Intelligent and Environmentally Friendly Solutions in Smart Cities’ Development—Empirical Evidence from Poland
Abstract
:1. Introduction
- To what extent are IEFS implemented in cities in Poland?
- To what extent are specific IEFS perceived as integral components of SC?
- What are the barriers to the implementation of IEFS?
- What is the influence of relevant barriers on the implementation level of specific IEFS?
2. Literature Review
2.1. Intelligent and Environmentally Friendly Solutions in Smart Cities
2.2. Barriers to SC Implementation and Development
3. Materials and Methods
3.1. Input Variables and Research Sample
Variable | Variable Code | No. of Observations | Scale Type | References |
---|---|---|---|---|
Dependent variables | ||||
Smart environmental quality systems using stationary sensor nodes | IEFS01 | 264 | Ordinal | [14,27,47,48,140,141] |
Smart environmental quality systems using mobile sensor nodes | IEFS02 | 249 | [12,49,50,142,143,144] | |
Indoor air quality monitoring systems | IEFS03 | 236 | [51,52,53,54,145,146,147,148] | |
Smart and environmentally friendly buildings | IEFS04 | 241 | [55,111,149,150,151,152] | |
Smart water meters | IEFS05 | 220 | [25,57,58,153,154] | |
Smart energy meters | IEFS06 | 209 | [29,59,60,155,156] | |
Decentralization of energy generation and development of prosumer energy | IEFS07 | 232 | [30,56,70,157,158,159] | |
Smart water and sewage monitoring systems | IEFS08 | 216 | [62,63,64,65,67,68,69,160] | |
Smart waste management systems | IEFS09 | 233 | [47,71,72,74,161,162,163] | |
Smart natural disaster management system | IEFS10 | 252 | [75,76,77,164] | |
Environmentally friendly public transport | IEFS11 | 251 | [42,83,85,165,166] | |
Smart street lighting | IEFS12 | 257 | [28,78,79,80,81,82] | |
Control variables | ||||
Revenue per capita | Rev | 280 | Interval | [132,133,135] |
Number of inhabitants | PopSize | 280 | Interval | [130,131,132,133,135] |
Perception of IEFS considered as integral elements of SC based on opinion about each individual item IEFS”i”(i = 01, …, 12) | IEFSSC”i’ | 280 | Ordinal | [119,127,128] |
Independent variables—Barriers | ||||
Lack of inclusion of IEFS in the local development strategies | B01 | 280 | Ordinal | [19,107,109,110,111,112,120] |
Necessity of cooperation of various entities providing municipal services to local inhabitants | B02 | 280 | [94,96,97,100,105,109,124,125] | |
Lack of appropriate legal regulations concerning the multifaceted specificity of IEFS | B03 | 280 | [19,92,100,101,102,105] | |
High costs of implementing IEFS | B04 | 280 | [98,107,113,114,115,116,117,118] | |
Lack of adequate funds and financial incentives | B05 | 280 | [96,98,99,100,103,106] | |
Necessity of transferring the costs of implementing IEFS to users | B06 | 280 | [96,110,115] | |
Lack of widespread good practices for IEFS solutions | B07 | 280 | [95,97] | |
Lack of awareness among inhabitants of benefits resulting from implementing IEFS | B08 | 280 | [94,95,106] | |
Lack of trust and fear of inhabitants against the interference of IEFS in the private sphere | B09 | 280 | [113,121,122,123,167] | |
Resistance of the inhabitants to change and new technologies | B10 | 280 | [96,129] |
3.2. Descriptive and Statistical Analysis
4. Results and Discussion
4.1. Descriptive Analysis
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank Data on Urban Population (% of Total Population). 2022. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 4 September 2022).
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The vision of a smart city. In Proceedings of the 2nd International Life Extension Technology Workshop; Paris, France, 28 September 2020. Available online: https://www.osti.gov/servlets/purl/773961 (accessed on 1 September 2022).
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar] [CrossRef]
- Nunes, S.A.S.; Ferreira, F.A.F.; Govindan, K.; Pereira, L.F. “Cities go smart!”: A system dynamics-based approach to smart city conceptualization. J. Clean. Prod. 2021, 313, 127683. [Google Scholar] [CrossRef]
- Ojo, A.; Curry, E.; Janowski, T. Designing Next Generation Smart City Initiatives—Harnessing Findings and Lessons from a Study of Ten Smart City Programs. In Proceedings of the European Conference on Information Systems (ECIS), Tel Aviv, Israel, 9–11 June 2014; Available online: http://aisel.aisnet.org/ecis2014/proceedings/track15/12 (accessed on 1 September 2022).
- Shamsuzzoha, A.; Nieminen, J.; Piya, S.; Rutledge, K. Smart city for sustainable environment: A comparison of participatory strategies from Helsinki, Singapore and London. Cities 2021, 114, 103194. [Google Scholar] [CrossRef]
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanovic, N.; Meijers, E. Smart Cities: Ranking of European Medium-Sized Cities; Centre of Regional Science: Vienna, Austria, 2017; Available online: http://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 4 September 2022).
- Secinaro, S.; Brescia, V.; Lanzalonga, F. Gabriele Santoro Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development. J. Bus. Res. 2022, 149, 296–313. [Google Scholar] [CrossRef]
- Huikkola, T.; Kohtamäki, M.; Ylimäki, J. Becoming a smart solution provider: Reconfiguring a product manufacturer’s strategic capabilities and processes to facilitate business model innovation. Technovation 2022, 118, 102498. [Google Scholar] [CrossRef]
- Langley, D.J.; van Doorn, J.; Ng, I.C.L.; Stieglitz, S.; Lazovik, A.; Boonstra, A. The Internet of Everything: Smart things and their impact on business models. J. Bus. Res. 2021, 122, 853–863. [Google Scholar] [CrossRef]
- Bacco, M.; Delmastro, F.; Ferro, E.; Gotta, A. Environmental Monitoring for Smart Cities. IEEE Sens. J. 2017, 17, 7767–7774. [Google Scholar] [CrossRef]
- Balducci, F.; Ferrara, A. Using urban environmental policy data to understand the domains of smartness: An analysis of spatial autocorrelation for all the Italian chief towns. Ecol. Indic. 2018, 89, 386–396. [Google Scholar] [CrossRef]
- Duangsuwan, S.; Takarn, A.; Nujankaew, R.; Jamjareegulgarn, P. A Study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0. In Proceedings of the 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018; pp. 206–209. [Google Scholar] [CrossRef]
- Hu, Q.; Zheng, Y. Smart city initiatives: A comparative study of American and Chinese cities. J. Urban Aff. 2021, 43, 504–525. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Tseng, F. An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China. Technol. Forecast. Soc. Chang. 2020, 153, 119371. [Google Scholar] [CrossRef]
- Zamponi, M.E.; Barbierato, E. The Dual Role of Artificial Intelligence in Developing Smart Cities. Smart Cities 2022, 5, 38. [Google Scholar] [CrossRef]
- Huang, K.; Luo, W.; Zhang, W.; Li, J. Characteristics and Problems of Smart City Development in China. Smart Cities 2021, 4, 74. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Kannan, D.; Govindan, K.; Singh, R.; Purohit, H.C. Internet of Things (IoT) adoption barriers of smart cities’ waste management: An Indian context. J. Clean. Prod. 2020, 270, 122047. [Google Scholar] [CrossRef]
- Almalki, F.A.; Alsamhi, S.H.; Sahal, R.; Hassan, J.; Hawbani, A.; Rajput, N.S.; Saif, A.; Morgan, J.; Breslin, J. Green IoT for Eco-Friendly and Sustainable Smart Cities: Future Directions and Opportunities. Mob. Netw. Appl. 2021, in press. [CrossRef]
- Appio, F.P.; Lima, M.; Paroutis, S. Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges. Technol. Forecast. Soc. Change 2019, 142, 1–14. [Google Scholar] [CrossRef]
- Haque, A.K.M.B.; Bhushan, B.; Dhiman, G. Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Syst. 2022, 39, e12753. [Google Scholar] [CrossRef]
- Turgel, I.; Bozhko, L.; Ulyanova, E.; Khabdullin, A. Implementation of the Smart City Technology for Environmental Protection Management of Cities: The Experience of Russia and Kazakhstan. Environ. Clim. Technol. 2019, 23, 148–165. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marquese, J. The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build? Land Use Policy 2019, 88, 104187. [Google Scholar] [CrossRef]
- Al-Madhrahi, R.; Alduais, N.A.; Abdullah, J.; Mahdin, H.B.; Saad, A.H.; Nasser, A.B.; Alduais, H.S. An Efficient IoT-based Smart Water Meter System of Smart City Environment. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 420–428. [Google Scholar] [CrossRef]
- Aleyadeh, S.; Taha, A.M. An IoT-Based Architecture for Waste Management. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Gupta, H.; Bhardwaj, D.; Agrawal, H.; Tikkiwal, V.A.; Kumar, A. An IoT Based Air Pollution Monitoring System for Smart Cities. In Proceedings of the IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, 26 February–1 March 2019; pp. 173–177. [Google Scholar] [CrossRef]
- Mary, M.C.V.S.; Devaraj, G.P.; Theepak, T.A.; Pushparaj, D.J.; Esther, J.M. Intelligent Energy Efficient Street Light Controlling System based on IoT for Smart City. In Proceedings of the International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 551–554. [Google Scholar] [CrossRef]
- Mehta, G.; Khanam, R.; Yadav, V.K. A Novel IoT based Smart Energy Meter for Residential Energy Management in Smart Grid Infrastructure. In Proceedings of the 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021; pp. 47–52. [Google Scholar] [CrossRef]
- O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef]
- Ogrodnik, K. Multi-criteria analysis of smart cities in Poland. Geogr. Pol. 2020, 93, 163–181. [Google Scholar] [CrossRef]
- Pira, M. A novel taxonomy of smart sustainable city indicators. Humanit. Soc. Sci. Commun. 2021, 8, 197. [Google Scholar] [CrossRef]
- Quijano, A.; Hernández, J.L.; Nouaille, P.; Virtanen, M.; Sánchez-Sarachu, B.; Pardo-Bosch, F. Knieilng towards Sustainable and Smart Cities: Replicable and KPI-Driven Evaluation Framework. Buildings 2021, 12, 233. [Google Scholar] [CrossRef]
- Sharifia, A. A typology of smart city assessment tools and indicator sets. Sustain. Cities Soc. 2020, 53, 101936. [Google Scholar] [CrossRef]
- Shruti, S.; Singh, P.K.; Ohri, A. Evaluating the Environmental Sustainability of Smart Cities in India: The Design and Application of the Indian Smart City Environmental Sustainability Index. Sustainability 2021, 13, 327. [Google Scholar] [CrossRef]
- Su, Y.; Hu, M.; Yu, X. Does the development of smart cities help protect the environment? J. Environ. Plan. Manag. 2023, 66, 572–589. [Google Scholar] [CrossRef]
- Berrone, P.; Ricart, J.E. IESE Cities in Motion Index 2022; IESE Business School, University of Navarra: Pamplona, Spain, 2022; Available online: https://media.iese.edu/research/pdfs/ST-0633-E.pdf (accessed on 6 February 2023).
- Masik, G.; Sagan, I.; Scott, J.W. Smart City strategies and new urban development policies in the Polish context. Cities 2021, 108, 102970. [Google Scholar] [CrossRef]
- Tomaszewska, E.J. Barriers related to the implementation of intelligent transport systems in cities—The Polish local government’s perspective. Eng. Manag. Prod. Serv. 2021, 13, 131–147. [Google Scholar] [CrossRef]
- Dohn, K.; Kramarz, M.; Przybylska, E. Interaction with City Logistics Stakeholders as a Factor of the Development of Polish Cities on the Way to Becoming Smart Cities. Energies 2022, 15, 4103. [Google Scholar] [CrossRef]
- Zawieska, J.; Pieriegud, J. Smart city as a tool for sustainable mobility and transport decarbonization. Transp. Policy 2018, 63, 39–50. [Google Scholar] [CrossRef]
- Połom, M. E-revolution in post-communist country? A critical review of electric public transport development in Poland. Energy Res. Soc. Sci. 2021, 80, 102227. [Google Scholar] [CrossRef]
- Moch, N.; Wereda, W. Smart Security in the Smart City. Sustainability 2020, 12, 9900. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Wolniak, R. Sharing Economies’ Initiatives in Municipal Authorities’ Perspective: Research Evidence from Poland in the Context of Smart Cities’ Development. Sustainability 2022, 14, 2064. [Google Scholar] [CrossRef]
- Owczarek, T.; Sojda, A.; Wolny, M. The study of the interdependencies of areas and aspects of smart city in Polish cities. Sci. Pap. Sil. Univ. Technol. Organ. Manag. Ser. 2022, 161, 203–214. [Google Scholar] [CrossRef]
- Hajduk, S. Multi-Criteria Analysis of Smart Cities on the Example of the Polish Cities. Resources 2021, 10, 44. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priya, K.H.; Kumar, S.A. Technologies used in Smart City Applications—An Overview. In Proceedings of the International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Virtual, 8–9 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Spandana, G.; Shanmughasundram, R. Design and Development of Air Pollution Monitoring System for Smart Cities. In Proceedings of the Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 1640–1643. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Li, Z.; Jiang, S.; Li, Y.; Jia, J.; Jiang, X. AirCloud: A cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys ’14, Memphis, TN, USA, 3–6 November 2014; pp. 251–265. [Google Scholar] [CrossRef]
- Choudhary, V.; Teh, J.H.; Beltran, V.; Lim, H.B. AirQ: A Smart IoT Platform for Air Quality Monitoring. In Proceedings of the IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Ibasata, D.; Molleda, J.; Diez, F.; Granda, J.C. An IOT platform for indoor air quality monitoring using the Web of Things. WIT Trans. Ecol. Environ. 2019, 236, 45–56. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4942. [Google Scholar] [CrossRef]
- Wall, D.; McCullagh, P.; Cleland, I.; Bond, R. Development of an Internet of Things solution to monitor and analyse indoor air quality. Internet Things 2021, 14, 100392. [Google Scholar] [CrossRef]
- Rani, S.; Mishra, R.M.; Usman, M.; Kataria, A.; Kumar, P.; Bhambri, P.; Mishra, A.K. Amalgamation of Advanced Technologies for Sustainable Development of Smart City Environment: A Review. IEEE Access 2021, 9, 150060–150087. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Y. Research on Evaluation of Green Smart Building Based on Improved AHP-FCE Method. Comput. Intell. Neurosci. 2021, 2021, 5485671. [Google Scholar] [CrossRef]
- Gimpel, H.; Graf, V.; Graf-Drasch, V. A comprehensive model for individuals’ acceptance of smart energy technology—A meta-analysis. Energy Policy 2020, 138, 111196. [Google Scholar] [CrossRef]
- Amir, A.; Fauzi, R.; Arifin, Y. Smart water meter for automatic meter reading. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1212, 012042. [Google Scholar] [CrossRef]
- Li, X.J.; Chong, P.H.J. Design and Implementation of a Self-Powered Smart Water Meter. Sensors 2019, 19, 4177. [Google Scholar] [CrossRef]
- Amankhan, A.; Kural, A.; Temirbek, I.; Abukhan, A.; Mukashov, D.; Azamat, A.; Kudaibergenov, K.; Bagheri, M. Multi-functional Smart Electricity Metering System. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Malik, Q.; Zia, A.; Ahmad, R.; Butt, M.A.; Javed, A. Design and Operation of Smart Energy Meter for Effective Energy Utilization in Smart Cities. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia, 7–9 November 2019; pp. 219–223. [Google Scholar] [CrossRef]
- Sheeba, R.; Naufal, N.; Nadera Beevi, S.; Ajith, R.N.; Amal, S.; Kumar, A.S.; Mohan, A.; Arunjith, P.M.; Aswin, U.; Aswanth, T.; et al. Real-time Monitoring of Energy Meters Using Cloud Storage. In Proceedings of the 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 24–26 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Ismail, S.; Dawoud, D.W.; Ismail, N.; Marsh, R.; Alshami, A.S. IoT-Based Water Management Systems: Survey and Future Research Direction. IEEE Access 2022, 10, 35942–35952. [Google Scholar] [CrossRef]
- Loska, A.; Moczulski, W.; Wyczółkowski, R.; Dąbrowski, M. Integrated system of control and management of exploitation of water supply system. Diagnostyka 2016, 17, 65–74. [Google Scholar]
- Singh, M.; Ahmed, S. IoT based smart water management systems: A systematic review. Mater. Today Proc. 2021, 46, 5211–5218. [Google Scholar] [CrossRef]
- Abbas, O.; Abou Rjeily, Y.; Sadek, M.; Shahrour, I. A large-scale experimentation of the smart sewage system. Water Environ. J. 2017, 31, 515–521. [Google Scholar] [CrossRef]
- Rjeily, Y.A.; Sadek, M.; Chehade, F.H.; Abbas, O.; Shahrour, I. Smart system for urban sewage: Feedback on the use of smart sensors. In Proceedings of the Sensors Networks Smart and Emerging Technologies (SENSET), Beirut, Lebanon, 12–14 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Rony, J.H.; Karim, N.; Rouf, M.A.; Islam, M.M.; Uddin, J.; Begum, M.A. Cost-Effective IoT Model for a Smart Sewerage Management System Using Sensors. J 2021, 4, 27. [Google Scholar] [CrossRef]
- Lalle, Y.; Fourati, M.; Fourati, M.C.; Barraca, J.P. Communication technologies for Smart Water Grid applications: Overview, opportunities, and research directions. Comput. Netw. 2021, 190, 107940. [Google Scholar] [CrossRef]
- Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart Water Technology for Efficient Water Resource Management: A Review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Bokolo, A.; Sobah Abbas, P.; Ahlers, D.; Krogstie, J. API deployment for big data management towards sustainable energy prosumption in smart cities-a layered architecture perspective. Int. J. Sustain. Energy 2020, 39, 263–289. [Google Scholar] [CrossRef]
- Vishnu, S.; Ramson, S.R.J.; Rukmini, M.S.S.; Abu-Mahfouz, A.M. Sensor-Based Solid Waste Handling Systems: A Survey. Sensors 2022, 22, 2340. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, T.; Zaslavsky, A.; Medvedev, A. Robust waste collection exploiting cost efficiency of IoT potentiality in Smart Cities. In Proceedings of the International Conference on Recent Advances in Internet of Things (RIoT), Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Dey, M.T.; Chatterjee, P.; Chakrabarti, A. Smart Waste Monitoring Using Internet of Things. In Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing; Sharma, N., Chakrabarti, A., Balas, V., Martinovic, J., Eds.; Springer: Singapore, 2021; p. 1174. [Google Scholar] [CrossRef]
- Vishnu, S.; Ramson, S.R.J.; Senith, S.; Anagnostopoulos, T.; Abu-Mahfouz, A.M.; Fan, X.; Srinivasan, S.; Kirubaraj, A.A. IoT-Enabled Solid Waste Management in Smart Cities. Smart Cities 2021, 4, 53. [Google Scholar] [CrossRef]
- Boukerche, A.; Coutinho, R.W.L. Smart Disaster Detection and Response System for Smart Cities. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1102–1107. [Google Scholar] [CrossRef]
- Shah, S.A.; Seker, D.Z.; Rathore, M.M.; Hameed, S.; Ben Yahia, S.; Draheim, D. Towards Disaster Resilient Smart Cities: Can Internet of Things and Big Data Analytics Be the Game Changers? IEEE Access 2019, 7, 91885–91903. [Google Scholar] [CrossRef]
- Sharma, K.; Anand, D.; Sabharwal, M.; Tiwari, P.K.; Cheikhrouhou, O.; Frikha, T. A Disaster Management Framework Using Internet of Things-Based Interconnected Devices. Math. Probl. Eng. 2021, 2021, 9916440. [Google Scholar] [CrossRef]
- Chen, S.; Xiong, G.; Xu, J.; Han, S.; Wang, F.; Wang, K. The Smart Street Lighting System Based on NB-IoT. In Proceedings of the Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 1196–1200. [Google Scholar] [CrossRef]
- Pasolini, G.; Toppan, P.; Zabini, F.; De Castro, C.; Andrisano, O. Design, deployment and evolution of heterogeneous smart public lighting systems. Appl. Sci. 2019, 9, 3281. [Google Scholar] [CrossRef]
- Akindipe, D.; Olawale, O.W.; Bujko, R. Techno-Economic and Social Aspects of Smart Street Lighting for Small Cities—A Case Study. Sustain. Cities Soc. 2022, 84, 103989. [Google Scholar] [CrossRef]
- Yang, Y.S.; Lee, S.H.; Chen, G.S.; Yang, C.S.; Huang, Y.M.; Hou, T.W. An Implementation of High Efficient Smart Street Light Management System for Smart City. IEEE Access 2020, 8, 38568–38585. [Google Scholar] [CrossRef]
- Strielkowski, W.; Veinbender, T.; Tvaronavičienė, M.; Lace, N. Economic efficiency and energy security of smart cities. Econ. Res. Ekon. Istraz. 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Behrendt, F. Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities. Sustainability 2019, 11, 763. [Google Scholar] [CrossRef]
- Whittle, C.; Whitmarsh, L.; Hagger, P.; Morgan, P.; Parkhurst, G. User decision-making in transitions to electrified, autonomous, shared or reduced mobility. Transp. Res. D Transp. Environ. 2019, 71, 302–319. [Google Scholar] [CrossRef]
- Anthony Jnr, B.; Abbas Petersen, S.; Ahlers, D.; Krogstie, J. Big data driven multi-tier architecture for electric mobility as a service in smart cities: A design science approach. Int. J. Energy Sect. Manag. 2020, 14, 1023–1047. [Google Scholar] [CrossRef]
- Caird, S. City approaches to smart city evaluation and reporting: Case studies in the United Kingdom. Urban Res. Pract. 2018, 11, 159–179. [Google Scholar] [CrossRef]
- Crivello, S. Urban policy mobilities: The case of Turin as a smart city. Eur. Plan. Stud. 2015, 23, 909–921. [Google Scholar] [CrossRef]
- Wathne, M.W.; Haarstad, H. The smart city as mobile policy: Insights on contemporary urbanism. Geoforum 2020, 108, 130–138. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Being a “citizen” in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Gabrys, J. Programming environments: Environmentality and citizen sensing in the Smart City. Environ. Plan. D 2014, 32, 30–48. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A. Information management as a dual-purpose process in the smart city: Collecting, managing and utilising information. Int. J. Inf. Manag. 2021, 56, 102224. [Google Scholar] [CrossRef]
- Bjørner, T. The advantages of and barriers to being smart in a smart city: The perceptions of project managers within a smart city cluster project in Greater Copenhagen. Cities 2021, 114, 103187. [Google Scholar] [CrossRef]
- Ferraris, A.; Erhardt, N.; Bresciani, S. Ambidextrous work in smart city project alliances: Unpacking the role of human resource management systems. Int. J. Hum. Resour. Manag. 2019, 30, 680–701. [Google Scholar] [CrossRef]
- Braga, I.F.B.; Ferreira, F.A.F.; Ferreira, J.J.M.; Correia, R.J.C.; Pereira, L.F.; Falcão, P.F. A DEMATEL analysis of smart city determinants. Technol. Soc. 2021, 66, 101687. [Google Scholar] [CrossRef]
- Razmjoo, A.; Østergaard, P.A.; Denaï, M.; Nezhad, M.M.; Mirjalili, S. Effective policies to overcome barriers in the development of smart cities. Energy Res. Soc. Sci. 2021, 79, 102175. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; di Nucci, M.R.; Vettorato, D. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach. Energy Policy 2017, 105, 191–201. [Google Scholar] [CrossRef]
- Rana, N.P.; Luthra, S.; Mangla, S.K.; Islam, R.; Roderick, S.; Dwivedi, Y.K. Barriers to the development of smart cities in Indian Context. Inf. Syst. Front. 2019, 21, 503–525. [Google Scholar] [CrossRef]
- Tan, S.Y.; Taeihagh, A. Smart City Governance in Developing Countries: A Systematic Literature Review. Sustainability 2020, 12, 899. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: The evolution of the city-energy-sustainability nexus. Environ. Dev. 2021, 39, 100626. [Google Scholar] [CrossRef]
- Smart Cities Study. International Study on the Situation and Development of ICT, Innovation and Knowledge in Cities; The Committee of Digital and Knowledge-Based Cities of UCLG: Bilbao, Spain, 2017; Available online: https://issuu.com/uclgcglu/docs/smart_cities_2017_en (accessed on 1 September 2022).
- Urrutia-Azcona, K.; Molina-Costa, P.; Muñoz, I.; Maya-Drysdale, D.; Garcia-Madruga, C.; Flores-Abascal, I. Towards an Integrated Approach to Urban Decarbonisation in Practice: The Case of Vitoria-Gasteiz. Sustainability 2021, 13, 8836. [Google Scholar] [CrossRef]
- Vilajosana, I.; Llosa, J.; Martinez, B.; Domingo-Prieto, M.; Angles, A.; Vilajosana, X. Bootstrapping smart cities through a self-sustainable model based on big data flows. IEEE Commun. Mag. 2013, 51, 128–134. [Google Scholar] [CrossRef]
- Addae, B.A.; Zhang, L.; Zhou, P.; Wang, F. Analyzing barriers of Smart Energy City in Accra with two-step fuzzy DEMATEL. Cities 2019, 89, 218–227. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Wolniak, R. Economic opportunities for creating smart cities in Poland. Does wealth matter? Cities 2021, 114, 103222. [Google Scholar] [CrossRef]
- Myeong, S.; Jung, Y.; Lee, E. A Study on Determinant Factors in Smart City Development: An Analytic Hierarchy Process Analysis. Sustainability 2018, 10, 2606. [Google Scholar] [CrossRef]
- Del-Real, C.; Ward, C.; Sartipi, M. What do people want in a smart city? Exploring the stakeholders’ opinions, priorities and perceived barriers in a medium-sized city in the United States. Int. J. Urban Sci. 2023, 27 (Suppl. 1), 50–74. [Google Scholar] [CrossRef]
- Goyal, S.; Sahni, A.; Garg, T. Identification and prioritization of barriers in building smart cities. Int. J. Mech. Eng. Technol. 2018, 9, 819–827. Available online: http://iaeme.com/Home/issue/IJMET?Volume=9&Issue=4 (accessed on 1 September 2022).
- Walker, A. Internet of Things-enabled Smart Sustainable Cities: Big Data-based Urban Governance, Wireless Sensor Networks, and Automated Algorithmic Decision-Making Processes. Geopolit. Hist. Int. Relat. 2020, 12, 58–64. [Google Scholar] [CrossRef]
- Veselitskaya, N.; Karasev, O.; Beloshitskiy, A. Drivers and barriers for smart cities development. Theor. Empir. Res. Urban Manag. 2019, 14, 85–110. [Google Scholar]
- Manville, C.; Cochrane, G.; Cave, J.; Millard, J.; Pederson, J.K.; Thaarup, R.K.; Liebe, A.; Wissner, M.; Massink, R.; Kotterink, B. Mapping Smart Cities in the EU; Directorate General for Internal Policies, European Union (European Parliament): Brussels, Belgium, 2014; Available online: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/507480/IPOL-ITRE_ET%282014%29507480_EN.pdf (accessed on 5 September 2022).
- Attour, A.; Baudino, M.; Krafft, J.; Lazaric, N. Determinants of energy tracking application use at the city level: Evidence from France. Energy Policy 2020, 147, 111866. [Google Scholar] [CrossRef]
- Wang, S.J.; Moriarty, P. Energy savings from smart cities: A critical analysis. Energy Procedia 2019, 158, 3271–3276. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Boteler, B.; Amerighi, O. European smart home market development: Public views on technical and economic aspects across the United Kingdom, Germany and Italy. Energy Res. Soc. Sci. 2014, 3, 65–77. [Google Scholar] [CrossRef]
- Baudier, P.; Ammi, C.; Deboeuf-Rouchon, M. Smart home: Highly-educated students’ acceptance. Technol. Forecast. Soc. Change 2020, 153, 119355. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Smart cities: An effective urban development and management model? Aust. Plan. 2015, 52, 27–34. [Google Scholar] [CrossRef]
- Jadrić, M.; Mijač, T.; Ćukušić, M. End-User Approach to Evaluating Costs and Benefits of Smart City Applications. Int. J. E-Serv. Mob. Appl. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technol. Forecast. Soc. Change 2019, 142, 105–116. [Google Scholar] [CrossRef]
- Cubric, M. Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Soc. 2020, 62, 101257. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a service model for smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [Google Scholar] [CrossRef]
- Letaifa, S.B. How to strategize SMART cities: Revealing the SMART model. J. Bus. Res. 2015, 68, 1414–1419. [Google Scholar] [CrossRef]
- Naphade, M.; Banavar, G.; Harrison, C.; Paraszczak, J.; Morris, R. Smarter Cities and Their Innovation Challenges. Computer 2011, 44, 32–39. [Google Scholar] [CrossRef]
- Neupane, C.; Wibowo, S.; Grandhi, S.; Deng, H. A Trust-Based Model for the Adoption of Smart City Technologies in Australian Regional Cities. Sustainability 2021, 13, 9316. [Google Scholar] [CrossRef]
- Ma, R.; Lam, P.T.I. Investigating the barriers faced by stakeholders in open data development: A study on Hong Kong as a “smart city”. Cities 2019, 92, 36–46. [Google Scholar] [CrossRef]
- Scuotto, V.; Ferraris, A.; Bresciani, S. Internet of Things: Applications and challenges in smart cities: A case study of IBM smart city projects. Bus. Process Manag. J. 2016, 22, 357–367. [Google Scholar] [CrossRef]
- Bakıcı, T.; Almirall, E.; Wareham, J. A smart city initiative: The case of Barcelona. J. Knowl. Econ. 2013, 4, 135–148. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Alderete, M.V. Determinants of Smart City Commitment among Citizens from a Middle City in Argentina. Smart Cities 2021, 4, 59. [Google Scholar] [CrossRef]
- Yeh, H. The effects of successful ICT-based smart city services: From citizens’ perspectives. Gov. Inf. Q. 2017, 34, 556–565. [Google Scholar] [CrossRef]
- Klimovský, D.; Pinterič, U.; Šaparnienė, D. Human limitations to introduction of smart cities: Comparative analysis from two CEE cities. Transylv. Rev. Adm. Sci. 2016, 12, 80–96. [Google Scholar]
- Galor, O.; Weil, D.N. Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and beyond. Am. Econ. Rev. 2000, 90, 806–828. [Google Scholar] [CrossRef]
- Klasen, S.; Nestmann, T. Population, population density and technological change. J. Popul. Econ. 2006, 19, 611–626. [Google Scholar] [CrossRef]
- Kremer, M. Population growth and technological change one million BC to 1990. Q. J. Econ. 1993, 108, 681–716. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart cities and urban inequality. Reg. Stud. 2022, 56, 1097–1112. [Google Scholar] [CrossRef]
- De Wijs, L.; Witte, P.; de Klerk, D.; Geertman, S. Does Activity Fulfil Aspiration? A Contextual Comparison of Smart City Applications in Practice. In Planning Support Science for Smarter Urban Futures; CUPUM 2017. Lecture Notes in Geoinformation and Cartography; Geertman, S., Allan, A., Pettit, C., Stillwell, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 491–503. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in smart city initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, P. A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 2013, 55, 2049–2075. [Google Scholar] [CrossRef]
- Denman, D.C.; Baldwin, A.S.; Betts, A.C.; McQueen, A.; Tiro, J.A. Reducing “I Don’t Know” Responses and Missing Survey Data: Implications for Measurement. Med. Decis. Mak. 2018, 38, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Feick, L.F. Latent Class Analysis of Survey Questions That Include Don’t Know Responses. Public Opin. Q. 1989, 53, 525–547. [Google Scholar] [CrossRef]
- Li, X.; Bao, J.; Sun, J.; Wang, J. Development of circular economy in smart cities based on FPGA and wireless sensors. Microprocess. Microsyst. 2021, 80, 103600. [Google Scholar] [CrossRef]
- Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; Islam, S.U.; Asghar, M.N. Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities. IEEE Access 2019, 7, 128325–128338. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Castell, N.; Kobernus, M.; Liu, H.Y.; Schneider, P.; Lahoz, W.; Berre, A.J.; Noll, J. Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach. Urban Clim. 2015, 14, 370–382. [Google Scholar] [CrossRef]
- Jamil, M.S.; Jamil, M.A.; Mazhar, A.; Ikram, A.; Ahmed, A.; Munawar, U. Smart Environment Monitoring System by Employing Wireless Sensor Networks on Vehicles for Pollution Free Smart Cities. Procedia Eng. 2015, 107, 480–484. [Google Scholar] [CrossRef]
- Sung, W.T.; Hsiao, S.J. Building an indoor air quality monitoring system based on the architecture of the Internet of Things. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 153. [Google Scholar] [CrossRef]
- Jo, J.H.; Jo, B.W.; Kim, J.H.; Kim, S.H.; Han, W.J. Development of an IoT-Based Indoor Air Quality Monitoring Platform. J. Sens. 2020, 2020, 8749764. [Google Scholar] [CrossRef]
- Esfahani, S.; Rollins, P.; Specht, J.P.; Cole, M.; Gardner, J.W. Smart City Battery Operated IoT Based Indoor Air Quality Monitoring System. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, Netherlands, 25–28 January 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Huirong, L.; Wang, L.; Xiangcheng, W. Design of indoor air quality monitoring system based on wireless sensor network. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012070. [Google Scholar] [CrossRef]
- Froufe, M.M.; Chinelli, C.K.; Guedes, A.L.A.; Haddad, A.N.; Hammad, A.W.A.; Soares, C.A.P. Smart Buildings: Systems and Drivers. Buildings 2020, 10, 153. [Google Scholar] [CrossRef]
- Metallidou, C.K.; Psannis, K.E.; Egyptiadou, E.A. Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access 2020, 8, 63679–63699. [Google Scholar] [CrossRef]
- Darby, S.J. Smart technology in the home: Time for more clarity. Build. Res. Inf. 2018, 46, 140–147. [Google Scholar] [CrossRef]
- Li, M.; Gu, W.; Chen, W.; He, Y.; Wu, Y.; Zhang, Y. Smart Home: Architecture, Technologies and Systems. Procedia Comput. Sci. 2018, 131, 393–400. [Google Scholar] [CrossRef]
- Koech, R.; Cardell-Oliver, R.; Syme, G. Smart water metering: Adoption, regulatory and social considerations. Australas. J. Water Resour. 2021, 25, 173–182. [Google Scholar] [CrossRef]
- Mudumbe, M.J.; Abu-Mahfouz, A.M. Smart water meter system for user-centric consumption measurement. In Proceedings of the IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 993–998. [Google Scholar] [CrossRef]
- Mante, S.; Muppala, R.; Niteesh, D.; Hussain, A.M. Energy Monitoring Using LoRaWAN-based Smart Meters and oneM2M Platform. In Proceedings of the 2021 IEEE SENSORS, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Ahuja, K.; Khosla, A. Data analytics criteria of IoT enabled smart energy meters (SEMs) in smart cities. Int. J. Energy Sect. Manag. 2019, 13, 402–423. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S. Secure data analytics for smart grid systems in a sustainable smart city: Challenges, solutions, and future directions. Sustain. Comput. Inf. 2020, 28, 100427. [Google Scholar] [CrossRef]
- Hunter, G.W.; Vettorato, D.; Sagoe, G. Creating Smart Energy Cities for Sustainability through Project Implementation: A Case Study of Bolzano, Italy. Sustainability 2018, 10, 2167. [Google Scholar] [CrossRef]
- Bharani Baanu, B.; Jinesh Babu, K.S. Smart water grid: A review and a suggestion for water quality monitoring. Water Supply 2022, 22, 1434–1444. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Omar, M. Blockchain for Waste Management in Smart Cities: A Survey. IEEE Access 2021, 9, 131520–131541. [Google Scholar] [CrossRef]
- Medvedev, A.; Fedchenkov, P.; Zaslavsky, A.; Anagnostopoulos, T.; Khoruzhnikov, S. Waste Management as an IoT-Enabled Service in Smart Cities. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; ruSMART NEW2AN 2015. Lecture Notes in Computer, Science; Balandin, S., Andreev, S., Koucheryavy, Y., Eds.; Springer: Cham, Switzerland, 2015; p. 9247. [Google Scholar] [CrossRef]
- Longhi, S.; Marzioni, D.; Alidori, E.; Buo, G.D.; Prist, M.; Grisostomi, M.; Pirro, M. Solid Waste Management Architecture Using Wireless Sensor Network Technology. In Proceedings of the 5th International Conference on New Technologies, Mobility and Security (NTMS), Istanbul, Turkey, 7–10 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Ford, D.N.; Wolf, C.M. Smart Cities with Digital Twin Systems for Disaster Management. J. Manag. Eng. 2020, 36, 04020027. [Google Scholar] [CrossRef]
- Lindkvist, H.; Melander, L. How sustainable are urban transport services? A comparison of MaaS and UCC. Res. Transp. Bus. Manag. 2022, 43, 100829. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol. 2019, 26, 21–46. [Google Scholar] [CrossRef]
- Habib, A.; Alsmadi, D.; Prybutok, V.R. Factors that determine residents’ acceptance of smart city technologies. Behav. Inf. Technol. 2020, 39, 610–623. [Google Scholar] [CrossRef]
- Davino, C.; Fabbris, L. Survey Data Collection and Integration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 34–44. [Google Scholar] [CrossRef]
- Agresti, A. Analysis of Ordinal Categorical Data, 2nd ed.; Wiley: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression, 3rd ed.; Springer: New York, NY, USA, 2010; pp. 463–488. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley: New York, NY, USA, 2013; pp. 289–310. [Google Scholar] [CrossRef]
- Stoltzfus, J.C. Logistic Regression: A brief Primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [Google Scholar] [CrossRef]
- Bendel, R.B.; Afifi, A.A. Comparison of stopping rules in forward regression. J. Am. Stat. Assoc. 1977, 72, 46–53. [Google Scholar] [CrossRef]
- Nagelkerke, N.; Smits, J.; le Cessie, S.; van Houlwelingen, H. Testing goodness of fit of the logistic regression model in case-control studies using sample reweighting. Stat. Med. 2005, 24, 121–130. [Google Scholar] [CrossRef]
- Cochran, W.G. The χ2 Test of Goodness of Fit. Ann. Math. Stat. 1952, 23, 315–345. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Li, Z.; Ganji, M. Smart cities for a sustainable urbanization: Illuminating the need for establishing smart urban infrastructures. IEEE Electrif. Mag. 2018, 6, 16–33. [Google Scholar] [CrossRef]
- Turečková, K.; Nevima, J. The Cost Benefit Analysis for the Concept of a Smart City: How to Measure the Efficiency of Smart Solutions? Sustainability 2020, 12, 2663. [Google Scholar] [CrossRef]
- Szetey, K.; Moallemi, E.; Ashton, E.; Butcher, M.; Sprunt, B.; Bryan, B. Participatory planning for local sustainability guided by the Sustainable Development Goals. Ecol. Soc. 2021, 26, 16. [Google Scholar] [CrossRef]
- Skowron, J.; Flynn, M. The Challenge of Paying for Smart Cities Projects; Deloitte Development LLC: London, UK, 2018; pp. 1–18. Available online: https://www2.deloitte.com/xe/en/insights/industry/dcom/the-challenge-of-paying-for-smart-cities-projects.html (accessed on 4 September 2022).
- Quan, X.; Solheim, M.C.W. Public-private partnerships in smart cities: A critical survey and research agenda. City Cult. Soc. 2023, 32, 100491. [Google Scholar] [CrossRef]
- Gardner, H.K.; Matviak, I.A. Smarter Collaboration: A New Approach to Breaking Down Barriers and Transforming Work; Harvard Business Press: Boston, MA, USA, 2022; pp. 1–320. [Google Scholar]
- Noori, N.; Hoppe, T.; De Jong, M.; Stamhuis, E. Transplanting good practices in Smart City development: A step-wise approach. Gov. Inf. Q. 2023, 40, 101802. [Google Scholar] [CrossRef]
Variable | IEFS01 (n = 264) | IEFS02 (n = 249) | IEFS03 (n = 236) | |||
---|---|---|---|---|---|---|
B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | |
Control variables | ||||||
Rev | ||||||
PopSize | 0.74 ** (0.09) | 2.10 (1.75–2.51) | 0.46 *** (0.11) | 1.58 (1.28–1.95) | ||
IEFSSC”i” 1 | 0.34 * (0.17) | 1.40 (1.03–1.96) | 0.56 *** (0.15) | 1.76 (1.31–2.36) | ||
Barriers | ||||||
B01 | −0.27 * (0.13) | 0.76 (0.59–0.98) | ||||
B02 | ||||||
B03 | −0.47 ** (0.19) | 0.63 (0.43–0.90) | −0.50 ** (0.18) | 0.61 (0.43–0.86) | ||
B04 | −0.36 * (0.15) | 0.70 (0.53–0.93) | −0.58 ** (0.18) | 0.56 (0.39–0.81) | ||
B05 | ||||||
B06 | ||||||
B07 | ||||||
B08 | ||||||
B09 | 0.37 * (1.6) | 1.45 (1.06–2.00) | 0.58 ** (0.19) | 1.79 (1.24–2.59) | ||
B10 | −0.34 * (0.17) | 0.71 (0.51–0.99) | ||||
Test | value | p | value | p | value | p |
Nagelkerke Pseudo R-squared | 0.27 | 0.21 | 0.16 | |||
Goodness-of-fit test—Chi-squared | 75.6 | <0.001 | 44.64 | <0.001 | 16.85 | 0.002 |
Test of parallel lines—Chi-squared | 4.05 | 0.67 | 22.54 | 0.13 | 16.19 | 0.18 |
Variable | IEFS04 (n = 241) | IEFS05 (n = 220) | IEFS06 (n = 209) | |||
B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | |
Control variables | ||||||
Rev | ||||||
PopSize | 0.20 * (0.09) | 1.22 (1.02–1.44) | 0.47 *** (0.10) | 1.60 (1.32–1.93) | 0.44 *** (0.10) | 1.55 (1.02–1.86) |
IEFSSC”i” 1 | 0.36 * (0.16) | 1.43 (1.05–1.96) | 0.35 * (0.17) | 1.42 (1.01–1.98) | ||
Barriers | ||||||
B01 | −0.30 ** (0.10) | 0.74 (0.60–0.90) | ||||
B02 | 0.32 * (0.15) | 1.38 (1.03–1.86) | ||||
B03 | −0.40 * (0.17) | 0.67 (0.47–0.94) | ||||
B04 | ||||||
B05 | −0.36 * (0.16) | 0.70 (0.51–0.96) | ||||
B06 | 0.28 * (0.14) | 1.32 (1.04–1.75) | ||||
B07 | −0.32 * (0.13) | 0.73 (0.57–0.93) | −0.28 * (0.13) | 0.76 (0.58–0.98) | ||
B08 | ||||||
B09 | ||||||
B10 | ||||||
Test | value | p | value | p | value | p |
Nagelkerke Pseudo R-squared | 0.17 | 0.19 | 0.21 | |||
Goodness-of-fit test—Chi-squared | 27.32 | <0.001 | 40.59 | <0.001 | 44.29 | <0.001 |
Test of parallel lines—Chi-squared | 35.28 | 0.15 | 9.74 | 0.37 | 45.50 | 0.22 |
Variable | IEFS07 (n = 232) | IEFS08 (n = 216) | IEFS09 (n = 233) | |||
B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | |
Control variables | ||||||
Rev | ||||||
PopSize | 0.61 *** (0.11) | 1.85 (1.50–2.27) | 0.21 * (0.10) | 1.23 (1.02–1.49) | ||
IEFSSC”i” 1 | 0.88 *** (0.16) | 2.40 (1.74–3.31) | 0.50 * (0.20) | 1.64 (1.12–2.41) | ||
Barriers | ||||||
B01 | ||||||
B02 | 0.40 ** (0.15) | 1.48 (1.11–1.99) | 0.32 * (0.14) | 1.38 (1.04–1.83) | ||
B03 | ||||||
B04 | −0.46 * (0.21) | 0.63 (0.41–0.96) | ||||
B05 | ||||||
B06 | ||||||
B07 | −0.41 *** (0.12) | 0.67 (0.53–0.85) | ||||
B08 | ||||||
B09 | ||||||
B10 | ||||||
Test | value | p | value | p | value | p |
Nagelkerke Pseudo R-squared | 0.17 | 0.28 | 0.12 | |||
Goodness-of-fit test—Chi-squared | 39.57 | <0.001 | 66.36 | <0.001 | 10.85 | <0.001 |
Test of parallel lines—Chi-squared | 4.81 | 0.57 | 49.70 | 0.11 | 1.89 | 0.60 |
Variable | IEFS10 (n = 252) | IEFS11 (n = 251) | IEFS12 (n = 257) | |||
B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | B (SE) | OR (95%CI) | |
Control variables | ||||||
Rev | 0.16 * (0.08) | 1.18 (1.04–1.38) | 0.23 * (0.10) | 1.26 (1.04–1.52) | ||
PopSize | 0.23 ** (0.09) | 1.26 (1.06–1.50) | 0.83 *** (0.11) | 2.37 (1.90–2.97) | 0.42 *** (0.08) | 1.52 (1.29–1.80) |
IEFSSC”i” 1 | 0.66 ** (0.22) | 1.94 (1.25–3.00) | ||||
Barriers | ||||||
B01 | ||||||
B02 | ||||||
B03 | ||||||
B04 | ||||||
B05 | −0.39 ** (0.15) | 0.68 (0.51–0.91) | ||||
B06 | −0.29 * (0.12) | 0.75 (0.59–0.95) | ||||
B07 | ||||||
B08 | ||||||
B09 | ||||||
B10 | ||||||
Test | value | p | value | p | value | p |
Nagelkerke Pseudo R-squared | 0.11 | 0.40 | 0.18 | |||
Goodness-of-fit test—Chi-squared | 17.38 | <0.001 | 113.79 | <0.001 | 47.74 | <0.001 |
Test of parallel lines—Chi-squared | 5.37 | 0.50 | 43.3 | 0.29 | 9.86 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janik, A.; Ryszko, A.; Szafraniec, M. Intelligent and Environmentally Friendly Solutions in Smart Cities’ Development—Empirical Evidence from Poland. Smart Cities 2023, 6, 1202-1226. https://doi.org/10.3390/smartcities6020058
Janik A, Ryszko A, Szafraniec M. Intelligent and Environmentally Friendly Solutions in Smart Cities’ Development—Empirical Evidence from Poland. Smart Cities. 2023; 6(2):1202-1226. https://doi.org/10.3390/smartcities6020058
Chicago/Turabian StyleJanik, Agnieszka, Adam Ryszko, and Marek Szafraniec. 2023. "Intelligent and Environmentally Friendly Solutions in Smart Cities’ Development—Empirical Evidence from Poland" Smart Cities 6, no. 2: 1202-1226. https://doi.org/10.3390/smartcities6020058
APA StyleJanik, A., Ryszko, A., & Szafraniec, M. (2023). Intelligent and Environmentally Friendly Solutions in Smart Cities’ Development—Empirical Evidence from Poland. Smart Cities, 6(2), 1202-1226. https://doi.org/10.3390/smartcities6020058