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Abstract: Improving urban mobility, especially pedestrian mobility, is a current challenge in virtually
every city worldwide. To calculate the least-cost paths and safer, more efficient routes, it is necessary
to understand the geometry of streets and their various elements accurately. In this study, we
propose a semi-automatic methodology to assess the capacity of urban spaces to enable adequate
pedestrian mobility. We employ various data sources, but primarily point clouds obtained through
a mobile laser scanner (MLS), which provide a wealth of highly detailed information about the
geometry of street elements. Our method allows us to characterize preferred pedestrian-traffic zones
by segmenting crosswalks, delineating sidewalks, and identifying obstacles and impediments to
walking in urban routes. Subsequently, we generate different displacement cost surfaces and identify
the least-cost origin–destination paths. All these factors enable a detailed pedestrian mobility analysis,
yielding results on a raster with a ground sampling distance (GSD) of 10 cm/pix. The method is
validated through its application in a case study analyzing pedestrian mobility around an educational
center in a purely urban area of A Coruña (Galicia, Spain). The segmentation model successfully
identified all pedestrian crossings in the study area without false positives. Additionally, obstacle
segmentation effectively identified urban elements and parked vehicles, providing crucial information
to generate precise friction surfaces reflecting real environmental conditions. Furthermore, the
generation of cumulative displacement cost surfaces allowed for identifying optimal routes for
pedestrian movement, considering the presence of obstacles and the availability of traversable spaces.
These surfaces provided a detailed representation of pedestrian mobility, highlighting significant
variations in travel times, especially in areas with high obstacle density, where differences of up to
15% were observed. These results underscore the importance of considering obstacles’ existence and
location when planning pedestrian routes, which can significantly influence travel times and route
selection. We consider the capability to generate accurate cumulative cost surfaces to be a significant
advantage, as it enables urban planners and local authorities to make informed decisions regarding
the improvement of pedestrian infrastructure.

Keywords: pedestrian; pedestrian mobility; school mobility; school route; urban mobility; walkability;
pedestrian path; least-cost path; cumulative cost

1. Introduction

The enhancement of urban pedestrian mobility stands as one of the Sustainable
Development Goals (SDGs) outlined in the United Nations’ 2030 Agenda [1], specifically
goal 11: “Make cities inclusive, safe, resilient and sustainable”. Urban mobility adaptation
is directed towards enhancing the efficiency and safety of pedestrian travel, a particularly
vulnerable group in urban settings. Both children and pedestrians over the age of 65 are
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considered vulnerable people, as indicated in studies such as Agarwala and Vasudevan
(2020) [2], Lord et al. (2018) [3], and Campisi et al. (2022) [4]. In this context, the daily
commute of students to educational institutions represents one of the most critical scenarios
in terms of road safety because its main participants are children, often accompanied by
elderly people such as grandparents, as shown in Fernández-Arango et al. (2022) [5]. School
entry and exit times are particularly critical moments as they often result in significant
traffic congestion around educational centers, corroborating the results of studies like
Deluka-Tibljaš et al. (2021) [6], which demonstrate that school environments are among the
areas in cities where the most children are injured. In this regard, it is evident that studying
road infrastructure for people with reduced mobility is crucial due to the variations in users’
perceptions and experiences depending on the street environment. Streets with wider
or pedestrian-specific sidewalks offer a safer and more pleasant walking environment
than narrow sidewalks, reducing the likelihood of accidents and facilitating traffic flow.
Obstacles such as street furniture and vehicles parked around the sidewalks significantly
complicate mobility.

Therefore, possessing a detailed understanding of the routes students utilize is paramount,
as it enables the formulation of appropriate mobility policies tailored to the urban envi-
ronment of each school. This entails comprehending the characteristics of roads, their
geometry, urban furnishings, and equipment, and the mobility potential of each sidewalk
and public space that may be utilized in pedestrian routes.

Having data on student concentration in specific areas or on particular routes provides
fundamental information for planning efficient pedestrian pathways. School administra-
tors and educational authorities possess information regarding students’ residences, and
while the calculation of optimal travel routes is one of the most valuable tools of a GIS
(Collischon et al., 2000) [7], the difficulty in analyzing this information alongside other
data sources can entail complex georeferencing processes and specialized personnel for
its acquisition and analysis. In this regard, the decision-making process for the design of
school pedestrian routes in Spain is generally carried out considering students’ residences
based on manually recorded information in their enrollment forms, typically prioritiz-
ing proximity to the school, as evidenced in initiatives such as Camino Escolar Seguro,
Stop Accidentes, Caminos Escolares, Teachers for Future Spain, and International Walk to
School [8–12].

Most related studies we have reviewed consider factors such as slope (Hosseini et al.,
2023) [13] to identify optimal pedestrian routes. Some, like Massin et al. (2022) [14], analyze
the influence of obstacles present in routes, while González-Collado et al. (2024) [15]
employ a combination of data acquired through an MLS and HMLS (handheld mobile laser
scanner) to identify multiple elements existing along two kilometers of urban roadway.
Incorporating obstacles in urban spaces seems necessary in studies of pedestrian mobility
in cities.

This work highlights that traditional approaches based solely on origin–destination
proximity and terrain inclination are insufficient to guarantee efficient pedestrian routes.
Incorporating detailed data on obstacles’ locations and free walking space availability is
crucial for optimizing pedestrian mobility. In this regard, our work enables combining
data from mobile laser scanning (MLS) with certain AI and GIS techniques that have
demonstrated great capacity to understand pedestrian mobility in urban environments. The
methodology developed has allowed the identification of obstacles to characterize in detail
the most walkable pedestrian crossing areas on sidewalks and crosswalks, significantly
improving the accuracy of studies based solely on origin–destination distance. Our method
can generate cumulative travel cost surfaces and identify the least-cost routes in any
urban area using a set of raster layers with a 10 cm/pixel spatial resolution. The results
demonstrate that pedestrian-specific zones and streets with wider and more open spaces
significantly improve city pedestrian mobility.
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To validate the method, a case study has been conducted in the urban environment of A
Coruña, analyzing a total of 3960.66 m and calculating different accumulated displacement
cost surfaces and least-cost paths from 30 student households to the educational center itself.

This paper is organized as follows: Section 2 describes the study area, the materials
used, and the proposed methodology. Section 3 presents the results obtained. Section 4
discusses the results, and Section 5 describes the study’s main findings.

2. Materials and Methods
2.1. Test Site and Method Overview

Although the proposed method is general enough to be applied in any urban envi-
ronment, it specifically focuses on pedestrian mobility analysis in urban areas. For this
reason, ten streets in the city of A Coruña (Galicia, Spain) were selected as a case study,
characterized by a purely urban structure consisting of one or multiple lanes, curbs, side-
walks, and buildings. Additionally, nearly all streets had parked vehicles and a significant
amount of urban furniture, adding complexity to the study and making LiDAR point cloud
segmentation and accessibility analysis more challenging. Table 1 describes some metrics
of the analyzed streets, while Figure 1 depicts the study area.

Table 1. Characterization of the streets that make up the study area. Avg St Width is the average
value of the width of the street; Avg SW is the average value of the width of the two sidewalks of the
street; the average width of a single sidewalk is half of this value; Avg SW (%) indicates the sidewalk
vs. street ratio as a percentage; Zmin and Zmax indicate the minimum and maximum altitude values
of the street; Avg slope is the average slope of the street; Average indicates the average values for the
set of all streets.

Street Avg St Width
(m)

Avg SW
Width (m) Avg SW (%) Zmin (m) Zmax (m) Avg Slope (%)

Eduardo Dato 16.74 4.46 26.64 23.75 41.61 6.72
Avda. Habana 38.03 19.26 50.64 10.86 23.80 1.78
Andres Martinez Salazar 15.44 6.24 40.41 24.38 29.51 2.28
Virrey Osorio 16.14 6.92 42.87 13.66 37.39 5.72
Valle Inclan 15.81 6.77 42.82 16.27 41.21 5.91
Filantropia 18.96 9.48 50.00 17.77 43.29 6.59
Paseo Ronda 33.2 7.55 22.74 17.63 42.53 5.06
Perez Lugin 15.59 6.76 43.36 19.77 31.97 3.39
Pza. Portugal 51.16 29.73 58.11 9.58 14.50 1.21
Calvo Sotelo 27.14 4.29 15.81 13.30 15.90 1.00

Average 24.82 10.15 39.34 16.70 32.17 3.96

To generate the pedestrian accessibility model, four general phases were followed,
as outlined in Figure 2: Phase 1 involved creating initial information surfaces with pa-
rameters influencing urban pedestrian mobility, derived from data acquired from various
sources (LiDAR, OSM, Cadastre . . . ). Phase 2 consisted of generating different friction
surfaces for displacement, where each cell represents a unit cost of movement. Phase 3
involved generating an accumulated displacement cost surface, where each cell represents
the travel time to a destination point. Finally, phase 4 encompassed model validation tests.



Smart Cities 2024, 7 1444

Figure 1. Study area and distribution of the 10 streets analyzed. The green polygon shows the total
study area (173,153.40 m2). The yellow polygon shows the streets studied (80,363.06 m2) and the
black lines are the road axes of the streets studied. Source: self-made.

Figure 2. Phases used to generate the pedestrian accessibility model in urban areas. Source: self-made.

2.2. Pedestrian Mobility Zone: Sidewalks and Crosswalks

With the aim of promoting safe pedestrian movement, we adjusted the space to
be analyzed for pedestrian transit, restricting walking to specific areas designated for
pedestrians. To achieve this, a region composed of sidewalks and crosswalks was generated,
forming the basis for the rest of the friction surfaces.

The delineation of sidewalks was achieved by rasterizing vector cartography from
the A Coruña City Council with a GSD of 10 cm/pix and contrasting its accuracy with
information obtained from OpenStreetMap and the Spanish Cadastre Website.

The segmentation and geolocation of crosswalks were performed automatically using
AI techniques that allowed training of the computer vision model YOLOv8m-seg. For this
purpose, images generated from intensity values of LiDAR point clouds were employed,
previously processed through the MLS point cloud processing pipeline prepared for this
study and available at github-dfarango.

2.2.1. Crosswalk Dataset and Model Training

The first step in training the model was to label the crosswalks, distinguishing between
two types, crosswalk A and crosswalk B, as their behavior in computer vision varies
significantly. Figure 3 illustrates an example of each type of crosswalk.

https://www.openstreetmap.org/#map=6/40.007/-2.488
https://www.sedecatastro.gob.es/
https://docs.ultralytics.com/tasks/segment/
https://github.com/dfarango/Pipeline_accesibilidad_peatonal/tree/main/01_scripts_s01_to_s11_working_with_PCL_las_data
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Figure 3. Examples of the two types of labeled pedestrian crosswalks. The violet polygon means
crosswalk type A and the red polygon means crosswalk type B. Source: self-made.

For labeling, the web application Roboflow was utilized [16]. The generated dataset
can be viewed and downloaded at Roboflow_Universe/dfarango, and its metrics are
presented in Table 2.

Table 2. Metrics of the dataset generated through Roboflow.

Initial Image
Number

Class Balance
(Crosswalk

A/Crosswalk B)

Median Image
Ratio Preprocessing Data

Augmentation
Final Image

Number

%Image Test
Split (Train/-
Valid/Test)

61 405/65 2654 × 2166

Auto-adjust
contrast using

adaptive
equalization

Saturation
transformation
between −54%

and +54%

470 80/20/0

With this dataset, the YOLOv8m-seg model from Ultralytics was trained on the Kaggle
platform, which allows the use of customized Jupyter Notebooks and limited free access
to GPUs. Table 3 presents the hyper-parameter values used to train the YOLOv8 model.
The complete code for this training and an explanation of the selected parameters can be
viewed and downloaded at Kaggle/davidfarango.

Table 3. Values of hyperparameters used to train YOLOv8 model.

Model Epochs Image Size
(pix) Batch Patience Flipud Fliplr Shear

YOLOv8m-seg.pt 1000 auto −1 (auto) 100 0.5 0.5 0.5

2.2.2. Validation of the Segmenter

To validate the system’s performance, some of the most common metrics in object
detection and segmentation were employed: precision, recall, F1-score, and mean average
precision (mAP). These metrics are related to the concept of IoU (intersection over union),
which is utilized to quantify the degree of overlap between the predicted boundary and the
ground truth (Figure 4). In our dataset, like in many others, a pre-defined 0.5 IoU threshold
is set to classify whether a prediction is deemed a true positive or a false positive.

https://app.roboflow.com/dfarango/20231212_crosswsegment_61images/1
https://docs.ultralytics.com/tasks/segment/
https://docs.ultralytics.com/
https://www.kaggle.com/
https://www.kaggle.com/code/davidfarango/crosswalkssegmentation-intensityraster
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Figure 4. Graphic explanation of intersection over union (IoU). Source: IoU for object detection.

Precision (1) measures how accurate the prediction is, and it represents the ratio of
true positives to all predicted positives, while recall (2) measures how well all positives
are found. The F1-score (3) is calculated as the harmonic mean of the precision and recall
scores, and mean average precision (mAP) provides a joint analysis of precision and
recall, indicating the average precision values for all recall values between 0 and 1, where
AP (average precision) is the area found under the precision–recall curve (4). Further
information of these parameters is provided in Quintana et al. (2016), Arya et al. (2020),
Pham et al. (2020), SciKit Learn, mAP for Object Detection, and Sánchez-Alor (2020) [17–22].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

AP =
∫ 1

0
p(r)dr (4)

where TP = true positive, FP = false positive, and FN = false negative.

2.2.3. Inferences and Results

Once the model was trained, inference was performed on the 61 images using the
neural network, with the weights adjusted during training, to obtain the segmentation
of the crosswalks. Subsequently, to transfer these inferences to a GIS, pixel values were
reclassified, assigning a value of ‘1’ to pixels belonging to crosswalks (both type A and
type B) and ‘0’ to the rest of the pixels in the image. The script that performs this process
is indexReclass.py, which generates a normalized index using the Red and Green bands
(I = (R − G)/(R + G)) and reclassifies all values other than 0 to a value of ‘1’.

2.3. DTM and Obstacles

To obtain a digital terrain model (DTM) of the study area and the location of all
obstacles hindering pedestrian movement, the algorithm proposed in a previous study
(Fernández-Arango et al., 2022) [23] was employed. This algorithm allowed the generation
of a DTM raster from LiDAR point clouds acquired through MLS. Initially, the algorithm
segmented the LiDAR point cloud into ground points and non-ground points. Subsequently,
a DTM with a GSD of 10 cm/pix was generated, with each pixel value representing the
mean elevation of the points within each cell of the cloud. Additionally, interpolation was
employed for occluded areas to ensure a continuous DTM along the entire street.

A digital surface model (DSM) of the entire street was generated for the detection
and geolocation of permanent obstacles, and height-above-ground (HAG) values were
calculated for the entire point cloud. Any group of points with HAG values ranging
between 25 and 220 cm was considered a pedestrian impedance obstacle.

https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://github.com/dfarango/Pipeline_accesibilidad_peatonal/blob/main/02_script_s12_crosswalks_segmentation_yolo8/S12_crosswalksSegmentation_indexReclass.py


Smart Cities 2024, 7 1447

2.4. Pedestrian Segmentation

While some segmentation tasks can be reduced to a 2D problem (e.g., segmentation of
crossing zones), differentiating pedestrians from other objects in urban contexts demands
an accurate 3D characterization due to the extensive variety of objects (e.g., street lights,
urban trees, or garbage containers). Thus, we formulated pedestrian segmentation as a
binary classification problem where each point must be classified as pedestrian or non-
pedestrian. More concretely, we computed multiscale features from the 3D point cloud
to train a random forest model for binary point-wise classification (Thomas et al., 2018;
Weinmann et al., 2017) [24,25]. Finally, we generated a GeoTIFF raster with a cell size of
10 cm from the point cloud that is well suited for our later path-finding algorithm. Each cell
in the raster can be seen as a binary mask that specifies whether there are pedestrians or
not. All the previous computations were carried out using the open-source VirtuaLearn3D
framework [26] for artificial intelligence applied to point clouds.

For the computation of the multiscale geometric features, we considered spherical
neighborhoods with the following radii: 12.5 cm, 25 cm, 50 cm, 75 cm, 1 m, 2 m, 3 m, and 5 m.
For each spherical neighborhood, we computed the linearity, planarity, sphericity, surface
variation, omnivariance, verticality, anisotropy, eigenentropy, and the sum of eigenvalues.

We also computed the distance to the lowest point (floor distance) considering 2D
rectangular neighborhoods on the horizontal plane centered on support points uniformly
distributed inside the smallest axis-aligned bounding box containing the point cloud. In
this way, we considered cell sizes of 10 m and 50 m. As we used MLS point clouds in our
study, we also considered the available spectral information (intensity) and the scan angle
associated with each point. These two features, together with the two point-wise floor
distances, were transformed by mean-based smooth filters in spherical neighborhoods with
radii of 25 cm, 1 m, and 3 m.

Due to the large number of features (88), we conducted ablation studies to determine
to what extent the features are necessary. First, we evaluated the model trained without
smooth features. Then, we evaluated the model trained without smooth features and raw
height features, i.e., considering geometric features only. Finally, we considered all the
features but iteratively discarded the geometric features of the maximum radius. As the
biggest neighborhoods lead to the most significant computational burden, this last ablation
study effectively analyzes the upper bound of data mining regarding computational cost.
All the evaluations for the ablation studies were carried out through stratified k-folding
(with k = 5).

We opted for the active learning paradigm to train our random forest model because
our point clouds are not labeled (Yang and Loog, 2016) [27]. With this paradigm, the
first iteration requires a manually segmented initial budget. After this first iteration, we
measured the point-wise entropy as defined in Equation (5). In this equation, ei refers to
the entropy of the i-th point, nc is the number of classes (in our case nc = 2), and zij is the
probability that the i-th point belongs to the j-th class. Subsequent iterations were focused
on extending the training dataset with information from high-entropy regions, enabling
the training of the model with just a few hours of work from the oracle, i.e., the human that
reviews high-entropy points to decide whether they must be labeled as a pedestrian or not.

ei = −
nc

∑
j=1

zij log2(zij) (5)

We applied hyperparameter tuning with stratified k-folding (using k = 5) to train our
models for two reasons: (1) to avoid the typical active learning pitfall of neglecting the
classifier’s configuration (Lüth et al., 2023) [28]; and (2) to analyze the model generalization
in terms of its mean accuracy and standard deviation on different data splits. More
concretely, we applied hyperparameter tuning twice. Once with the initial budget and
once with the final training dataset. Our experiments considered the number of binary
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decision trees, the maximum depth for each decision tree, and the class weight strategy as
hyperparameters for grid search optimization.

The number of decision trees is an essential hyperparameter because it significantly
impacts the compromise between the robustness against overfitting and the execution
time (especially the time for model training). The maximum depth of each tree is another
relevant hyperparameter. On the one hand, too much depth means the model might become
prone to overfitting. On the other hand, insufficient depth means the model cannot exploit
interactions between features to achieve a successful classification. For the class weight
strategy, we considered uniform weights (all classes have weight one) and a balanced
alternative, where each class is weighted such that wi = ns(nc · ni)

−1. In this strategy, wi is
the weight for the i-th class, nc is the number of classes, ns is the number of samples used
to train a given decision tree, and ni is the number of samples belonging to the i-th class on
the split of data used to train a particular decision tree. At most, a randomly selected 30%
of the training dataset is considered for each decision tree.

2.5. Better-Walkability Areas

For a pedestrian, walking on a wide sidewalk free of obstacles is more pleasant, safe,
and efficient in terms of cost–time of displacement than walking on a sidewalk full of
obstacles that must be avoided. For this reason, we added to the study a surface of better-
walkability areas, prioritizing the widest and obstacle-free passage zones. The approach
was based on the notion that regions farthest from obstacles should have a lower movement
cost than those closest to them. Additionally, higher cost values were assigned to areas
near building walls and at the edges of sidewalks with roadways, as pedestrians tend to
avoid these regions to avoid potential obstacles on building facades or parked vehicles.

A raster was calculated to generate this friction surface for movement, with pixels
having different penalty time values based on their proximity to one or more obstacles.
Table 4 presents these penalty times.

Table 4. Penalty times are based on distance to obstacles. It is considered in this analysis that areas
closest to obstacles are part of them to ensure moving away from them during displacements and
seeking more comfortable pedestrian routes.

Distance to Obstacle (cm) Space Available for Walking
(cm) Penalty Per Meter (s)

<50 <50 1000
[50–80) 80 0.5
[80–110) 110 0.25

>=110 >=110 0

2.6. Pedestrian Accessibility Analysis: The Creation of Cumulative Pedestrian Travel Cost Surfaces
and Model Validation Testing

Through the joint analysis of all previously generated friction surfaces, several accu-
mulated displacement cost surfaces were constructed. In these surfaces, each cell represents
the total cost value to travel from that cell to the destination cell, moving along the optimal
or least-cost displacement route. To generate these surfaces, Equation (6), proposed by
Langmuir (1984) [29], was utilized, allowing for the estimation of displacement values
based on the terrain slope, and subsequently, the rest of the friction surfaces were added.

T = a∆S + b∆H1 + c∆H2 + d∆H3 (6)

T represents the time spent on the journey, ∆S the distance traveled, ∆H1 the vertical
distance traveled uphill, ∆H2 the vertical distance traveled downhill with moderate slope
(5–12◦), and ∆H3 the vertical distance traveled downhill on a steep slope (>=12◦). The
constants used are a = time (s) needed to walk 1 m on a horizontal surface, b = additional
time (s) per meter of uphill elevation gain, c = additional time (s) per meter of elevation
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loss on moderate downhill slopes, and d = additional time (s) per meter of elevation loss
on steep downhill slopes. The values assigned to these constants were those proposed by
Langmuir (1984) [29] for the constants b = 6.0, c = 1.9998, and d = −1.9998. However,
a was assigned as 0.75 based on more recent studies such as Bosina and Weidmann (2017),
Martín Bermejo (2007), Aghabayk et al. (2021), and Looney et al. (2019) [30–33], which
better represent the walking speeds of all types of pedestrians.

To implement the remaining friction surfaces in the analysis and calculate the accu-
mulated displacement cost for each cell, Equation (7) was utilized and implemented in the
algorithm Rwalk [34].

TotalCost = T + λ ∗ FrictionCosts ∗ ∆S (7)

where λ = 1 is a dimensionless scaling factor of the friction surface.
To validate the model, pedestrian accessibility tests were conducted in five different

scenarios, varying the pedestrian’s mobility flexibility in each case study. Thirty student
residences were randomly chosen as origin points, with the educational center Fogar de Sta.
Margarida in A Coruña selected as the destination. The following tests were conducted:

• Test 1: A study applying only a friction surface based on terrain slope values.
• Test 2: In addition to a friction surface based on slopes, another surface based on

obstacles derived from the point cloud analysis with HAG values between 25 and
220 cm was utilized. Spaces with a passage width of less than 50 cm from building
walls and sidewalk curbs were considered obstacles. Cells containing these elements
were assigned a unit displacement cost of 1000 s.

• Test 3: To the two previously mentioned friction surfaces, another one representing
pedestrians was added, considering them as obstacles as well. A unit displacement
cost of 1000 s per cell was assigned to them.

• Test 4: To the friction surface of test 2, another one of better-walkability areas concern-
ing obstacles was added, with the temporal penalties described in Table 4.

• Test 5: The friction surfaces from tests 2 and 3 were used, and another one of better-
walkability areas concerning obstacles and pedestrians was added, using the temporal
penalties described in Table 4.

In Table 5, the friction surfaces used in each of the conducted tests are summarized.

Table 5. Summary of the friction surfaces used in each of the pedestrian accessibility tests conducted.

Friction Surface Test 1 Test 2 Test 3 Test 4 Test 5

Slope x x x x x
Obstacles x x x x
Pedestrians x x
Better-walkability areas with respect to obstacles x x
Better-walkability areas with respect to pedestrians x

3. Results
3.1. Pedestrian Mobility Zone: Sidewalks and Crosswalks

Of the streets studied (Figure 1), all necessary pedestrian crossings were successfully
identified to determine pedestrian routes. For validating the model inferences, the obtained
segmentations were compared with a ground truth of the study region, which had previ-
ously been utilized in other works such as Fernández-Arango et al. (2022) and Esmorís et al.
(2023) [23,35]. A total of 40 pedestrian crossings were identified, corresponding to 10 streets
in the vicinity of Fogar de Sta. As depicted in Figure 5, Margarida school was manually
digitized and compared with the number of crossings segmented by YOLOv8m-seg against
the ground truth. The aim of this comparison was to validate the model, as there is an in-
terest in extending the study to other areas lacking pedestrian crossing data. The algorithm
successfully detected all pedestrian crossings in the study area without yielding any false
positives. Additionally, the total surface area of all segmented pedestrian crossings was
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compared with that of the digitized ones. In this case, the total surface area of the digitized
crossings was 1941.81 m2 compared to 2477.89 m2 of the crossings segmented by the model,
resulting in a 27.61% larger segmented area. This ensured, for our study, that no potential
pedestrian route space was overlooked. Figure 6 provides a detailed comparison of some
segmented pedestrian crossings and their corresponding ground truths.

Figure 5. Study area with 40 ground truth crosswalks. Source: self-made.

Figure 6. Segmented crosswalks, detail. Red pixels show segmented crosswalks and green bounding
boxes show crosswalk ground truth. Source: self-made.

To validate the effectiveness of the pedestrian crossing segmenter, precision–recall
(P-R) and F1–confidence values were analyzed. Figure 7 illustrates the model’s perfor-
mance based on the P-R and F1–confidence graphs. As observed, for crosswalk class A,
an identification value of 0.904 was obtained, meaning that when the model predicted the
presence of crosswalk A, 90.4% of those predictions were correct relative to all predictions
of crosswalk A made by the model. For crosswalk class B, the identification value was even
higher, at 99.5%. This indicates exceptionally high performance by the model in predicting
the presence of crosswalks in class B, with a very high precision rate. For all classes com-
bined, the identification value was 94.9% for an IoU threshold of 0.5, thus indicating that,



Smart Cities 2024, 7 1451

overall, the model achieved high precision in detecting objects in all classes considered
together. These results demonstrate that the model can accurately identify both types of
crosswalks, although there may be variations in performance between individual classes.
The high precision in detecting crosswalks in class B is particularly notable, suggesting that
the model is particularly effective in identifying this specific class of objects.

Moreover, the YOLOv8 segment model has been pre-trained on a wide variety of
80 different objects like bicycles, cars, dogs, backpacks, potted plants, fire hydrants, or traffic
lights. Thus, the model weights should be well suited to differentiate between many types
of objects, which is expected to lead to successful transfer learning when specializing
the model to another task. The features that are automatically extracted by the neural
network should be unbiased due to the significant diversity of classes involved in the
pre-training process.

The F1–confidence curve provides insights into the model’s ability to balance precision
and recall across different confidence thresholds. In this case, an F1-score of 0.95 was
achieved when the confidence threshold was set at 0.568. This score indicates a suitable
balance between the model’s precision and recall, suggesting significant capability in
accurately identifying positive instances while keeping a low number of false detections,
even under moderate confidence conditions.

Figure 7. Left image: mask precision–recall curve for object segmentation. Class A identification
value: 0.904, class B: 0.995, and for all classes: 0.949, with an average precision (mAP) of 0.5. Right
image: F1–confidence curve, showing an identification value for all classes of 0.95 at a confidence
threshold of 0.568. Source: self-made.

Table 6 displays the results of training validation through a confusion matrix. As evi-
denced, 87% of true instances of crosswalk A were correctly classified. Similarly, 100% of
true instances of crosswalk B were classified accurately.

Table 6. Confusion matrix.

True Crosswalk A True Crosswalk B

Predicted crosswalk A 0.87
Predicted crosswalk B 1.00

3.2. DTM and Obstacles

With the employed methodology, a total area of 30,388.93 m2 was obtained as a DTM
for pedestrian traffic, including sidewalks and pedestrian crossings, representing 37.81%
of the analyzed urban area. Additionally, from the point cloud, an area of 7655.79 m2 was
classified as obstacles for pedestrians, accounting for 25.19% of the traversable surface.
Among these obstacles, 7472.49 m2 was identified as fixed obstacles, and 183.30 m2 was
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pedestrians considered obstacles due to having an HAG between 25 and 220 cm. Table 7
shows the number of obstacles detected on each analyzed street.

Table 7. Measurement of obstacle surfaces identified by street. St A, SW A, Obst A, and Ped A show
areas of total streets, sidewalks, obstacles, and pedestrians. Obst/SW represents the ratio of obstacles
to sidewalk, and Ped/Obst shows the ratio of pedestrians to obstacles and pedestrians (Ped A/(Ped A
+ Obst A) × 100). Average and Total show the average and total surface values for all analyzed streets.

Street St A (m2) SW A (m2) Obst A (m2) Ped A (m2)
Obst/SW
Ratio (%)

Ped/Obst
Ratio (%)

Eduardo Dato 4139.32 1756.65 469.26 10.06 26.71 2.10
Avda. Habana 19,499.44 7323.44 1289.04 70.36 17.60 5.18
Andres Martinez Salazar 3317.41 1250.26 507.42 4.93 40.59 0.96
Virrey Osorio 6328.53 2608.10 900.81 7.03 34.54 0.77
Valle Inclan 6438.97 2645.36 944.69 7.15 35.71 0.75
Filantropia 5980.64 2209.95 831.77 6.84 37.64 0.82
Paseo Ronda 13,172.80 3734.95 795.21 24.26 21.29 2.96
Perez Lugin 5306.02 2314.55 695.61 5.17 30.05 0.74
Pza. Portugal 7272.89 4249.49 607.7 15.61 14.30 2.50
Calvo Sotelo 8907.14 2296.18 430.98 31.89 18.77 6.89

Average 8036.31 3038.89 747.25 18.33 27.72 2.45
Total 80,363.06 30,388.93 7472.49 183.3

Figure 8 provides a detailed view of the detected and geolocated obstacles. The grid
cells comprising these obstacles have an impedance value of T = 1000 s, as walking over
them is impossible. In this image, the boundaries between sidewalk–roadway and areas
near buildings and walls, also classified as obstacles, can be distinguished. Moreover,
multiple permanent obstacles and pedestrians are identified.

Figure 8. Detail of obstacle surface. Examples of some of the obstacles that have been detected
are streetlights and trees. Red pixels show permanent obstacles and blue pixels show pedestrians.
Source: self-made.

3.3. Pedestrian Segmentation

The results of our ablation studies on pedestrian segmentation can be seen in Table 8.
Interestingly, the combination of raw floor distances, smoothed intensity, scan angle, and
floor distances with no geometric features yields the best results, even better than consider-
ing all the mined features. The reason might be that the extra information encoded through
the geometric features interferes with the information available through height, spectral,
and scanning features, making the model fit worse to the data. Therefore, models dealing
with pedestrian segmentation in 3D point clouds might save time and money by computing
only height and smoothed features, provided that intensity and scan angle are available.
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Table 8. The precision, recall, F1-score, and Matthews correlation coefficient (MCC) for the different
configurations defining the ablation studies. In this table, r ≥ x means spherical neighborhoods with
radii greater than or equal to x. The best result is represented in bold text.

Discarded Features Evaluation Metrics (%)
Precision Recall F1 MCC

Smooth features 98.21 99.55 98.87 97.75
Non-geometric features 97.84 99.40 98.60 97.23
Geometric features with r ≥ 5 99.36 99.78 99.57 99.14
Geometric features with r ≥ 3 99.19 99.70 99.45 98.90
Geometric features with r ≥ 2 98.86 99.58 99.22 98.44
Geometric features with r ≥ 1 98.53 99.49 99.00 98.02
Geometric features with r ≥ 0.75 98.10 99.38 98.73 97.48
Geometric features with r ≥ 0.5 97.35 99.17 98.24 96.51
Geometric features with r ≥ 0.25 97.72 99.35 98.52 97.06
Geometric features 99.77 99.93 99.85 99.70

No features discarded 99.56 99.84 99.70 99.41

Concerning the hyperparameter tuning experiments detailed in Table 9, we hold that
using 90 decision trees with a maximum depth of 25 each and balanced class weights leads
to the best model. This model configuration is powerful enough to maintain high accuracy
when considering the final training dataset. Moreover, it has a low standard deviation,
so it is expected to yield similar results despite any randomness involved in the model
training (e.g., random data splits). On top of that, it takes less than 10 min to train on
the final dataset, which means it is well suited to run more experiments in less time than
models using more decision trees (those take between 900 and 1900 s). While it is close
in scores and standard deviation to its uniform counterpart, having a model that works
with balanced class weights should be preferred because it accounts for the data imbalance
inherent to the problem. Note that pedestrian segmentation implies having many objects
represented in the point cloud, where only pedestrians must be labeled as positives, which
unavoidably leads to a non-uniform class distribution.

The ablation experiments in Table 8 and the hyperparameter tuning in Table 9 were
carried out independently. Thus, the hyperparameter tuning experiments were conducted
considering all the features. Combining the results from both experiments, we have a
random forest model with 90 decision trees of maximum depth 25 and balanced class
weights trained considering 14 features per point. Under these circumstances, the training
time is around 60.72 s, and the evaluation metrics on the final training dataset are 99.94%
accuracy, 99.76% precision, 99.93% recall, 99.85% F1-score, and 99.70% MCC. Finally, a vi-
sual inspection of the results is available in Figure 9, which shows the model’s classification
directly in the 3D point clouds.

Figure 9. The segmented pedestrians visualized in the 3D point cloud. The purple color means the
point is not classified as a pedestrian; yellow means it is. Source: self-made.
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Table 9. The results from the grid-search-based hyperparameter tuning. The initial accuracies were
measured on the initial budget (i.e., the training dataset at the first iteration) and the final accuracies
on the final budget (i.e., the training dataset at the final iteration). The mean execution time of training
the model is measured considering the dataset at the final iteration because it contains the most samples.
The selected model after the hyperparameter analysis is represented in bold.

Num. Max Class Initial acc. (%) Final acc. (%) Training
Trees Depth Weights Mean Stdev Mean Stdev Time (s)

90 5 Uniform 94.91 0.075 91.47 0.054 232
90 5 Balanced 88.58 0.087 83.34 0.251 255
90 15 Uniform 99.94 0.008 99.39 0.020 488
90 15 Balanced 99.55 0.006 98.04 0.056 471
90 25 Uniform 99.97 0.002 99.90 0.002 486
90 25 Balanced 99.98 0.002 99.89 0.003 488
180 5 Uniform 94.89 0.101 91.45 0.071 478
180 5 Balanced 88.57 0.113 83.43 0.127 493
180 15 Uniform 99.94 0.004 99.40 0.010 958
180 15 Balanced 99.57 0.021 98.06 0.036 921
180 25 Uniform 99.97 0.002 99.90 0.003 952
180 25 Balanced 99.98 0.001 99.90 0.004 953
360 5 Uniform 94.91 0.016 91.36 0.032 948
360 5 Balanced 88.47 0.108 83.49 0.111 814
360 15 Uniform 99.95 0.006 99.41 0.014 1897
360 15 Balanced 99.57 0.026 98.08 0.012 1835
360 25 Uniform 99.97 0.002 99.91 0.003 1900
360 25 Balanced 99.98 0.002 99.90 0.003 1667

3.4. Better-Walkability Areas

It was possible to differentiate 16,443.88 m2 of less suitable surface for pedestrian
traffic due to its proximity to obstacles compared to 13,945.05 m2 of surface completely
free of obstacles, resulting in a 54.11% reduction in the area available for pedestrian traffic.
Figure 10 shows two details of the better-walkability areas. Image ‘A’ displays a detail of
the surface generated solely from permanent obstacles, while in image ‘B’, a detail of the
surface incorporating both permanent obstacles and pedestrians is shown. These images
illustrate the different temporal penalties for proximity to obstacles. Additionally, in image
‘B’, a trend is observed where pedestrians tend to walk in the center of available passage
areas, indicating that the most common behavior is to walk while trying to keep as far
away as possible from existing obstacles.

Figure 10. Detail of obstacle friction surface. Image (A) shows better-walkability area surface
only including obstacles. Image (B) shows better-walkability area surface including obstacles and
pedestrians. Source: self-made.

3.5. Pedestrian Accessibility Analysis: The Creation of Cumulative Pedestrian Travel Cost Surfaces
and Model Validation Testing

Pedestrian routes were calculated from 30 student residences near the analyzed school.
The routes were analyzed for each residence based on the four situations indicated in
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Table 5. Figure 11 displays images and details of each of the four cumulative cost surfaces
for the same area. As observed, each test has generated a cumulative cost surface and
different least-cost path trajectories, confirming that the least-cost paths have identified cells
with the lowest unit displacement cost and have adapted to the available space between
obstacles, utilizing areas furthest from them, as easily observed in images G, H, I, and J.

Figure 11. Figures (A,C,E,G,I) show the least-cost paths over cumulative cost surfaces. Fig-
ures (B,D,F,H,J) show the least-cost paths over friction surfaces and obstacles. Figures (A,B): result
test 1, considering only the slope surface. Figures (C,D): result test 2, considering permanent obsta-
cles. Figures (E,F): result test 3, considering permanent obstacles and pedestrians. Figures (G,H):
result test 4, considering permanent obstacles and better walking areas around them. Figures (I,J):
result test 5, considering permanent obstacles, pedestrians, and better walking areas around them.
Source: self-made.
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Table 10 compares the accumulated displacement time from each residence to the
educational center. As expected, the lowest times were found in all cases in test 1, where
there were no pedestrian movement restrictions. Conversely, the longest travel times
occurred in tests 4 and 5, where paths farthest from both obstacles and pedestrians were
prioritized and penalized with higher travel time values for those closer. The average
maximum time difference between tests 1 and 4 for all studied residences was 3.88%, and
in the case of test 5 compared to test 1, it was 5.40%. These time differences are significant,
indicating the importance of filtering pedestrians prior to pedestrian mobility studies, as
performed in this work. The maximum difference values obtained between tests 4 and
1 were found at residences 25, 30, and 24, with delay percentages of 15.03%, 8.39%, and
7.92%, respectively, confirming that the excessive presence of obstacles and the need to seek
pedestrian paths away from them greatly influences pedestrian travel efficiency.

Table 10. Tests 1 to 5 show the travel time walking from each home to the educational center.
MD = maximum difference, shows the maximum time difference, in seconds and percentage, of the
times obtained in each test 4 vs. test 1 and also test 5 vs. test 1. Average shows the average values
obtained in all tests, for the 30 cases analyzed.

Home ID Accumulated Cost Time (s)

Test 1 Test 2 Test 3 Test 4 Test 5 MD
T4-T1 (s)

MD
T4-T1 (%)

MD
T5-T1 (s)

MD
T5-T1 (%)

1 543.07 545.10 545.41 550.33 562.15 7.26 1.34 19.08 3.51
2 473.78 490.44 490.57 508.04 510.69 34.26 7.23 36.91 7.79
3 470.22 473.02 473.08 480.12 484.37 9.90 2.11 14.15 3.01
4 235.08 236.96 237.10 239.75 245.98 4.67 1.99 10.90 4.64
5 237.97 238.98 239.34 241.86 247.14 3.89 1.63 9.17 3.85
6 197.29 197.65 197.85 199.22 203.88 1.93 0.98 6.59 3.34
7 244.77 246.54 246.90 252.86 259.09 8.19 3.35 14.42 5.89
8 463.63 466.88 466.96 477.97 481.35 14.34 3.09 17.72 3.82
9 352.39 354.36 354.65 359.44 369.31 7.05 2.00 16.92 4.80

10 244.07 246.10 246.21 261.39 262.09 17.32 7.10 18.02 7.38
11 535.03 536.38 536.70 540.17 551.27 5.14 0.96 16.25 3.04
12 511.47 513.47 513.75 518.69 530.51 7.22 1.41 19.04 3.72
13 546.65 551.24 551.22 566.36 570.78 19.71 3.61 24.13 4.41
14 541.78 545.62 545.76 556.01 560.70 14.23 2.63 18.92 3.49
15 508.29 511.66 511.79 521.17 525.87 12.88 2.53 17.58 3.46
16 487.12 490.16 490.30 506.00 509.48 18.88 3.88 22.36 4.59
17 494.10 496.90 497.03 513.02 515.15 18.92 3.93 21.05 4.26
18 458.59 460.52 460.64 479.44 484.96 20.85 4.55 26.37 5.75
19 254.94 258.17 258.38 263.32 270.43 8.38 3.29 15.49 6.08
20 178.24 182.38 182.48 185.97 190.91 7.73 4.34 12.67 7.11
21 264.27 266.77 266.91 270.95 277.18 6.68 2.53 12.91 4.89
22 395.28 396.58 396.89 400.28 411.11 5.00 1.26 15.83 4.00
23 410.25 413.04 413.10 419.46 422.32 9.21 2.24 12.07 2.94
24 511.76 515.08 515.15 552.27 557.12 40.51 7.92 45.36 8.86
25 456.20 505.98 506.09 524.76 526.85 68.56 15.03 70.65 15.49
26 444.15 445.74 445.85 463.69 466.56 19.54 4.40 22.41 5.05
27 412.73 415.25 415.38 420.92 428.72 8.19 1.98 15.99 3.87
28 272.46 273.92 274.07 275.73 277.50 3.27 1.20 5.04 1.85
29 315.28 316.56 316.83 320.48 327.76 5.20 1.65 12.48 3.96
30 205.17 218.67 218.82 222.39 227.42 17.22 8.39 22.25 10.84

Average 396.19 401.17 401.33 411.36 416.85 15.18 3.88 20.66 5.40

Finally, Figure 12 displays the least-cost paths obtained in each test, utilizing the
previously generated cumulative cost surfaces. It is evident that the trajectories varied
significantly to avoid existing obstacles, but it can also be observed that some paths, such
as 2, 14, or 25, have drastically altered their trajectory, even switching sidewalks, to gain
more walkable space, despite having to travel a section opposite to the destination and a
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longer distance, validating the temporal results shown in Table 10. However, paths in the
NE area (19, 7, and 20) barely vary their trajectory between different tests due to the greater
pedestrian space available, as they traverse areas designated for pedestrians for much of
their route.

(a) Test 1: Slope friction surface. (b) Test 2: Slope and obstacles friction surfaces.

(c) Test 3: Slope, obstacles, and pedestrians friction surface. (d) Test 4: Slope, obstacles, and better-walkability friction surface.

Figure 12. Least-cost paths resulting from tests 1 to 4. The numbers indicate the IDs of the 30 res-
idences analyzed as origin points. In image (d), the areas with the most significant changes in the
routes are indicated by arrows and polygons. Source: self-made.

4. Discussion

The work carried out in this research enabled the creation of an effective method for
understanding pedestrian mobility in urban areas. It accurately calculated cumulative
displacement cost surfaces and identified least-cost paths from any location within the
study area to a destination point.
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The proposed method differs from others, mentioned in Section 1, because it utilizes
MLS point clouds as one of the initial data sources, allowing for a very extensive analysis
area to be covered in a short time and obtaining high-quality information, both geomet-
rically and radiometrically. Acquiring this type of data is costly, and processing these
point clouds to extract relevant information for accessibility analysis requires complex
operations. However, the result obtained was a study on raster surfaces of very high spatial
resolution, which provided street geometry with a level of detail impossible to achieve
with any other starting data. This information allowed for the generation of displacement
cost surfaces with a GSD of 10 cm/pixel, producing street information practically at the
level of individual tiles, enabling clear differentiation of potential obstacles or areas with
greater difficulty for walking.

Similarly, the pedestrian crossing segmenter, based on computer vision methods,
demonstrated effective performance, successfully detecting all existing pedestrian cross-
ings in the study area without any false positives and achieving precision–recall and
F1–confidence values similar to recent studies specifically dedicated to pedestrian cross-
ing detection using computer vision such as Kaya et al. (2023) [36]. It was possible to
adequately segment all pedestrian crossings in the study area, accurately delineating avail-
able passage areas and without losing spaces for potential pedestrian routes. The use of
this technique significantly improves results compared to other methods like Luaces et al.
(2020) [37], as the segmentation of each pedestrian crossing is much more precise, based
on pixel identification rather than following geometric patterns. Clearly, as the segmenter
is fed with new images of pedestrian crossings with similar characteristics, it will gain
precision, resulting in an increasingly accurate model over time.

Concerning pedestrian segmentation in the 3D point clouds, we found that a simple
combination of height features and point-wise smoothing filters on the intensity, scan angle,
and height features of a neighborhood can be enough to detect pedestrians successfully.
By including the execution time in our hyperparameter tuning experiments, we were able
to design a more sustainable machine learning model that trains on a big dataset in 74% less
time than four-times-bigger ensembles yet provides similar accuracy. Despite the validation
paradox inherent to the active learning paradigm, we think that our model has shown
good generalization capabilities due to the high mean accuracy (99.89%) and low accuracy
variance (0.003%) measured in our experiments. However, even if we needed to train the
model on two or three times more data to improve its generalization, we could do it with a
few hours of human work thanks to the entropy-guided labeling method.

It is evident that obstacles impede pedestrian movement, but it is also important to
consider the free space available for walking between them. This is another difference
to highlight in our research compared to the current state of the art, as importance has
been given not only to the existence and location of obstacles on sidewalks but also to
the available passage spaces between them. In this regard, we have assigned a unit
displacement cost value of 1000 s to cells belonging to obstacles. This decision was based on
the fact that walking over these cells is unfeasible, and therefore, least-cost path trajectories
must avoid them. Similarly, we assigned the same penalty to passage spaces narrower than
50 cm relative to obstacles, building facades, and curb edges, as these are uncomfortable
and even hazardous pedestrian-traffic areas. The penalty values gradually decreased from
spaces larger than 80 cm, where pedestrians can walk more easily between them.

As demonstrated in the conducted tests, both the accumulated displacement cost
values and the least-cost paths varied significantly when these parameters were considered
(Table 10), increasing travel time by up to 15.03% in some cases. It is important to highlight
the influence of the lower parts of tree canopies, which, with a height of less than 220 cm,
also represent significant pedestrian obstacles, causing pedestrians to avoid walking in
these areas, as observed in images A and B of Figure 10. Similarly, narrow streets also pose
an impediment to pedestrians, who seek to avoid obstacles and even choose longer routes to
circumvent narrow passage areas, as seen in least-cost paths 2, 14, and 25 of Figure 12, which
alter their trajectories to avoid streets with narrow passage areas. Conversely, the least-cost
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paths originating from residences 19, 7, and 20 hardly vary their trajectories during all tests.
This is because most of their routes pass through pedestrian streets and parks, with areas
specifically designated for pedestrians, confirming that such areas significantly improve
urban pedestrian mobility. Therefore, there are increasing research efforts and initiatives
focused on redistributing urban public space to promote pedestrianization (Mendzina et al.,
2020; Urban Design or The City of Children by Francesco Tonucci) [38–40].

5. Conclusions

Once again, MLS data has proven to be a valuable data source for conducting geomatic
studies, particularly in this case, for pedestrian mobility analysis in a purely urban area
of the city of A Coruña. Leveraging high-density and highly accurate point clouds has
enabled us to conduct a mobility study with tremendous precision, using raster format
surfaces with a GSD of 10 cm/pixel. This allowed for clearly identifying obstacles and
other impediments to pedestrian movement freedom. Similarly, using computer vision
techniques through AI has enabled us to obtain a surface composed of sidewalk areas and
pedestrian crossings, precisely delineating pedestrian freedom areas and better-walkability
areas between existing obstacles. The combined analysis of all these factors resulted in
the generation of multiple cumulative displacement cost surfaces, which facilitated the
quantification of the time required to walk from any point in the study area to a destination
point, as well as identifying the optimal path for pedestrian movement.

The results obtained once again demonstrate that pedestrian-specific areas and wider
streets with open spaces significantly improve pedestrian mobility in cities. In this case,
it has been quantified that, for the study area in this work, travel times vary on average
by 3.88% and represent up to a 15.03% delay in areas with a high presence of obstacles or
narrow passage spaces.

The main limitation of this study lies in the high cost associated with acquiring MLS
point cloud data and processing these point clouds to extract relevant information for
accessibility analysis. Additionally, the time and complexity required to perform these
operations are significant. This could limit the replicability of the study in other cities
that may not have the financial or technical resources required to carry out a similar data
acquisition and processing process.

However, regarding replicability in other cities, the approach and methodology used
in this study could be adapted and applied in different urban contexts. The use of MLS
point clouds as an initial data source for pedestrian mobility analysis, along with AI-
based computer vision techniques, provides a robust framework for conducting similar
studies in other urban areas. Although specific resources may vary from city to city,
the general approach of utilizing high-quality data and advanced analysis techniques
can be successfully applied in different urban environments to understand and improve
pedestrian mobility. In addition, our proposed methodology allows us to get more out of
those cities that already have LiDAR data of their streets, usually to make inventories of
urban elements.

As future lines of research, it is intended to extend this work to broader urban envi-
ronments within the city. It also opens up another associated line of research, which is to
conduct a specific mobility study for wheelchair users or people with reduced mobility due
to age, physical impairments, or specific circumstances (e.g., walking with small children,
pushing a shopping cart, etc.). In this case, obstacle restrictions should be extended to a
height above ground (HAG) of 5 cm or even lower, considering the difficulty in overcoming
these height differences. Similarly, there is the possibility for other new studies, such as
creating an application capable of identifying and managing school routes based on the
knowledge of the location of students’ residences for each school and the application of the
model described in this study.
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