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Abstract: As customers’ expectations continue to rise, advanced on-demand transport services
face the challenge of meeting new requirements. This study addresses a specific transportation
issue belonging to dial-a-ride problems, including constraints aimed at fulfilling customer needs.
In order to provide more efficient on-demand transportation solutions, we propose a new hybrid
evolutionary computation method. This method combines customized heuristics including two
exchanged mutation operators, a crossover, and a tabu search. These optimization techniques have
been empirically proven to support advanced designs and reduce operational costs, while significantly
enhancing service quality. A comparative analysis with an evolutionary local search method from the
literature has demonstrated the effectiveness of our approach across small-to-large-scale problems.
The main results show that service providers can optimize their scheduling operations, reduce travel
costs, and ensure a high level of service quality from the customer’s perspective.

Keywords: optimization method; evolutionary algorithm; tabu search; transportation systems;
dial-a-ride problem; smart transportation; customized heuristics

1. Introduction

The integration of on-demand transportation within smart cities represents a sig-
nificant advancement, enhancing the flexibility, efficiency, and responsiveness of urban
transport networks. By using advanced algorithms and optimized routing strategies, on-
demand services contribute to optimizing resource utilization, reducing operational costs,
and improving overall user satisfaction.

In this study, we focus on the dial-a-ride problem (DARP), which is a specific variant
of on-demand transportation that focuses on passenger-oriented collective on-demand
transportation [1]. It is classified as an NP-hard problem, as demonstrated by [2]. The
optimization of service quality and cost-efficiency is crucial in this problem. High-quality
service, characterized by reduced waiting times, reliable schedules, and customer-centric
features, directly impacts user satisfaction and system efficiency. In smart cities, where
technological advancements are pivotal in creating responsive and adaptive transportation
networks, enhancing service quality can lead to more efficient resource utilization and sub-
stantial cost savings. In smart cities, optimizing cost-efficiency leads to reduced operational
expenses, such as vehicle total riding time and travel distance, which directly impacts
user satisfaction and system reliability. By minimizing costs, we not only ensure financial
sustainability but also improve resource utilization and service responsiveness. Thus,
prioritizing cost-efficiency alongside service quality supports the development of adaptive,
efficient, and user-centric transportation networks, essential for smart city environments.
Thus, enhancing service quality in on-demand transportation not only enhances the user
experience but also supports the financial sustainability and operational efficiency of smart
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city transport networks. Therefore, the practical applicability of resolution methods for
on-demand transportation problems has gained substantial attention.

In modern transportation systems, customer expectations have evolved to include
several specific and nuanced aspects beyond traditional service quality. These new expec-
tations include customers now expecting services tailored to their individual needs and
preferences, such as specific pickup and drop-off points, preferred routes, and maximal
riding time. To address these evolving expectations, authors [3] emphasize the importance
of exploring problem variants that incorporate real-life service level criteria. Notable works
in this area include studies of [4–12]. One specific problem variant that has gained attention
is the customer-oriented dial-a-ride problem (CO-DARP), introduced by the authors in
[12]. This problem incorporates constraints from a customer-oriented quality of service
perspective and takes into account real-life customer expectations. In this model, customer
preferences like preferred pickup and drop-off locations, as well as customer-dependent
maximal riding time, are used for providing time windows constraints, and optimizing
routes and schedules.

Meeting the individual preferences and needs of passengers contributes to an en-
hanced service quality. This entails providing choices for route customization, vehicle
preferences, and accommodating passengers’ special needs or preferences, such as their
desired maximum travel time, preferred time windows, and arrival times. For example,
time windows for delivery locations are adjusted based on the preferred maximum travel
time and selected time windows for pickups. Regarding the consideration of real con-
straints on passenger and vehicle waiting times, we highlight the importance of balancing
service efficiency with practical constraints. Time window constraints may produce limited
passenger waiting times to ensure timely pickups and limited vehicle waiting times to
minimize operational costs. Moreover, by incorporating these constraints into our approach,
we aim to provide solutions that not only optimize service delivery times but also enhance
overall service quality by addressing the diverse needs and preferences of passengers while
considering real-world constraints on waiting times for both passengers and vehicles.

Furthermore, the efficiency of tabu search heuristics in solving a large set of dial-a-ride
problems has been extensively demonstrated. Studies such as [1,13–15] have shown that the
tabu search yields impressive results when applied to artificial cases of on-demand trans-
portation problems. The ability of the tabu search to effectively explore the solution space
and navigate complex constraints makes it a popular choice for tackling DARPs. Moreover,
a substantial field of research has focused on the development of hybrid evolutionary meth-
ods, combining evolutionary computation with local search (LS) techniques. Contributions
in this field include works by [4,7,16–19]. These hybrid evolutionary methods emphasize
the strengths of both evolutionary algorithms and local search heuristics to improve the
efficiency and effectiveness of optimization in solving on-demand transportation problems.
Authors in [4] introduced a hybrid algorithm named the evolutionary local search (ELS)
that combines the power of evolutionary computation and local search-based techniques.

In the existing literature, several approaches have been proposed to address the dial-
a-ride problem in current transportation systems. These approaches have successfully
tackled various aspects of the problem, such as optimizing routing and scheduling, in-
tegrating customer preferences, and managing resource allocation. These systems are
increasingly incorporating customer exceptions and unique requirements into the design
of new transportation problems. Therefore, new methods should focus on not only min-
imizing transportation costs but also enhancing service quality. These methods should
be designed to support the new specifications of transportation systems, which introduce
customer exceptions and prioritize customer satisfaction. By addressing both cost and
service quality, these methods will provide transportation systems with the ability to meet
evolving requirements and deliver an optimal customer experience.

We aim to build upon these advancements by offering an innovative approach that
combines advanced optimization algorithms with customized techniques, providing even
more efficient and flexible management of the CO-DARP in smart city transportation envi-
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ronments. Therefore, a novel method called the evolutionary tabu search (ETS) is proposed
in this paper. This hybrid method combines the strengths of evolutionary algorithms and
tabu search techniques, enabling the development of effective routing plans that optimize
both the operational efficiency and the quality of service provided. New optimization
techniques are proposed supporting advanced designs of service quality supported by
the mathematical model. The latter involves the consideration of various factors such as
wait times, travel times, and personalized preferences in the routing plans, ensuring a
high-quality service that caters to the specific needs of customers.

• A customized insertion heuristic is specifically designed to define an initial feasible
vehicle’s plan with good quality. The use of this heuristic is claimed to be suitable for
real-life on-demand transportation problems.

• A new tabu search method is introduced, which incorporates a novel customized
neighborhood strategy. This neighborhood strategy is specifically designed to enhance
both the operational costs and the service quality.

• Specific mutation operators are designed to address the characteristics and require-
ments of the problem at hand. These operators are dynamically exchanged to con-
tribute to the discovery of high-quality solutions with improved service quality criteria.

• A specific crossover operator is proposed, which is carefully designed to inherit and
preserve the advantageous service quality features discovered during the search. This
contributes to the generation of new solutions that not only maintain the desired
service quality features but also introduce variations that can potentially lead to
further improvements.

The results of the comparative study indicate that the ETS method demonstrates a
competitive performance when compared with the ELS method. Particularly, when it is
applied to small-, medium- and large-scale realistic transport on-demand problems, the
ETS method shows notable improvements in the service quality provided to the customers.

The paper is organized as follows: Section 2 presents a literature review of the con-
tributions linked with the present study. Section 3 describes a customer-oriented DARP.
Section 4 presents the proposed evolutionary tabu search approach for computing solutions.
Section 5 reports the numerical results obtained with the new proposed metaheuristics on
benchmark instances, together with a comparative study with another hybrid evolutionary
method from the literature. A statistical analysis is conducted in Section 6. A discussion is
provided in Section 7. Concluding remarks are set in Section 8.

2. Literature Review

Nowadays, the expectations of customers are increasingly complex, and anterior
on-demand transport models should be enhanced [20]. Therefore, a few years ago, a
new research field in DARP resolution emerged towards more realistic models with
more rigorous constraints related to customer satisfaction. Authors in [3] reviewed
various categories of real-life DARP features related to heterogeneity [21,22], routing
properties [7,23], and quality specifications. In this field of quality specifications, the au-
thors in [24] proposed a deeper survey on models being used by advanced research studies
involving service quality designs from the customer’s point of view. This research is in
relation to maximal riding time (e.g., [4,11,25,26]) and time windows (e.g., [27–29]).

Authors in [30] highlighted the impact of variations in the level of quality of service
provided to customers in the operational costs of a DARP. They studied the evolution of the
operational costs through the investigation of the permutations of two sets of parameters
describing the service level. The maximum deviation from the user preference time and the
relative maximum exceedance of the user’s direct journey time is measured according to
the variation of certain parameters, such as the size of the transmission network and the
diversity of customers. Moreover, the authors validated the potential trade-off between the
costs and the quality of service according to variations in the service level parameters being
frequently used, such as the size of the time windows and the maximal riding time. These
two parameters are also emphasized in the works of [31,32], which reviewed and defined
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several measures related to the quality of service. These studies highlighted the maximal
riding time and the time windows as the main criteria linked with the level of service that
influence the total operational costs, and pointed out the advantage of combining them
into the same model.

The quality of service can be expressed differently. In the works of [4,11,33], the
maximum ride time is specified for each customer and used to calculate time windows.
The need for the time windows redesign was emphasized by [28], using the maximal ride
time as a parameter.

Other parameters can also be used in designing the service quality with a high level of
customer-related criteria and preferences. In this regard, a problem named the customer-
oriented DARP was proposed by [12], offering a design that provides more flexibility to
service providers in producing routing plans closer to customer preferences.

Intelligent transportation problems have been addressed with techniques based
on evolutionary computations. Beyond the efficiency of these tools, hybridization ap-
proaches combining evolutionary algorithms and local search methods were privileged.
The union of these methods provides benefits in diverse settings [34]. Therefore, their
use should be preferred to other methods when seeking better solutions for advanced
on-demand transport problems, especially for more realistic DARPs designed from a
customer-oriented viewpoint.

Recent advances in the tabu search showed the effectiveness of tabu search techniques
in addressing dial-a-ride problems across various contexts and scales (e.g., [14,29,35–38]).
These methods enhance the flexibility, efficiency, and adaptability of transportation sys-
tems, addressing the evolving needs of urban populations. Evolutionary computation
for transportation problems is highlighted in [39]. Many works are provided for DARPs
using evolutionary algorithms (e.g., [17,40–48]). These methods effectively handle the high-
dimensional search spaces and diverse constraints of DARPs, leading to improved route
efficiency and reduced operational costs. By simulating natural selection processes, they
offer robust solutions adaptable to demands of on-demand transportation systems.

Authors in [34] emphasized the importance of combining genetic and tabu search
algorithms. Thus, a large field of research is devoted to hybrid evolutionary methods
for customized DARPs, see the existing related works of [4,7,16–19,46,49,50]. Authors
in [4] proposed a hybrid evolutionary local search-based algorithm. This method was
firstly proposed for solving DARPs of [1] with a customer-oriented maximal ride time. To
analyze the service providers’ cooperation better, more real-life characteristics are added
to the artificial instances. This ELS method is also proposed for solving real-life instances
of on-demand transportation [51]. However, to address real-life cases of on-demand
transportation problems better, more advances are required when proposing optimization
methods involving optimization techniques that support high-level designs.

Efficient and adaptive transportation solutions are required, driven by increasing
urbanization and evolving user expectations. Hybrid evolutionary algorithms offer a
promising approach to solving DARPs due to their ability to combine the strengths of
multiple optimization techniques. They enhance the search process by the good exploration
and exploitation capabilities of local search methods such as the tabu search. This is why we
propose to combine the evolutionary schema with a tabu search to tackle customer-oriented
DARPs in this present work.

3. The Customer-Oriented DARP

The customer-oriented DARP consists in satisfying on-demand transportation requests
including the customer requirements in the decision taken. A passenger request is a trans-
portation demand from a pickup location to a delivery one, which represents, respectively,
the original location of the passenger and his/her destination. A set of passengers may be
concerned with the same request which is also called a customer in this problem. This set
is the same for the pickup and the delivery location. A homogeneous fleet of vehicles starts
from the depot and arrives at the location. Note that neither demands nor waiting times
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are considered at this depot. In this problem, some constraints are aligned with those of the
original DARP of [1], as follows.

• A request is served exactly once by one vehicle.
• The precedence between pickup and delivery stations is ensured.
• The number of pickups is equal to the number of deliveries in a vehicle tour.
• It is the same vehicle that ensures the pickup and delivery of a request.
• The depot is the departure and arrival station of all the tours.
• The capacity of a vehicle is respected when charging and discharging passengers.
• The maximal total tour duration is a time limit that has to be respected by all the

vehicles.

Customer-oriented constraints are designed in the CO-DARP. These constraints are
related to maximal riding time and time windows, which are commonly argued as the
main attributes for the quality of service in on-demand transportation problems.

3.1. The Problem Formulation

The customer-oriented DARP is defined on a complete weighted digraph, G(N, E),
with the set N of nodes and the set E of connected arcs (i, j). The set of nodes, N, includes
all i ∈ {0...2n + 1}. This set includes the depot in two copies denoted by (i = 0) at the
departure, and (i = 2n + 1) at the arrival, the set of pickup nodes {1...n }, and the set of
delivery nodes {n + 1...2n}. The notations of the problem are indicated in Table 1. To each
request corresponds a pickup node, i, which is its origin, and a delivery node (i + n), which
is its destination. Thus, the set of requests can be limited to that of the pickup nodes.

Table 1. Notations of the problem.

Notations Meanings

n Total number of requests.
m Total number of vehicles.
v Index of a vehicle, v, in {1...m}.
nv Total number of visited nodes by a vehicle, v, except the depot.
Nv Set of nodes visited by a vehicle, v, from the depot to it.
Nv(k) A node visited by v on a position k ∈ {0..nv}.
λ Positive penalty coefficient.
qi Number of passengers loaded at node i.
Q Maximal capacity of the vehicles.
t(i,j) Transit time on an arc (i, j).
di Time spent while loading passengers.
Ai Arrival time at node i.
Wi Waiting time at node i.
Di Departure time at node i.
TDv A total duration of a tour with the vehicle v.
MaxTD Maximal total tour duration of the vehicles.
Li The maximal ride time for each request i ∈ {1...n}.
Ri The riding time of a request i ∈ {1...n}.
Bi Beginning of service at the origin of a request i ∈ {1...n}.
B(i+n) Beginning of service at the destination of a request i ∈ {1...n}.
[ei, li] Time window at the origin of a request i ∈ {1...n}.
[e(i+n), l(i+n)] Time window at the destination of a request i ∈ {1...n}.

A cost on an arc (i, j) is denoted by C(i,j) = (t(i,j) + di), where t(i,j) is the transit time
on an arc (i, j) and di is the time spent between the beginning of service and the departure
of the vehicle for loading the passengers.

The total travel cost is the sum of all the costs of the visited arcs and the produced
penalized waiting times at the visited nodes. A penalty coefficient, λ, is applied whenever
a waiting time, Wi, occurs. Let us consider f (S) as the objective function (1) to minimize. It
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consists of the total travel cost (TTC) related to all the vehicle tours considering waiting
time penalties.

min f (S) =
v=m

∑
v=1

k=nv

∑
k=0

C(Nv(k),Nv(k+1)) + λWNv(k) (1)

The maximal capacity of a vehicle must be checked in the pickups and the deliveries.
The number of passengers denoted by qi is positively incremented in the case of a pickup
and negatively otherwise. Thus, the inequality (2) explains that the number of passengers
aboard a vehicle must not exceed its maximal capacity, Q.

∑
i∈Nv

qi ≤ Q ∀v ∈ {1 . . . m} (2)

In this study, particular attention is given to the design of time window constraints.
With this concern, the transportation plans are adjusted to the customers’ needs while en-
suring adaptability to the existing realistic on-demand transport situations. Time windows
at the origin nodes are defined by the inequality (3), and time windows at the destination
are obtained by (4) which allow also defining the lower bound and the upper bound for
the beginning of service, Bi. In this customer-oriented DARP, the service duration, di, is
supposed equal to the total number of passengers, qi. Thus, we have (di = qi) for all
pickup and delivery nodes. However, it is usually considered positive when computing
the quantities (3), (4). These time window equations contribute to reducing unnecessary
waiting times as well as enhancing the total riding time. More details are provided in [12].

min(e(i+n) − di − Li; ei) ≤ Bi ≤ min(l(i+n) − di − Ri; li) ∀ i ∈ {1 . . . n} (3)

min(ei − di − Li; e(i+n)) ≤ B(i+n) ≤ min(li − di − Ri; l(i+n)) ∀ i ∈ {1 . . . n}; (4)

The expression (5) limits the maximal riding time, Li, as a bound linked with each
customer i ∈ {1...n}. Thus, the riding time, Ri, which is equal to the time spent aboard a
vehicle from an origin, i, to a destination (i + n) must respect this customer-related bound.

Ri ≤ Li ∀i ∈ {1 . . . n} (5)

Equation (6) expresses the riding time at node i, being equal to the time between the
departure time, Di, at the origin and the beginning of service, B(i+n), at the destination.
Equation (7) computes the departure time at node i. Note that the departure time at the
depot is equal to the beginning of service. Thus (B0 = D0) and (B(2n+1) = D(2n+1)) since
no person enters aboard the vehicle and no service time is assumed.

Ri = B(i+n) − Di ∀i ∈ {1 . . . n} (6)

Di = Bi + di ∀i ∈ N (7)

The quantity Wi in Equation (8) defines potential waiting times. Negative values of
waiting times are not allowed since, in DARP, a vehicle can wait but a customer should not;
i.e., Ai <= Bi. The depot is not concerned by any waiting time since we have (B0 = A0)
and (B(2n+1) = A(2n+1)). The arrival time at node i is the travel time from the depot to it.

Wi = Bi − Ai ∀i ∈ N (8)
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For each vehicle tour, we derive a beginning of service time, denoted as Bi, while
adhering to a specified time window, i.e., Bi ∈ [ei, li], where i and j represent successive
nodes visited within a vehicle tour, v. It is worth noting that the beginning of service at
a pickup node i ∈ {1..n} is calculated as (Bi = Bi+n − di − Ri). The arrival time at node
j ∈ Nv is calculated as (Aj = Bi + di + t(i,j)), where j is a successor node to node i ∈ Nv.
The total tour duration, TDv, for a vehicle is then defined as the time spent from the depot
to it (TDv = A(2n+1) − B0). This TDv is constrained by a maximal common total duration,
MaxTD, as defined in the problem.

3.2. A Time Windows Application on a Realistic Case

To illustrate the concept of time windows, we draw upon a real-life example from
problem instance d71 found in the data provided by Chassaing et al. [51], as detailed in
Section 5. Initially, this problem was tackled using an evolutionary method known as
ELS [4], as explained in Section 2.

From the solutions obtained, we selected a vehicle tour characterized by a notably
high waiting time. Subsequently, we present two scenarios: one before the introduction of
customized time window specifications and one after.

Within this tour, we address two specific requests, denoted as (i = 1) and (i = 2), each
with respective loads of (q1 = 2) and (q2 = 4). These requests are subject to two maximum
riding times, namely (L1 = 97) and (L2 = 76).

All vehicles are equipped with a maximum capacity constraint of (Q = 8) and are
bound by a maximal total tour duration of (MaxTD = 480).

Figure 1 illustrates an on-demand transport problem involving two requests, denoted
as (i = 1) and (i = 2), along with the depot. In the figure, we display the customers’ input
parameters, including their loads, maximal riding times, and time windows.

Figure 1. An on-demand transport network with two requests having time windows, maximal ride
times, and loads.

In Table 2, we present the parameters associated with the vehicle’s tour example before
the computation of new customized time windows. The first request (i = 1) assigned to the
vehicle involves a pickup node (i = 1) and a delivery node (i = 3). Similarly, the second
request comprises a pickup node (i = 2) and a delivery node (i = 4). For each visited
node (i ∈ Nv), the table displays load (qi), transit time (t(i,j)), arrival time (Ai), beginning of
service (Bi), and departure time (Di).

At the departure node (i = 0), we have (B0 = A0 = D0), and, at the final arrival
node (i = 5), we have (B5 = A5 = D5), since no waiting time or load considerations are
applicable at the depot.
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Table 2. The vehicle tour specifications.

Nv qi t(i,j) Ai Bi Di

0 0 12.5 407.05 407.05 407.05
1 2 36.14 420 420 422
3 −2 9.48 458.14 458.14 460.14
2 4 28.45 469.62 837.55 841.55
4 −4 3.2 870 870 874
5 0 0 877.2 877.2 877.2

Arrival times are computed at each visited node. For example, the arrival time A3
is calculated as (A3 = B1 + d1 + t(1,3)), resulting in (420 + 2 + 36.14 = 458.14). Departure
times are determined using (7), with D3 computed as (D3 = B3 + d3), which equals
(458.14 + 2 = 460.14).

Riding times for the two requests are calculated as (R1 = 36.14) and (R2 = 28.45)
using (6). The waiting time only applies to node (i = 2), with (W2 = 367.94), determined as
(837.55 − 469.62 = 367.94) using (8). This waiting time, W2, affects the arrival time at the
subsequent node (i = 4), as shown in Figure 2.

Figure 2 provides a visual representation of the vehicle, v, following the tour of nodes
in Nv, as outlined in Table 2.

Figure 2. The vehicle tour schedule before the time windows calculation.

The total tour duration, TDv, is computed as (877.2 − 407.05 = 470.15) at the conclu-
sion of the tour, following the formula (TDv = A(5) − B0). This total duration ensures
compliance with the maximum limit (MaxTD = 480).

In the case of customized time window specifications, new bounds are determined to
restrict waiting times. Initially, time windows for delivery nodes are calculated
using (4). These resulting bounds are then utilized to establish time windows for ori-
gin nodes through (3). Consequently, Table 3 displays new time windows derived from
inequalities (3) and (4), resulting in the selection of updated early service times.

We specifically focus on the time windows associated with request (i = 2), as it was
the node where waiting times occurred. The new beginning of services, denoted as B2 and
B4, is determined at the pickup and delivery nodes of request 2. Let us note that the initial
time windows for these nodes were initially set as [790, 897.55] and [870, 930], as indicated
in Figure 1.

In Table 3, the new beginning of service B4 ∈ [710, 865.1] is selected as the ear-
liest service time at the delivery node (i = 4). Consequently, the beginning of ser-
vice B2 is calculated as (B2 = 710 − 4 − 28.45), given that (B2 = B4 − d2 − R2). Thus,
B2 = 677.55 ∈ [630, 832.66] is the new beginning of service at the pickup node (i = 2).
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This earlier beginning of service contributes to the reduction in the waiting time. The new
value of W2 is then (B2 − A2 = 677.55 − 469.62 = 207.93). The arrival time, A4, is also
impacted. As (A4 = 469.62 + 207.93 + 28.45), where 28.45 is the transit time t(2,4) and
207.93 is the reduced waiting time (W2 = 207.93), then (A4 = 706). This new arrival time
will produce a low waiting time (W4 = 4). However, the new total waiting time is equal
to (W2 + W4 = 207.93 + 4 = 211.93), which is much lower than the initial one equal to
(W2 = 367.94).

Table 3. The customized design of the time windows related to request 2.

Nodes ei li Bi

2 min (710 − 4 − 76;790) = 630 min (865.1 − 4 − 28.45;897.55) = 832.65 677.55
4 min (790 − 4 − 76;870) = 710 min (897.55 − 4 − 28.45;930) = 865.1 710

As reported in Table 3, with new time windows reduced, as compared with those
proposed in Table 2, the quality of the service is enhanced in terms of waiting time. The
vehicle tour after the new time windows calculation is illustrated in Figure 3. Only the
beginning of service producing a waiting time is indicated in the figure.

Figure 3. The vehicle tour schedule after the time windows calculation

The limitation of the waiting time leads to reducing the total duration, TDv from
(TDv = 470.15) in Figure 2 to (TDv = 306.15) in Figure 3. The enhanced TDv is obtained as
(A5 − B0 = 713.2 − 407.05), where (A5 = A4 + W4 + t(4,5)) and (t(4,5) = 3.2), see Table 2.

Through the above example, we have analytically demonstrated how the applica-
tion of customer-oriented constraints in problem resolution can improve service quality,
specifically reducing waiting times. Furthermore, this enhancement in service quality con-
tributes to minimizing the total duration, which is advantageous for the service provider.
The following sections explain the investigation of time window constraints within the
optimization techniques of the ETS.

4. The Evolutionary Tabu Search

This section defines the evolutionary tabu search algorithm with special genetic opera-
tors and a tabu search-based method.

4.1. Overview of the Evolutionary Tabu Search Algorithm

The evolutionary tabu search starts by generating an initial solution by the use of
an insertion heuristic (see Section 4.2). In order to create individuals composing the
first population, a mutation phase is performed where the initial solution is perturbed,
producing a set of individuals. Next, each mutated solution in the population is modified
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by the use of a crossover named self crossover (SXO), provided in Section 4.5. In order to
seek improvement in the neighborhoods of each solution, the TS method (see Section 4.6)
is applied to each individual. To deal with some constraint violations, a repair procedure
(see Section 4.3) is operated on each individual in the TS. Then, the obtained solutions
are assessed and the best individual is selected and used for the next iteration in the ETS.
This individual is also compared with the potential final solution in the search space. If it
improves, it is saved as a potential new solution. In Figure 4, a chart presents the successive
steps of the ETS algorithm.

Figure 4. Flow chart of the ETS algorithm.

Furthermore, in order to increase the perturbation of the search within the ETS, the
mutation operators (see Section 4.4) are exchanged after a fixed number of ETS iterations
controlled by an index of perturbation. In addition, another index stops the search when
no improvement is made during a set of iterations. Otherwise, the overall algorithm stops
when the maximal number of iterations is reached.

4.2. The Insertion Heuristic

To construct the initial solution, we propose a new insertion heuristic, see Algorithm 1.
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Algorithm 1 The insertion_heuristic

1: Initialize the list of non-allocated requests sorted in the increasing order of the earliest
service time;

2: Initialize the set of tours as empty and all the vehicles as available;
3: repeat
4: Step 1: Select a request from the list of the sorted non-allocated ones;
5: Step 2: Select an available vehicle;
6: if there is a valid case of insertion in the tour then
7: Insert the pickup node in a valid position in the tour;
8: Update the vehicle’s capacity and total duration;
9: Delete the request from the list of non-assigned requests;

10: Update the time schedule; go to Step 1;
11: else
12: if there are potential violations of capacity or MRT then
13: Deliver some requests ;
14: Update the capacity and total duration;
15: Update the time schedule ; go to Step 1;
16: else
17: if The vehicle is at its maximal total duration then
18: Set the vehicle as non-available; go to Step 2;
19: else
20: go to Step 2;
21: end if
22: end if
23: end if
24: until All the requests are satisfied;
25: returns a solution as a result;

The heuristic starts by allocating the requests according to the ascending order of
their earliest service times. Therefore, it proceeds to the selection of an appropriate vehicle
related to its availability capacity and total duration. The requests are inserted in the
tour of the vehicles within an available time schedule and when the problem constraints
are respected. When a request is allocated (line 7), all the related parameters in relation
to vehicles, requests, and time schedules are updated (lines 8–10). In this regard, time
windows are computed by the use of Equations (3) and (4) in the problem formulation of
Section 3.

In order to release some vehicles’ capacity, deliveries are performed in accordance
with their earliest service times and all necessary updates are performed (lines 14–15). This
action is also ensured when there are maximum riding time violations (which therefore
can be violated during the new request’s insertion) in the tour. Furthermore, a vehicle is
set as non-available when its maximal total tour duration is reached. Finally, when all the
requests are satisfied, the process comes to an end.

4.3. Repair Operator

Since the metaheuristics are stochastic during the search for better solutions, con-
straints may be violated. The constraints that may be violated can be linked to the vehicle
capacity, the maximal riding time, and the maximal total duration. Therefore, to ensure the
feasibility of the solutions, a repair procedure is performed.

To avoid changing the structure of the solution too much, the repair procedure tries
to apply a change in the same tour. Thus, in the case of a maximum riding time violation,
the delivery schedule is altered by reinserting the destination’s node into another position.
With respect to the problem constraints, the same repair action is operated when there is a
violation of capacity. Whenever the repaired constraint, the procedure updates the time
schedule involving the time windows computation. However, if it is not possible to deal
with the feasibility of a tour, the request is reinserted in another route.
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In the case of the violation of maximal total duration, lasted requests in the tour are
moved to other routes, ensuring the feasibility of the problem constraints in the routes.

4.4. The Mutation Operators

This section introduces both an interruption operator and a swap operator for the
mutation phase. Two illustrative examples based on seven requests and two vehicles
are provided.

4.4.1. The Interruption Operator

The interruption operator randomly selects a request with waiting time at either the
pickup or delivery node. It then cuts the tour before the pickup node of the chosen request
and removes that request and the subsequent ones from the route. Subsequently, it attempts
to relocate other requests from different routes while adhering to problem constraints and
scheduling times.

To facilitate the insertion of requests into another schedule, the operator relies on the
customized time windows discussed in Section 3. An illustrative example, based on seven
requests and two vehicles, is presented in Figure 5. In this example, the beginning of service
for each node is indicated, with node (i = 7) initially assigned to vehicle v1′′.

Figure 5. Construction of a new solution with the interruption operator.

Initially, the tour of vehicle v1 is cut before node (i = 7), and the subsequent requests
are removed from the tour. The procedure then reallocates requests from the tour of v2 to
v1′′, respecting constraints related to requests, vehicles, and scheduling.

Next, node 7 is inserted after node (i = 3) in the tour of v2. The procedure continues
allocating requests in the tour of vehicle v2 until all requests are assigned. Time scheduling
is managed through time window equations, ensuring a feasible routing plan with high-
quality service in the resulting solution. This enhanced service quality is evident in the
elimination of the waiting time previously observed at node 7 in v1.
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4.4.2. The Swap Operator

The swap operator involves exchanging two consecutive delivery locations along the
same route, provided that the beginning of service is respected. The procedure manages
scheduling time using time window constraints (see Equations (3) and (4) in Section 3) and
selects the maximum value between the beginning of service and the new arrival times.
This technique enhances service quality when waiting times occur.

Figure 6 illustrates an example of a solution perturbed by the swap operator. The
operation involves the two delivery nodes (i = 13) and (i = 12) in an illustrative example
with seven requests and two vehicles. Beginning of service times are indicated for each
node, with node (i = 13) having a service start time of 8:20 am and node (i = 12) starting at
8:40 am.

Figure 6. Construction of a new solution with the swap operator.

As shown in Figure 6, the swap operation is executed while ensuring compliance with
problem constraints, including the new time windows computation. Consequently, new
beginnings of service are assigned to the two swapped nodes, resulting in nodes (i = 12)
and (i = 13) having new beginnings of service at 8:30 am and 8:50 am, respectively.

Consequently, requests (i = 3) and (i = 7) are transferred to the vehicle tour of v1. The
tour of vehicle v2 is adjusted to accommodate request 2 in its second route, with request 2
having pickup and delivery nodes (i = 2) and (i = 9), respectively. The time schedule is
managed and updated using time window equations, considering the maximum values
between the beginning of service and the newly provided arrival times at the nodes.

4.5. The Crossover Operator

The crossover operator aims to ensure that the offspring solution inherits positive fea-
tures from both parents, particularly the good quality of service achieved in the preceding
mutation phase.

In our SXO, the parents are not individual solutions, as in classical evolutionary
algorithms. Instead, the parents are two selected routes from the same individual. The
main steps of the crossover process include:

• Positioning: choose two positions on the two routes, linked to the first pickup nodes
in the routes that have similar or close beginnings of service.

• Mapping: temporarily remove the remaining sequences of requests from routes out-
side the selected cut points in each parent.

• Switching: exchange the two parts between the cut positions between the two routes,
respecting the same positions in the time schedule.
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• Filling: copy the deleted requests into the child, trying to maintain their initial positions
from the parent without introducing redundancy of nodes.

In the example of Figure 7, we consider seven requests and two vehicles. The beginning
of service is indicated for each node. The cut is operated on two positions by considering a
set of requests with their related pickup and delivery nodes. This criterion aims to ensure
the feasibility of the precedence, vehicle capacity, and maximal riding times constraints.

Figure 7. An illustrative example of the SXO.

In Figure 7, the two blocs of requests {2,9} and {3,7,14,10} are selected from parents
v1 and v2, respectively. The beginning of service in the first pickup, node 2, is 8 am, which
is also the case for node 3. In the mapping step, only the two blocs exist in the children Ch1
and Ch2. Next, the blocs are switched between children and the corresponding positions
are fulfilled. In the next step, vacant positions are filled by the remaining nodes, ensuring
respect for the problem constraints. Whenever a waiting time occurs, the crossover proceeds
to the time windows computation seeking its minimization.

4.6. The Tabu Search Method

The tabu search method is a well-known heuristic that was successfully used for
DARPs (e.g., [1,13]). Therefore, we propose to develop a TS especially adapted to the
customer-oriented DARP. Thus, a neighborhood strategy supporting the customized design
is provided involving service quality enhancement.

In the TS solving method, the move operation involves altering the allocation of
requests by changing the position of the request responsible for the largest waiting time
within a trip. The request with the highest waiting time value is selected from a trip.
Customized time windows for this request are computed using equations provided in
Section 3, resulting in a new beginning of service.

Next, the procedure attempts to reinsert the request into another possible position that
minimizes the total waiting time. If no waiting time is present in the solution, a random
request is selected and moved to a different position. This process involves updates to
parameters related to requests, vehicles, and the time schedule.

To maintain solution feasibility after the move operation, the repair procedure
(Section 4.3) is applied to restore any violated constraints.
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Figure 8 depicts an example of the move operation proposed in our TS. We present a
case before and after the move operation. Two vehicles’ routes are considered to satisfy
three requests. These latter have origins 1, 2, and 3, with destinations 4, 5, and 6. The
beginning of the service is marked on each node. In addition, there are two waiting times
that are supposed for nodes 3 and 5, with (W1

3 = 20) and (W2
5 = 10), respectively.

Figure 8. An illustrative example of the neighborhood strategy of the TS.

The node with the highest waiting time is node 3, corresponding to the pickup node
of request 3 in the route of v1. Initially, this request had a beginning of service at 8:20 am
for pickup and 8:40 am for delivery. After computing the time windows, new bounds are
determined, which are 7:50 am for pickup and 8:20 am for delivery. To ensure the resulting
time schedule, request 3 is inserted in route v2 to minimize waiting times.

This move operation effectively reduces or eliminates unnecessary waiting times, as
seen in the case of node 5. Consequently, the total waiting time is reduced to 10 in the
resulting solution.

In Figure 8, a new solution is presented, where nodes 1 and 4 are allocated to v1
consecutively, while nodes 2, 3, 5, and 6 are visited in succession by v2.

5. Computational Experiments

The experiments were conducted on an Intel(R) Core(TM) computer (2.4 GHz) with
4 GB RAM. The evolutionary tabu search algorithm is implemented in C++ and uses a
single thread. In this section, a fair comparative study is performed between two hybrid
evolutionary methods, which are the ETS and the ELS [4] (Section 2) using the same data
set. Thus, we first explain the benchmark data set that is used in [51]. Next, the resolution
of one particular instance is detailed to highlight the relevance of the customized design of
time windows supported by the ETS. Then, larger experimentation is conducted on small,
medium, and large instances of on-demand transportation. Finally, the main outputs are
discussed based on a deeper analysis.

5.1. Benchmark Instances

The data set used in all the experimentation is based on the 96 instances of [51]. These
instances represent realistic on-demand transport situations in urban areas. The main data
features are reported here.

• The locations are marked by the real distances between them based on the GPS
positions of French cities.

• The transportation network density is not the same for all the instances.
• The customers are distributed over a large area, varying according to the instances.
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• Time windows are separately defined on both the pickup and destination locations.
These time windows are of different sizes according to the customers.

• The maximum riding time for each customer depends on the customer and the distance
they have to travel.

• The number of passengers in a location may be greater than 1 up to 4.
• All the vehicles have the same average speed equal to 1.33 km per minute.
• The maximal vehicle tour duration is equal to 480.
• The maximal capacity of the vehicles is equal to 8.

The distances between the origins and the destinations of the customers are distributed
so that the majority of the requests (75%) need transportation of between 30 km and 70
km. In addition, the distribution of the maximum riding times is in relation to the travel
distances requested by the customers. Thus, the majority of the customers (80%) require a
maximal riding time equal to a markup of 100% of their distance. This defines precisely
that the maximal riding time is customer-dependent but also depends on the distance of
the journey, which reflects realistic situations.

Time windows are supposed to vary between 1 and 4 h. In addition, 50% of the time
windows are of 1 h.

5.2. The Relevance of Customer-Oriented Time Windows in the Resolution by ETS

In this part, we analyze the effects of the customer-oriented design of time windows
on both the service quality and the travel cost of a solution provided by the ETS. Precisely,
we focus on showing the positive impact of the customized time windows formulation
provided in Equations (3) and (4) in Section 3 on the waiting times and the total duration.
Thus, we compare in-depth two solutions provided by our ETS and the ELS algorithms on
the problem instance d75. As reported later in Table 4, the total number of requests is equal
to 10 and the total number of vehicles is equal to 2. The solution obtained with the ELS has
a travel cost equal to 150.91. However, with the ETS, we obtain a better cost equal to 143.22.
Note that, for this instance, we have 20 nodes including (i = 0) and (i = 21), the two copies
for the depot. Figure 9 presents the solution obtained with the ELS for problem d75. The
travel cost of this solution, which is 150.91, is the sum of the cost 40.91 and 110 of the tours
achieved with the two vehicles (v = 1) and (v = 2), respectively.

Figure 9. The solution of the d75 instance obtained with the ELS.

Two cases of waiting times are produced in the solution of the ELS. These waiting
times are (W9 = 107.44) in (v = 1) and (W7 = 260.15) in (v = 2). To demonstrate the
positive effects of the customized time windows design, we emphasize one vehicle tour
having a waiting time (W9 = 107.44), as it is illustrated by Figure 10. In this figure, we
show some of the nodes’ time schedule related to the tour of (v = 1) of Figure 9. For more
clarity, we focus on request 9 with only the depot.

Figure 10. The schedule time for request 9 in the vehicle (v = 1) obtained with the ELS.
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When we consider the solution provided by the ETS on the same problem instance
d75 (see Figure 11), we can note that request 7 is moved from (v = 2) in the solution of the
ELS (Figure 9) to (v = 1) in the solution of the ETS. This new schedule allows a reduced
cost equal to 143.22 in the solution of the ETS, as compared with 150.91 for the ELS. Indeed,
this request had a high waiting time (W7 = 260.15) at the pickup node in (v = 2) of the ELS.
This waiting time is totally deleted in the solution of the ETS when inserting request 7 in
the schedule of (v = 1), as reported by Figure 12.

Figure 11. The solution of the d75 instance obtained with the ETS.

Moreover, the waiting time for request 9 is also reduced. This enhancement is due to
the time windows design using Equations (3) and (4) and the new bounds [989, 1135.93]
and [964, 1124.39] derived for the pickup node (i = 9) and the delivery one (i = 19) of
request 9. Consequently, two beginnings of service time are then proposed as (B9 = 977.46)
and (B19 = 989). This has also an impact on the overall system performance, producing
new values for the vehicle’s arriving times (A19 = 989) and (A21 = 997.92) in Figure 12, as
compared with (A19 = 1039) and (A21 = 1047.92) in the ELS, see Figure 10.

Figure 12. The details related to requests 7 and 9 in (v = 1) in the solution obtained with the ETS.

Consequently, we can argue that the customized design of the service quality term is
beneficial for both the customer and the service provider. More precisely, in the solution
produced by the ETS method, two levels of enhancement are highlighted: the solution cost
in terms of completion time and the service quality in terms of waiting time.

5.3. Results Obtained with the Two Evolutionary Techniques on the Benchmark Problems

In this subsection, we show the ETS performance regarding on-demand transport
problems of [51]. To analyze the behaviour of the ETS better, we propose to divide the
instances into three groups, C1, C2, and C3, which, respectively, correspond to small,
medium, and large instances. The sets of instances C1, C2, and C3 contain 32 instances each.
The total number of requests is in {10..60} for C1, {62..84} for C2, and {85..128} for C3.

In all the experimentation, the comparison is based on the deviation or (gap) between
the total travel cost and the total waiting time (TWT). The latter is the sum of all waiting
times related to all the vehicles’ tours. A negative deviation means a reduction in the
values. The computational times are not compared here because those of the ELS [4] were
not reported.

Tables 4, 5, and 6 are, respectively, related to the benchmark problems from the C1, C2,
and C3 groups defined previously. In these tables, we successively present the instances’
names, the number of vehicles, and the number of customers, and, for each evolutionary
method, we separately present the resulting total travel travel cost and total waiting time.
The gaps between the results obtained with the ETS and the ELS techniques are also
reported. The gap is set as (value(ETS)− value(ELS))/value(ELS) ∗ 100 for computing
the level of improvement of the ETS, as compared with the ELS. Improved values are
marked with bolt font.
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From the observation of Tables 4–6, the results obtained with the ETS algorithm
compete well with the ones of the ELS algorithm. First, the results show the capability of
the ETS algorithm to address real-life and expected on-demand transportation problems
with considerable sizes. This is the case of the instances d64 and d35 in Table 5, and d18
and d22 in Table 6.

In Table 4, there is only one instance, d05, that is not improved by the ETS, as compared
with the ELS. However, the gap obtained between the two algorithms in this instance is
still low (0,79) in TTC and (5,19) in TWT.

In Figure 13, the diagram shows a comparison of the two evolutionary methods
considered. This comparison is based on the number of instances where the TTC or the
TWT is improved or not by the ETS, as compared with the ELS.

Table 4. Results of the ETS vs. ELS on small-sized problems.

Instances m n ELS ETS
GapTTC(%) GapTWT (%)

TTC TWT TTC TWT

d75 2 10 150.91 398.54 143.22 57.44 −5.09 −85.59
d92 2 17 347.01 250.08 321.7 23.17 −7.3 −90.73
d93 3 20 418.76 177.34 410.91 8.24 −1.87 −95.35
d94 2 23 352.25 153.79 325.98 102.21 −7.46 −33.54
d55 5 28 1516.7 202.63 1506.29 80.56 −0.69 −60.24
d52 4 29 1607.74 70.81 1580.09 90.14 −1.72 27.3
d10 4 34 1341.02 377.87 1333.58 241.74 −0.56 −36.03
d39 6 38 2030.44 524.72 1964.28 423.87 −3.26 −19.22
d70 6 39 2006.05 144.29 2003.69 100.54 −0.12 −30.32
d82 6 39 1842.84 95.27 1839.52 112.88 −0.18 18.48
d08 7 42 1857.35 482.47 1762.50 275.14 −5.11 −42.97
d36 6 42 2139.52 390.74 2136.22 323.24 −0.15 −17.27
d43 6 43 2002.15 189.57 1842.04 210,12 −8 10.84
d01 7 46 2396.55 212.51 2157.81 102.99 −9.96 −51.53
d11 7 47 2538.18 141.18 2252.7 25.36 −11.25 −82.04
d90 6 51 1133.45 355.15 1126.29 213.44 −0.64 −39.9
d17 8 52 2861.93 234.74 2846.24 53.17 −0.55 −77.35
d84 8 52 2368.34 312.03 2366.65 353.46 −0.07 13.28
d81 7 53 2456.13 333.38 2258.38 215.46 −8.05 −35.37
d96 11 53 3593.6 279.91 3263.4 204.12 −9.19 −27.08
d07 8 54 3082.8 167.8 3056.51 93.27 −0.85 −44.42
d87 8 54 2714.31 339.88 2709.77 120.65 −0.17 −64.5
d47 7 55 2636.07 301.51 2491.12 96.25 −5.5 −68.08
d48 8 55 3083.19 418.27 3037.58 578.63 −1.48 38.34
d61 8 55 2855.09 342.11 2743.69 114.04 −3.9 −66.67
d12 9 56 3614.27 341.82 3399.68 214.05 −5.94 −37.38
d20 9 56 3567.32 394.84 3537.15 295.65 −0.85 −25.12
d30 8 56 2678.58 286.48 2547.48 227.74 −4.89 −20.5
d53 7 57 2484.6 104.83 2391.08 12.03 −3.76 −88.52
d05 9 58 3393.09 400.98 3419.89 421.78 0.79 5.19
d13 9 59 3183.19 441.76 3095.3 400.33 −2.76 −9.38
d06 10 60 3412.34 523.99 3403.59 366.15 −0.26 −30.12

Figure 13. Number of solutions obtained with the ETS that are better or worse than the solutions of
the ELS.
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Table 5. Results of the ETS vs. ELS on medium-sized problems.

Instances m n ELS ETS
GapTTC(%) GapTWT (%)

TTC TWT TTC TWT

d03 10 62 3185.61 599.6 3384.89 428.33 6.26 −28.56
d68 10 62 2606.51 308.12 2558.42 112.25 −1.84 −63.57
d74 10 62 3335.58 646.47 3041.86 247.33 −8.81 −61.74
d83 9 62 3275.42 241.64 3168.87 111.63 −3.25 −53.8
d21 9 63 3218.86 626.41 3113.14 455.12 −3.28 −27.34
d26 9 63 2880.21 198.24 2974.04 260.96 3.26 31.64
d88 10 63 3476.11 457.77 3384.82 348.62 −2.63 −23.84
d16 10 64 2709.25 435.13 2684.38 241.51 −0.92 −44.5
d51 10 64 3035.71 461.75 2960.35 436.54 −2.48 −5.46
d31 9 65 3112.39 255.51 3068.16 487.88 −1.42 90.94
d40 10 66 3815.96 253.79 3783.61 243.41 −0.85 −4.09
d41 16 67 3198.74 597.91 3161.7 355.31 −1.16 −40.57
d89 10 67 3583.62 390.16 3204.92 192.22 −10.57 −50.73
d34 10 68 3066.26 368.69 3260.88 134.31 6.35 −63.57
d60 9 68 2816.27 729.96 2759.79 611.98 −2.01 −16.16
d73 10 68 4278.51 194.21 4272.07 124.56 −0.15 −35.86
d28 10 70 3137.18 298.29 2964.66 166.14 −5.5 −44.3
d25 10 71 3693.55 436.17 3552.75 377.58 −3.81 −13.43
d79 11 73 3206.91 421.22 3196.82 456.1 −0.31 8.28
d85 12 73 3785.93 847.95 3624.68 722.52 −4.26 −14.79
d66 11 75 3350.46 1160.49 3689.34 912.06 10.11 −21.41
d56 13 76 4287.3 300.36 4261.59 207.47 −0.6 −30.93
d69 10 76 2691.37 928.69 2948.11 633.25 9.54 −31.81
d76 11 76 3467.29 813.88 3375.31 693.94 −2.65 −14.74
d86 11 76 3624.95 414.58 3386.78 156.07 −6.57 −62.35
d37 10 80 4164.12 208.95 4083.44 333.55 −1.94 59.63
d64 12 80 4971.05 248.99 4862.47 152.82 −2.18 −38.62
d24 11 81 4643.65 178.15 4960 94.63 6.81 −46.88
d57 12 81 3758.09 500.04 3718.1 422.66 −1.06 −15.47
d29 13 82 4705.89 687.13 4620.41 489.67 −1.82 −28.74
d09 12 83 3827.63 179.98 3588.41 185.13 −6.25 2.86
d35 13 84 4142.25 589.31 4009.54 451.39 −3.2 −23.4

Table 6. Results of the ETS vs. ELS on large-sized problems.

Instances m n ELS ETS
GapTTC(%) GapTWT (%)

TTC TWT TTC TWT

d45 11 85 4057.07 563.75 4379.7 388.11 7.95 −31.16
d80 11 85 4057.1 774.38 4502.42 537.42 10.98 −30.6
d44 11 86 4240.85 420.22 4161.15 254.57 −1.88 −39.42
d54 15 86 3826.1 476.69 4286.63 248.27 12.04 −47.92
d67 11 86 3615.08 450.2 3600.21 331.86 −0.41 −26.29
d63 12 87 3719.97 615.15 3715.39 702.39 −0.12 14.18
d14 12 88 3710.25 408.21 3969.26 145.03 6.98 −64.47
d42 13 89 4351.21 354.2 4781.87 270.65 9.9 −23.59
d02 13 90 4025.16 1090.6 4259.12 852.14 5.81 −21.87
d04 16 91 5972.08 488.93 5730.6 255.36 −4.04 −47.77
d95 10 92 2453.72 375.18 2775.73 207.96 13.12 −44.57
d50 12 93 4650.02 425.61 5091.04 502.61 9.48 18.09
d71 14 93 4820.43 732.09 4783.1 934.4 −0.77 27.63
d72 13 93 3978.86 660.08 3887.55 596.14 −2.29 −9.69
d15 14 94 5230.89 871.41 5921.25 947.05 13.2 8.68
d33 15 94 4880.13 358.64 4733.35 322.80 −3.01 −9.99
d77 13 95 4099.41 621.98 4376.93 935.96 6.77 50.48
d78 13 95 2924.31 554.96 3298.66 312.44 12.8 −43.7
d59 13 96 5383.8 598.78 5136.7 240.16 −4.59 −59.89
d91 13 98 2846.48 866.48 3061.08 644.37 7.54 −25.63
d23 14 101 4816.45 1045.64 5104.06 976.05 5.97 −6.66
d38 16 102 5439.44 528.48 5387.12 611.68 −0.96 15.74
d27 14 110 4664.12 540.4 4270.23 420.97 −8.45 −22.1
d58 16 110 5127.06 547.88 5470.56 354.1 6.7 −35.37
d65 15 111 4431.84 818.49 4864.45 620.9 9.76 −24.14
d19 15 112 5561.84 800.74 5394.81 593.69 −3 −25.86
d62 17 112 4458.1 1021.37 5023.64 855.34 12.69 −16.26
d22 18 119 6153.15 678.49 6082.28 491.02 −1.15 −27.63
d32 17 122 347.47 5824.23 5794.77 433.59 −0.51 24.78
d49 16 123 5450.74 1273.54 5449.86 1012.63 −0.02 −20.49
d46 16 125 5637.37 710.22 5941.78 836.78 5.40 17.82
d18 20 128 6341.12 859.64 6219.75 561.9 −1.91 −34.64

Figure 13 demonstrates the significant improvement in total travel cost (TTC) achieved
by the ETS compared with the ELS in the C1 instances, with 31 out of 32 instances showing
improvement. For the C2 instances, there is improvement in 26 out of 32 cases. However,
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in the last group (C3 instances), the improvement rate is 46.87%, affecting 15 instances.
In total, the ETS improves 72 out of 96 on-demand transportation problems tested. This
improvement results from the combination of the evolutionary method with TS and the
utilization of customized time windows in request scheduling.

In terms of total waiting time, Figure 13 illustrates a substantial enhancement when
comparing the ETS with the ELS. The ETS outperforms ELS in 77 out of 96 cases, showcasing
the significant contribution of customized time windows in ETS resolution.

Overall, the service quality is well addressed across all instances of TOD. TWT is
improved for 26, 27, and 24 instances out of 32 in the C1, C2, and C3 classes, respectively.

6. Statistical Analysis of the Results Provided for the Problem

In order to assess well the performance of our new hybridized evolutionary method
ETS, a deeper analysis of the results is required. We assess the behavior of the combined
methods, which are the TS and the evolutionary algorithm (EA), before their hybridiza-
tion. In addition, the analysis concerns the hybridized ones, which are the ETS and the
ELS. Therefore, statistical significance between the results of the compared algorithms is
performed based on the TTC obtained, being the values to not deteriorate when improving
the quality of service in the problem.

We follow the work of [52], which proposed guidelines to conduct a statistical analysis
of experimental studies. To this end, a set of steps is prescribed for statistically comparing
the algorithms. However, tests of normality are needed to select the appropriate statistical
tests: parametric or non-parametric associated with normal or non-normal data distribution.
Many tests are provided in the literature to ensure the distribution of the data used in the
experimentation, such as the Shapiro–Wilk test [53] or the Kolmogorov–Smirnov [54] test.

According to the Shapiro–Wilk test, the results of the algorithms do not follow a
normal distribution, as is the case for the majority of the metaheuristics and bio-inspired
algorithms [52]. Therefore, non-parametric tests are selected to derive statistical tests.

6.1. Tests of Differences

In order to detect differences between algorithms, the Friedman’s test is used. It
consists in accepting or rejecting the null hypothesis, H0. This hypothesis considers that the
algorithms have a similar performance. Given k is the number of algorithms equal to 4, b
the number of instances equal to 96, and T2

j the squared sum of the ranks for an algorithm,
the Friedman equation is given by (9).

FT =

[
12

b(k)(k + 1)

j=k

∑
j=1

T2
j

]
− 3b(k + 1) (9)

The average ranking of the compared algorithms is provided based on the average of
solutions within 10 runs. Next, the sum and the average of the ranking of each algorithm
are indicated in Table 7.

Table 7. Indications of the Friedman test.

TS EA ELS ETS

Sum of ranks 348 257 226 128
Average rank 3.63 2.67 2.35 1.33
Sum of squared ranks 121,104 66,049 51,076 16,384

Using the values produced in Table 7, the Friedman test (9) produces a value of 151,33.
In addition, the CHI − square critical value (CV) is 7.81 according to the Chi − square χ2

distribution. Thus, if we have FT > CV, the rejection of the null hypothesis is YES, and NO
otherwise. In our case, 151.33 > 7.81. Consequently, we deduce that there are differences
between the compared algorithms, and the null hypothesis is rejected with a confidence
level of 95%.
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Moreover, the algorithm is considered to be the best one if it deals with the best
average ranking value, as is the case with ETS presenting a less average rank equal to
1.33. However, this indication is not enough to conclude which algorithm has the best
performance. Therefore, we proceed by pairwise comparisons to effectively observe the
significance of the algorithms’ performance.

6.2. Pairwise Comparisons

In this part, a statistical significance between the compared algorithms is addressed
regarding both the obtained solutions values and the distribution of the obtained solutions
in the search space. Thus, to analyze the performance of the algorithms in terms of solution
values, we compute the absolute difference of the sums of ranks |Si − Sj| between two
algorithms i and j. The difference is significant when it exceeds the critical value equal
to 7.81. The winner algorithm is that having the smallest sum of ranks between the two
compared ones. In Table 8, the absolute difference between the sums of ranks (previously
computed in Table 7) is indicated.

Table 8. Pairwise comparisons of the ranked solutions value.

Groups |Si − Sj| Significance Winner Loser

TS vs. EA 91 YES EA TS
TS vs. ELS 122 YES ELS TS
TS vs. ETS 220 YES ETS TS
EA vs. ELS 31 YES ELS EA
EA vs. ETS 129 YES ETS EA
ETS vs. ELS 98 YES ETS ELS

Based on the difference of ranking sums in terms of solutions values, all the differ-
ences are significant since |Si − Sj| > CV for each pairwise algorithm. Moreover, these
outputs highlight the dominance of the ETS, which occupies the largest number of winner
occurrences in Table 8.

Whenever the significance in terms of solution values is analyzed, the one based
on the solution value distributions in the search space is mandatory. Therefore, the
p-value is calculated for each group of comparisons using the Student t-test distribution in
Table 9. Next, the Bonferroni correction method is applied for α as α/k. The obtained
adjusted p-value is equal to 0.008. A significance is mentioned as Yes when the obtained
p-value of a group is less than the adjusted one. Otherwise, it is mentioned as No.

Table 9. Pairwise comparisons of the solution value distributions.

Groups p-Value Significance

TS vs. ELS 0.008 Yes
TS vs. EA 0.198 No
TS vs. ETS 0.007 Yes
EA vs. ELS 0.197 No
EA vs. ETS 0.172 No
ETS vs. ELS 0.921 No

The cases that indicate the significance of the differences in terms of distribution are
TS vs. ELS and TS vs. ETS. Nevertheless, all the other groups indicate no significant result
of the solution value distributions in the search space.

6.3. Interpretation of the Statistical Results

According to the results provided in Tables 8 and 9, we point out that the results’
significance is not the same in terms of solution values and their distribution in the search
space. Regarding the guidelines of [52], the following interpretations are highlighted.

The TS algorithm indicates no significant results in terms of solution values, as com-
pared with EA, ELS, and ETS (see Table 8). But, the distribution of the values of the
solutions provided by this losing method has a statistical significance, as compared with
the hybrid evolutionary algorithms, which are the ELS and ETS, see Table 9. Obviously,
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these advanced methods involve a larger exploration mechanism than the TS as well as the
EA, since they present no significant distribution of solution values (Table 9).

As we see in Table 8, the algorithms EA, ELS, and ETS have an increased significance
in terms of solution values but not their distribution (Table 9). However, according to the
indications of Table 8, the EA is losing against the ELS and ETS regarding the solution
values’ significance. Therefore, the EA has a lower performance than the hybridized ones.

Moreover, the two hybridized algorithms ELS and ETS have the same exploration
power but with a different exploitation efficiency. Given that the ETS does not provide any
losing case in terms of ranking solution values, see Table 8, we can deduce that it dominates
the ELS. Thus, we emphasize the effectiveness of the TS when it is used as an exploitation
mechanism in the hybrid evolutionary algorithm ETS.

7. Discussion

Our findings highlight the significance of enhancing the service quality in on-demand
transportation systems. By reducing waiting times, improving schedule reliability, and
implementing customer-centric features, we not only enhance the user satisfaction but also
increase the system efficiency. This aligns with the goals of smart cities, where technological
innovations are required to create more responsive and adaptive transportation networks.
The implications of our findings extend beyond theoretical considerations to practical
applications within smart city transportation planning and management. By optimizing
the service quality, we can achieve more efficient resource utilization and cost savings.

To tackle DARPs, which are more applicable to real-world scenarios, it is relevant to
consider dynamic elements such as variable capacities and real-time transit data.

However, we have started by assuming fixed capacities, which allows us to focus
on optimizing the routing and scheduling aspects without the additional complexity of
variable capacities. This is a common practice in initial methodological studies, providing a
clear framework to demonstrate the core algorithmic innovations. Future works can extend
the method to accommodate variable capacities, making it more applicable to real-world
scenarios. Similarly, assuming constant transit times simplifies the model, making it more
tractable for computational experiments. In real-world applications, transit times can
vary due to traffic conditions, roadworks, and other factors. When considering dynamic
factors, such as variable transit times and vehicle capacities, the computational complexity
of the hybrid evolutionary tabu search method for transport on demand scenarios, like
the dial-a-ride problem, increases significantly. Therefore, there are effective strategies
to address complexity as efficient dynamic data integration techniques, such as stream
processing, to manage real-time transit data effectively. Moreover, a dynamic parameter
adjustment would be beneficial to address the complexity. The method should adapt
parameters like mutation rates, crossover rates, and neighborhood sizes based on current
solution quality and real-time system changes. It would be interesting to use machine
learning techniques to predict optimal parameter settings based on historical data and
current system states. In addition, we should also integrate heuristics that provide quick,
approximate solutions to guide the evolutionary algorithms and tabu search, reducing the
search space and improving convergence rates.

Implementing these strategies can significantly improve the scalability of the hybrid
evolutionary tabu search method for medium and large networks in transport on-demand
scenarios. These enhancements ensure that the method remains robust and efficient, making
it suitable for real-world applications in smart cities. Future work will continue to refine
these strategies, further improving scalability and practical applicability in diverse urban
transport environments.

8. Conclusions

This paper introduces an efficient hybrid algorithm called the evolutionary tabu
search that addresses the challenges of solving a specific variant of the dial-a-ride problem
with customer-oriented constraints. By combining the evolutionary computation frame-
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work with the tabu search, the ETS algorithm offers a powerful approach to optimizing
transportation solutions. The primary objective of the ETS method is to provide tailored
optimization techniques that support customized designs for the DARP. To this end, the
algorithm incorporates specific mutation operators that are designed to address the unique
requirements of the problem. These operators are dynamically exchanged during the search
process, allowing for the exploration of diverse solution spaces and leading to an improved
service quality. To validate the effectiveness of the ETS algorithm, extensive experiments
were conducted, comparing its performance with another hybrid evolutionary method
from the literature using real-life transportation problems. The results of these experiments
demonstrate the superior performance of the ETS algorithm in terms of improvement of
the service quality. The introduction of the new tabu search method with its customized
neighborhood strategy and tailored evolutionary operators represents a significant con-
tribution to the DARP field. It presents a promising approach for solving the problem at
hand by effectively addressing both operational and service quality objectives, thereby
providing a valuable tool for decision-making in relevant domains. The findings of the
study highlight the strengths and advantages of the ETS method in addressing the chal-
lenges and requirements of transport on-demand problems. The method’s ability to deliver
competitive results, coupled with the observed improvements in service quality, signifies
its potential as an effective solution for optimizing on-demand transportation systems. In
future research, it would be valuable to explore the integration of additional criteria, such
as waiting time, riding time, and tour cost, within a multi-objective framework. This would
further enhance the algorithm’s capability to deliver good solutions that consider multiple
aspects of the problem.

Furthermore, future works will extend the model to incorporate dynamic elements
such as variable capacities and real-time transit data, making it more relevant for real-world
scenarios. Enhancing the method to accommodate real-time data on traffic conditions and
vehicle availability should also improve the accuracy and responsiveness of the system.
Thus, extending the method to handle variable vehicle capacities and other dynamic
constraints is encouraged, making the method more applicable to diverse urban transport
scenarios in smart cities.

In conclusion, the presented hybrid optimization method provides a significant ad-
vancement in solving DARPs for smart cities. It not only enhances service quality and
operational efficiency but also sets the stage for further research and development to adapt
the method to the dynamic and complex nature of real-world transportation systems.
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