained
through the training data and the model’s performance was evaluated using testing data.

It was important to determine these values as the learning rate differs depending on the number
of input data. Meanwhile, the batch size was used to separate activity data into smaller sets for fast
learning time and fewer memory allocations, while the hidden units allowed the network to analyse
the input data and send the result to the output layer.

5. Results and Discussion

Comparison was performed between the two approaches, i.e., deep learning and basic machine
learning algorithms, namely, using support vector machine (SVM), decision tree (DT) and multi-layer
perceptron neural network (MLP).

For the validation process, the sensor data was divided into two sets, where 80% was used
for training and producing the model while 20% was used for testing. In particular, 11,983 rows of
data were used to train the model while 2996 rows were used to test the produced model. Then,
the performance rates were measured by calculating the confusion matrix of each model from the testing
process. These were obtained by comparing the output of the model with the ground truth provided
in the dataset. This process calculated the performance in terms of accuracy, precision, recall and
F-measure. These measurements were computed using equations as below [21]:

Accuracy =

∑N
i=1 TPi

N
(4)

Precision =
N∑

i=1

TPi
NIi

(5)

Recall =
N∑

i=1

TPi
NGi

(6)

F−measure =
2 . precision . recall

precision + recall
(7)

where N is the number of total data, TP is true positive, which is regarded as the number of correctly
inferred activities, NI is the number of inferred activities, and NG is the number of ground truth labels.

Table 2 shows the confusion matrix of the DMLP model. Meanwhile, the confusion matrices for
each of the basic machine learning algorithms are presented in Tables 3–5.
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Table 2. Confusion matrix of deep multilayer perceptron.

Actual Class
Predicted Class

Location1 Location2 Location3 Location4

Location1 504 0 0 141
Location2 0 577 0 179
Location3 0 0 613 154
Location4 0 0 0 828

Table 3. Confusion matrix of support vector machine.

Actual Class
Predicted Class

Location1 Location2 Location3 Location4

Location1 372 163 127 4
Location2 191 379 149 8
Location3 23 57 570 101
Location4 4 2 251 595

Table 4. Confusion matrix of decision tree.

Actual Class
Predicted Class

Location1 Location2 Location3 Location4

Location1 387 223 40 16
Location2 223 403 81 20
Location3 61 94 455 141
Location4 12 34 169 637

Table 5. Confusion matrix of multilayer perceptron ANN.

Actual Class
Predicted Class

Location1 Location2 Location3 Location4

Location1 197 403 47 19
Location2 137 491 81 18
Location3 32 160 411 148
Location4 19 38 243 552

Table 6 depicts the summary of performance rates for these classifiers. Overall, it can be seen that
the performance rates of the deep learning model have increased compared to the other machine learning
classifiers. Considering the accuracy values, the results show that DMLP has better performance
with the highest result of 84.18% accuracy, 90.89% precision, 83.59% recall and 87.09% F-measure.
Traditional MLP gives relatively poor results with only 55.11% accuracy value. Furthermore, the high
value of precision and recall for DMLP compared to the other classifiers show that the deep learning
model is able to predict precisely from the true positive number and the total number of sensor data
from each location. Ultimately, it shows that with the proposed approach, the true positive number for
the classified data rises and conversely, the false-negative number becomes low.

Table 6. Results of the different classification algorithms.

Model
Performance Measure

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

DMLP 84.18 90.89 83.59 87.09
SVM 63.95 65.52 63.43 64.46
DT 62.82 62.36 62.22 62.29

MLP 55.11 55.89 54.16 55.01
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Furthermore, another experiment was performed to investigate the performance of classification
models in terms of time execution in seconds. The models were tested against time in the training
dataset. Table 7 presents the running time to train the data to form each of the models using
the respective algorithms. It can be seen that SVM has the lowest time to form the model while DMLP
took a longer time. This can be explained by the fact that deep learning models contain multiple
hidden layers with hundreds of hidden units in each of the layers. Meanwhile, SVM is a machine
learning classifier that acts by separating data with hyperplanes and thus, it has less execution time
compared to the deep learning approach.

Table 7. Performance results based on time execution.

Algorithm Execution Time (s)

Deep multilayer perceptron 123
Support vector machine 4

Decision tree 11
Multilayer perceptron ANN 21

6. Conclusions and Future Work

The presented results clearly show that the input data based on the introduced procedure was able
to produce patterns that can distinguish each location when the person moves. Using the MLP deep
learning model, the performance of the system to classify location based on RSSI data is better compared
to the basic machine learning classifiers. Although it has the highest execution time, the model has
the capability to automatically extract relevant features and produce meaningful results in terms of
accuracy, precision, recall and f-measure. The model achieved performance rates of between 84% to
85%.

Overall, from the experimental results, it can be concluded that the produced features that act as
the input for a deep learning model have the capability to capture patterns of movement and good
performance in the classification process. Moreover, they are grouped in the form of matrix indices,
which have less complexity to represent RSSI values for each location. Thus, when the person moves
into the new location, the deep learning model can identify the right range of RSSI value and predict
the right location. However, the system depends on the strength of the received signal. The signal has
some implications when dealing with objects and walls in the environment. The accuracy value can
be improved if there are less objects or obstacles in the environment as they can disturb the wireless
propagation between nodes. Furthermore, the link density of wireless nodes in the environment can
greatly affect performance rates. The further the subject is from the nodes, the less accurate it will be.

The classification performance is also affected by the training parameters in the deep learning
model. Particularly, learning rate variations and number of iterations play an important role in
achieving better classification results. However, from the experimental data, the classification results do
not improve significantly if larger variations of these two parameters are used. Thus, fixed parameters
have proven to work well to achieve higher accuracy in classifying the person’s location.

As for future work, the performance of the localization system can be investigated with fewer sensor
nodes. This would be useful as the number of nodes is one of the primary requirements to produce
a reliable network mesh. Furthermore, other means of feature extraction processes can be investigated
to extract more relevant features and compare the performance rates with non-extracted feature
methods. Finally, the validation process can be explored more with respect to other measurements
such as cross-validation and grid search processes.
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