AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control
Abstract
:1. Introduction
Challenges Addressed by SCC
2. Research Initiatives within Smart Cities and Communities
3. Approaches
3.1. Perception
3.2. Traffic System Control
3.3. Driver Monitoring
4. Open Research Challenges and Standardization
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E. IoT-Enabled Smart Sustainable Cities: Challenges and Approaches. Smart Cities 2020, 3, 1039–1071. [Google Scholar] [CrossRef]
- Scuotto, V.; Ferraris, A.; Bresciani, S.; Al-Mashari, M.; Del Giudice, M. Internet of Things: Applications and challenges in smart cities. A case study of IBM smart city projects. Bus. Process. Manag. J. 2016, 22, 2. [Google Scholar] [CrossRef]
- Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Tukker, A. Product services for a resource-efficient and circular economy—A review. J. Clean. Prod. 2015, 97, 76–91. [Google Scholar] [CrossRef]
- Gärling, T.; Schuitema, G. Travel demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility. J. Soc. Issues 2007, 63, 139–153. [Google Scholar] [CrossRef]
- Byttner, S.; Rögnvaldsson, T.; Svensson, M. Consensus self-organized models for fault detection (COSMO). Eng. Appl. Artif. Intell. 2011, 24, 833–839. [Google Scholar] [CrossRef]
- Englund, C.; Verikas, A. Ink feed control in a web-fed offset printing press. Int. J. Adv. Manuf. Technol. 2008, 39, 919–930. [Google Scholar] [CrossRef] [Green Version]
- GDP in US between 1947–2009. Available online: https://commons.wikimedia.org/wiki/File:Sectors_of_US_Economy_as_Percent_of_GDP_1947-2009.png (accessed on 16 May 2021).
- Statista Research Department. Distribution of Gross Domestic Product (GDP) Across Economic Sectors in the United States from 2000 to 2017. 2020. Available online: https://www.statista.com/statistics/270001/distribution-of-gross-domestic-product-gdp-across-economic-sectors-in-the-us/ (accessed on 13 May 2021).
- Eurostat. Shedding Light on Energy in the EU-A Guided Tour of Energy Statistics; Technical Report; Eurostat: Luxembourg, 2020. [Google Scholar]
- Eurostat. Shedding Light on Energy in the EU-A Guided Tour of Energy Statistics; Technical Report; Eurostat: Luxembourg, 2019. [Google Scholar]
- Chen, L.; Englund, C. Cooperative Intersection Management: A Survey. IEEE Trans. Intell. Transp. Syst. 2016, 17, 570–586. [Google Scholar] [CrossRef]
- Englund, C.; Chen, L.; Voronov, A. Cooperative Speed Harmonization for Efficient Road Utilization. In Proceedings of the IEEE Nets4Cars, St. Petersburg, Russia, 6–8 October 2014; pp. 19–23. [Google Scholar]
- Agency, E.E. Final Energy Consumption in Europe by Mode of Transport; Technical Report; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- European Union 2020. Available online: https://www.iea.org/reports/european-union-2020 (accessed on 21 April 2021).
- World Health Organization (WHO). Global Status Report on Road Safety 2015; WHO Press: Geneva, Switzerland, 2015; p. 340. [Google Scholar]
- Niska, A.; Eriksson, J. Statistik över Cyklisters Olyckor: Faktaunderlag Till Gemensam Strategi För säker Cykling; VTI: Linköping, Sweden, 2013. [Google Scholar]
- Commission, E. Data Table—Number of Road Deaths and Rate per Million Population by Country, 2010–2019; Technical Report; CARE (Community Road Accident) Database: Brussels, Belgium, 2019. [Google Scholar]
- Commission, E. Annual Accident Report 2018; Technical Report; European Commission, Directorate General for Transport: Brussels, Belgium, 2018. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety; Technical Report; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- State of the Union: Commission raises climate ambition. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1599/ (accessed on 21 April 2021).
- European Commission. 2030 Climate and Energy Goals for a Competitive, Secure and Low-Carbon EU Economy; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Barrachina, J.; Garrido, P.; Fogue, M.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Reducing emergency services arrival time by using vehicular communications and Evolution Strategies. Expert Syst. Appl. 2014, 41, 1206–1217. [Google Scholar] [CrossRef] [Green Version]
- Englund, C.; Chen, L.; Ploeg, J.; Semsar-Kazerooni, E.; Voronov, A.; Bengtsson, H.H.; Didoff, J. The grand cooperative driving challenge 2016: Boosting the introduction of cooperative automated vehicles. IEEE Wirel. Commun. 2016, 23, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Commission, E. EU Road Safety Policy Framework 2021–2030-Next Steps Towards “Vision Zero”; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- EU Smart Cities Marketplace. Available online: https://eu-smartcities.eu/ (accessed on 21 April 2021).
- EU project CITYkeys. Available online: http://www.citykeys-project.eu/ (accessed on 21 April 2021).
- EU Initiative CIVITAS. Available online: http://civitas.eu/ (accessed on 21 April 2021).
- Strategic Innovation Program, Drive Sweden. Available online: http://www.drivesweden.net/ (accessed on 21 April 2021).
- Strategic Innovation Program Newsletter, Drive Sweden. Available online: https://www.drivesweden.net/en/newsletters (accessed on 21 April 2021).
- Strategic Innovation Program, Infra Sweden. Available online: https://www.infrasweden2030.se/ (accessed on 21 April 2021).
- Strategic Innovation Program, Viable Cities. Available online: https://www.viablecities.se/ (accessed on 21 April 2021).
- Xplorion - Residential mobility service in car-free accommodation. Available online: https://en.viablecities.se/foi-projekt/xplorion/ (accessed on 21 April 2021).
- Strategic Innovation Program, Smart City Sweden. Available online: https://smartcitysweden.com/ (accessed on 21 April 2021).
- Aramrattana, M.; Larsson, T.; Jansson, J.; Englund, C. Dimensions of Cooperative Driving, ITS and Automation. In Proceedings of the Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 144–149. [Google Scholar] [CrossRef] [Green Version]
- Sivaraman, S.; Trivedi, M.M. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1773–1795. [Google Scholar] [CrossRef] [Green Version]
- Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and sensor fusion in autonomous vehicles. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425. [Google Scholar]
- Englund, C. Aware and Intelligent Infrastructure for Action Intention Recognition of Cars and Bicycles. In Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Prague, Czech Republic, 2–4 May 2020. [Google Scholar]
- Englund, C. Action Intention Recognition of Cars and Bicycles in Intersections. In International Journal Vehicle Design, Special Issue on: Safety and Standards for Connected and Autonomous Vehicles; Inderscience: Geneva, Switzerland, 2020; in press. [Google Scholar]
- Lidström, K.; Larsson, T. Act normal: Using uncertainty about driver intentions as a warning criterion. In Proceedings of the 16th World Congress on Intelligent Transportation Systems (ITS WC), Stockholm, Sweden, 21–25 September 2009; p. 8. [Google Scholar]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.W.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. Vol. 2020, 128, 261–318. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R.; Iandola, F.; Darrell, T.; Malik, J. Deformable part models are convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 437–446. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Toshev, A.; Erhan, D. Deep Neural Networks for Object Detection. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), Lake Tahoe, CA, USA, 5–8 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; Volume 2, pp. 2553–2561. [Google Scholar]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the ECCV, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. In Proceedings of the ECCV, Munich, Germany, 8–14 October 2018. [Google Scholar]
- Kendall, A.; Badrinarayanan, V.; Cipolla, R. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv 2015, arXiv:1511.02680. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the The European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 October 2018. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Poudel, R.P.K.; Liwicki, S.; Cipolla, R. Fast-SCNN: Fast Semantic Segmentation Network. CoRR 2019. [Google Scholar] [CrossRef]
- Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane Convention & Exhibition Centre, Brisbane, Australia, 21–26 May 2018. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings of the IROS, Macau, China, 3–8 November 2019. [Google Scholar]
- Cortinhal, T.; Tzelepis, G.E.; Aksoy, E.E. SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds. In Advances in Visual Computing ISVC 2020 Lecture Notes in Computer Science; Bebis, G., Ed.; Springer: Cham, Switzerland, 2020; Volume 12510, pp. 207–222. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Landrieu, L.; Simonovsky, M. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Aksoy, E.E.; Baci, S.; Cavdar, S. SalsaNet: Fast Road and Vehicle Segmentation in LiDAR Point Clouds for Autonomous Driving. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 926–932. [Google Scholar]
- Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Zhang, C.; Luo, W.; Urtasun, R. Efficient convolutions for real-time semantic segmentation of 3D point clouds. In Proceedings of the International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018. [Google Scholar]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Feng, D.; Rosenbaum, L.; Dietmayer, K. Towards safe autonomous driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3266–3273. [Google Scholar]
- Ilg, E.; Cicek, O.; Galesso, S.; Klein, A.; Makansi, O.; Hutter, F.; Brox, T. Uncertainty estimates and multi-hypotheses networks for optical flow. In Proceedings of the ECCV, Munich, Germany, 8–14 October 2018; pp. 652–667. [Google Scholar]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science, University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Lidstrom, K.; Sjoberg, K.; Holmberg, U.; Andersson, J.; Bergh, F.; Bjade, M.; Mak, S. A modular CACC system integration and design. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1050–1061. [Google Scholar] [CrossRef]
- Kianfar, R.; Augusto, B.; Ebadighajari, A.; Hakeem, U.; Nilsson, J.; Raza, A.; Tabar, R.S.; Irukulapati, N.V.; Englund, C.; Falcone, P.; et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans. Intell. Transp. Syst. 2012, 13, 994–1007. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human Motion Trajectory Prediction: A Survey. arXiv 2019, arXiv:1905.06113. [Google Scholar]
- Lefevre, S.; Vasquez, D.; Laugier, C. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Bokare, P.S.; Maurya, A.K. Acceleration-Deceleration Behaviour of Various Vehicle Types. In Proceedings of the World Conference on Transport Research, Shanghai, China, 10–15 July 2016. [Google Scholar]
- Maurya, A.K.; Bokare, P.S. Study of deceleration behaviour of different vehicle types. Int. J. Traffic Transp. Eng. 2012, 2, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, S.; Laugier, C.; Ibanez-Guzman, J. Intention-Aware Risk Estimation for General Traffc Situations, and Application to Intersection Safety; Research Report; Research Centre Grenoble, HAL-Inria: Paris, France, 2013. [Google Scholar]
- Christopher, T. Analysis of Dynamic Scenes: Application to Driving Assistance. Ph.D. Thesis, Automatic. Institut National Polytechnique de Grenoble—INPG, Grenoble, France, 2009. (In English). [Google Scholar]
- Joseph, J.; Doshi-Velez, F.; Huang, A.S.; Roy, N. A Bayesian nonparametric approach to modeling motion patterns. Auton. Robot. 2011, 31, 383. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, W.; Mo, Z.; Zhao, D. Cluster Naturalistic Driving Encounters Using Deep Unsupervised Learning. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018. [Google Scholar]
- WSDT. Roundabout benefits–Washington State Department of Transportation. 2019. Available online: https://www.wsdot.wa.gov/Safety/roundabouts/benefits.htm (accessed on 16 May 2021).
- Zhao, M.; Kathner, D.; Jipp, M.; Soffker, D.; Lemmer, K. Modeling Driver Behavior at Roundabouts: Results from a Field Study. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, 11–14 June 2017. [Google Scholar]
- Zhao, M.; Kathner, D.; Soffker, D.; Jipp, M.; Lemmer, K. Modeling Driving Behavior at Roundabouts: Impact of Roundabout Layout and Surrounding Traffic on Driving Behavior. 2017. Available online: https://core.ac.uk/download/pdf/84275712.pdf (accessed on 16 May 2021).
- Kucner, T.; Saarinen, J.; Magnusson, M.; Lilienthal, A.J. Conditional transition maps: Learning motion patterns in dynamic environments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013. [Google Scholar]
- Muffert, M.; Milbich, T.; Pfeiffer, D.; Franke, U. May I Enter the Roundabout? A Time-To-Contact Computation Based on Stereo-Vision. In Proceedings of the Intelligent Vehicles Symposium (IV), Alcala de Henares, Madrid, Spain, 3–7 June 2012. [Google Scholar]
- Muhammad, N.; Åstrand, B. Intention estimation using set of reference trajectories as behaviour model. Sensors 2018, 18, 4423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.; Åstrand, B. Predicting Agent Behaviour and State for Applications in a Roundabout-Scenario Autonomous Driving. Sensors 2019, 19, 4279. [Google Scholar] [CrossRef] [Green Version]
- Magavi, S.A. Behaviour Modelling of Vehicles at a Roundabout. Master’s Thesis, Halmstad University, Halmstad Embedded and Intelligent Systems Research (EIS), Halmstad, Sweden, 2020. [Google Scholar]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. Statistical Learning Theory (Adaptive and Learning Systems for Signal Processing, Communications and Control Series); Wiley-Interscience: Hoboken, NJ, USA, 1998. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Bishop, M.C. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: New York, NY, USA, 1995; Volume 92, p. 502. [Google Scholar] [CrossRef]
- Garcia, F.; Martin, D.; De La Escalera, A.; Armingol, J.M. Sensor fusion methodology for vehicle detection. IEEE Intell. Transp. Syst. Mag. 2017, 9, 123–133. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Li, M.; Shaw, S.L.; Nüchter, A. A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios. IEEE Trans. Veh. Technol. 2013, 63, 540–555. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.; Abe, N. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 1612. [Google Scholar]
- Jazayeri, A.; Cai, H.; Zheng, J.Y.; Tuceryan, M. Vehicle detection and tracking in car video based on motion model. IEEE Trans. Intell. Transp. Syst. 2011, 12, 583–595. [Google Scholar] [CrossRef]
- Wang, C.C.R.; Lien, J.J.J. Automatic vehicle detection using local features—A statistical approach. IEEE Trans. Intell. Transp. Syst. 2008, 9, 83–96. [Google Scholar] [CrossRef]
- Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915. [Google Scholar]
- Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-Task Multi-Sensor Fusion for 3D Object Detection. In Proceedings of the CVPR, Long Beach, CA, USA, 16-19 June 2019. [Google Scholar]
- Takumi, K.; Watanabe, K.; Ha, Q.; Tejero-De-Pablos, A.; Ushiku, Y.; Harada, T. Multispectral Object Detection for Autonomous Vehicles. In Proceedings of the on Thematic Workshops of ACM Multimedia, Mountain View, CA, USA, 23–27 October 2017; Association for Computing Machinery: New York, NY, USA, 2017. Thematic Workshops ’17. pp. 35–43. [Google Scholar] [CrossRef]
- Mees, O.; Eitel, A.; Burgard, W. Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments. CoRR 2017. [Google Scholar] [CrossRef]
- Valada, A.; Mohan, R.; Burgard, W. Self-Supervised Model Adaptation for Multimodal Semantic Segmentations. Int. J. Comput. Vis. 2019, 128, 1239–1285. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Maturana, D.; Uenoyama, M.; Scherer, S. Season-Invariant Semantic Segmentation with a Deep Multimodal Network. In Field and Service Robotics; Springer Proceedings in Advanced Robotics; Springer: Cham, Switzerland, 2018; Volume 5. [Google Scholar]
- Xu, D.; Anguelov, D.; Jain, A. PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Wang, Z.; Jia, K. Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. CoRR 2019. [Google Scholar] [CrossRef]
- Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. FuseNet: Incorporating Depth into Semantic Segmentation via FusionBased CNN Architecture. In Proceedings of the ACCV, Taipei, Taiwan, 20–24 November 2016. [Google Scholar]
- Tavares de Araujo Cesariny Calafate, C.M.; Wu, C.; Natalizio, E.; Martínez, F.J. Crowdsensing and Vehicle-Based Sensing. Mob. Inf. Syst. 2016, 2016. [Google Scholar] [CrossRef]
- Alvear, O.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Crowdsensing in smart cities: Overview, platforms, and environment sensing issues. Sensors 2018, 18, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, D.; Haase-Schuetz, C.; Rosenbaum, L.; Hertlein, H.; Duffhauss, F.; Gläser, C.; Wiesbeck, W.; Dietmayer, K. Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. CoRR 2019. [Google Scholar] [CrossRef] [Green Version]
- Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent development and applications of SUMO-Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138. [Google Scholar]
- Krajzewicz, D.; Hertkorn, G.; Feld, C.; Wagner, P. SUMO (Simulation of Urban MObility); An open-source traffic simulation. In Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM2002), American University, Sharjah, United Arab Emirates, 28–30 October 2002; pp. 183–187. [Google Scholar]
- Kheterpal, N.; Parvate, K.; Wu, C.; Kreidieh, A.; Vinitsky, E.; Bayen, A. Flow: Deep reinforcement learning for control in sumo. EPiC Ser. Eng. 2018, 2, 134–151. [Google Scholar]
- Wu, C.; Kreidieh, A.; Parvate, K.; Vinitsky, E.; Bayen, A.M. Flow: Architecture and benchmarking for reinforcement learning in traffic control. arXiv 2017, arXiv:1710.05465. [Google Scholar]
- Lange, O.; Perez, L. Traffic Prediction with Advanced Graph Neural Networks. 2020. Available online: https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks (accessed on 16 May 2021).
- Xie, Z.; Lv, W.; Huang, S.; Lu, Z.; Du, B.; Huang, R. Sequential Graph Neural Network for Urban Road Traffic Speed Prediction. IEEE Access 2020, 8, 63349–63358. [Google Scholar] [CrossRef]
- Song, L.; Zhang, Y.; Wang, Z.; Gildea, D. N-ary Relation Extraction using Graph-State LSTM. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing Association for Computational Linguistics, Brussels, Belgium, 31 October–4 November 2018; pp. 2226–2235. [Google Scholar]
- Guo, Z.; Zhang, Y.; Lu, W. Attention Guided Graph Convolutional Networks for Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 241–251. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640. [Google Scholar]
- Chen, H.; Perozzi, B.; Hu, Y.; Skiena, S. Harp: Hierarchical representation learning for networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2–7 February 2018; Volume 32. [Google Scholar]
- Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1225–1234. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 855–864. [Google Scholar] [CrossRef] [Green Version]
- Lowe, S.; Madras, D.; Zemel, R.; Welling, M. Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data. arXiv 2020, arXiv:cs.LG/2006.10833. [Google Scholar]
- SAE. J3016 Levels of Driving Automation; Technical Report; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Yang, D.; Li, X.; Dai, X.; Zhang, R.; Qi, L.; Zhang, W.; Jiang, Z. All in one network for driver attention monitoring. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain, 4–8 May 2020; pp. 1–6. [Google Scholar]
- Beggiato, M.; Rauh, N.; Krems, J. Facial Expressions as Indicator for Discomfort in Automated Driving. In Proceedings of the International Conference on Intelligent Human Systems Integration, Modena, Italy, 19–21 February 2020; pp. 932–937. [Google Scholar]
- Torstensson, M.; Duran, B.; Englund, C. Using Recurrent Neural Networks for Action and Intention Recognition of Car Drivers. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods, Prague, Czech Republic, 19–21 February 2019; pp. 232–242. [Google Scholar]
- Valle, F.; Galozy, A.; Ashfaq, A.; Etminani, F.; Vinel, A.; Cooney, M. Lonely road: Speculative challenges for a social media robot aimed to reduce driver loneliness. In Proceedings of the MAISON2021, Virtual Conference, 7 June 2021; p. 6. [Google Scholar]
- Guo, G.; Zhang, N. A survey on deep learning based face recognition. Comput. Vis. Image Underst. 2019, 189, 102805. [Google Scholar] [CrossRef]
- Li, S.; Deng, W. Deep Facial Expression Recognition: A Survey. IEEE Trans. Affect. Comput. 2020. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Fernandez, F.; Bigun, J.; Englund, C. Expression Recognition Using the Periocular Region: A Feasibility Study. In Proceedings of the 2018 14th International Conference on Signal-Image Technology Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 26–29 November 2018; pp. 536–541. [Google Scholar]
- Alonso-Fernandez, F.; Bigun, J. A survey on periocular biometrics research. Pattern Recognit. Lett. 2016, 82, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Wartzek, T.; Eilebrecht, B.; Lem, J.; Lindner, H.; Leonhardt, S.; Walter, M. ECG on the Road: Robust and Unobtrusive Estimation of Heart Rate. IEEE Trans. Biomed. Eng. 2011, 58, 3112–3120. [Google Scholar] [CrossRef]
- Macias, R.; García, M.A.; Ramos, J.; Bragos, R.; Fernández, M. Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System. J. Phys. Conf. Ser. 2013, 434, 012047. [Google Scholar] [CrossRef] [Green Version]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng. Phys. 2008, 30, 1257–1269. [Google Scholar]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 2014, 51, 951–963. [Google Scholar]
- Nicolini, P.; Ciulla, M.M.; Malfatto, G.; Abbate, C.; Mari, D.; Rossi, P.D.; Pettenuzzo, E.; Magrini, F.; Consonni, D.; Lombardi, F. Autonomic dysfunction in mild cognitive impairment: Evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Maiorana, E.; Campisi, P. Longitudinal Evaluation of EEG-Based Biometric Recognition. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1123–1138. [Google Scholar] [CrossRef]
- Jain, A.; Nandakumar, K.; Ross, A. 50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities. Pattern Recognit. Lett. 2016, 79, 80–105. [Google Scholar] [CrossRef]
- Varytimidis, D.; Alonso-Fernandez, F.; Duran, B.; Englund, C. Action and intention recognition of pedestrians in urban traffic. In Proceedings of the 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 26–29 November 2018; pp. 676–682. [Google Scholar]
- Chen, L.; Englund, C. Cooperative ITS-EU standards to accelerate cooperative mobility. In Proceedings of the 3rd International Conference on Connected Vehicles & Expo (ICCVE 2014), Vienna, Austria, 3–7 November 2014; pp. 681–686. [Google Scholar]
- Englund, C.; Lidström, K.; Nilsson, J. On the need for standardized representations of cooperative vehicle behavior. In Proceedings of the Second International Symposium on Future Active Safety Technology toward Zero-Traffic-Accident, 22–26 September 2013; pp. 1–6. [Google Scholar]
- Cuthbertsson, A. Hacked Billboards Could Trick Self-Driving Cars Into Suddenly Stopping. In Independent, Thursday 15 October; Independent Digital News & Media Ltd., Northcliffe House: Kensington, UK, 2020. [Google Scholar]
- Greenberg, A. Hackers Remotely Kill a Jeep on the Highway—With Me in It. WIRED 2015. Available online: https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ (accessed on 16 May 2021).
- Ortiz, S.; Calafate, C.T.; Cano, J.C.; Manzoni, P.; Toh, C.K. A UAV-based content delivery architecture for rural areas and future smart cities. IEEE Internet Comput. 2018, 23, 29–36. [Google Scholar] [CrossRef]
- ISO. Road Vehicles—Functional Safety—Part 1: Vocabulary; 2018; p. 33. Available online: https://www.iso.org/standard/68383.html (accessed on 16 May 2021).
- ISO. Road Vehicles—Safety of the Intended Functionality; 2019; p. 54. Available online: https://www.iso.org/standard/70939.html (accessed on 16 May 2021).
- ISO. Intelligent Transport Systems—Forward Vehicle Collision Mitigation Systems—Operation, Performance, and Verification Requirements; 2013; p. 33. Available online: https://www.iso.org/standard/45339.html (accessed on 16 May 2021).
- ISO. Intelligent transport systems—Pedestrian detection and collision mitigation systems (PDCMS)—Performance requirements and test procedures; 2017; p. 21. Available online: https://www.iso.org/standard/64111.html (accessed on 17 May 2021).
- ISO. Intelligent Transport Systems—Bicyclist Detection and Collision Mitigation Systems (BDCMS)—Performance Requirements and Test Procedures; 2020; p. 18. Available online: https://www.iso.org/standard/72508.html (accessed on 16 May 2021).
- ISO. Road Vehicles—Ergonomic Aspects of External Visual Communication from Automated Vehicles to Other Road Users; 2018; p. 7. Available online: https://www.iso.org/standard/74397.html (accessed on 16 May 2021).
Strategical | Tactical | Operational | |
---|---|---|---|
In-vehicle | x | x | x |
Infrastructure | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englund, C.; Aksoy, E.E.; Alonso-Fernandez, F.; Cooney, M.D.; Pashami, S.; Åstrand, B. AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control. Smart Cities 2021, 4, 783-802. https://doi.org/10.3390/smartcities4020040
Englund C, Aksoy EE, Alonso-Fernandez F, Cooney MD, Pashami S, Åstrand B. AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control. Smart Cities. 2021; 4(2):783-802. https://doi.org/10.3390/smartcities4020040
Chicago/Turabian StyleEnglund, Cristofer, Eren Erdal Aksoy, Fernando Alonso-Fernandez, Martin Daniel Cooney, Sepideh Pashami, and Björn Åstrand. 2021. "AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control" Smart Cities 4, no. 2: 783-802. https://doi.org/10.3390/smartcities4020040
APA StyleEnglund, C., Aksoy, E. E., Alonso-Fernandez, F., Cooney, M. D., Pashami, S., & Åstrand, B. (2021). AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control. Smart Cities, 4(2), 783-802. https://doi.org/10.3390/smartcities4020040