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Abstract: Community centers play a crucial role in urban environments, providing physical and
educational services to their surrounding communities, particularly for students. Among the many
benefits for students are enhanced academic outcomes, improvement of behavioral problems, and
increased school attendance. Such centers are also particularly vital for low-income and racial minor-
ity students as they are pivotal in giving them outside-of-school learning opportunities. However,
determinants influencing attendance at community centers remain largely unexplored. The novelty of
our research comes from using census data, Boston Centers for Youth and Families (BCYF) attendance
data, and specific center attributes, to develop human mobility gravitational models that have been
used, for the first time, to predict attendance across the BCYF network. Using those models, we
simulated the potential effects on general and student attendance by changing center attributes, such
as facilities and operating hours. We also researched the impact of changing the walking accessibil-
ity to those centers on their respective attendance patterns. After the analysis, we found that the
most cost-effective policy to increase BCYF attendance is changing each center’s educational and
recreational offerings far beyond any accessibility interventions. Our results provide insights into
potential policy changes that could optimize the attendance and reach of BCYF Community Centers
to under-served populations.

Keywords: agent-based modeling; human mobility models; gravitational models; gravitational Huff
models; urban planning; attendance prediction; data-driven optimization tools

1. Introduction

In numerous urban environments, from metropolitan areas to large towns, community
centers are a key part of society [1,2]. Often publicly funded and run by the government,
these centers all share one common goal: to serve the community [3]. They do this in
various ways, and each community center, or network thereof, is different. Nevertheless,
these community centers run with tight budgets; thus, they have to optimize their budgets
when deciding their offerings, like classes, facilities, or hours open, so that they can reach
as many people as they can within their communities. This creates a heavy need for tools
that enable policymakers to better understand why people go to certain community centers.
With this knowledge, community centers will be able to funnel their resources in a way
that maximizes their attendance.

In general, policymakers and community center directors do not possess compre-
hensive tools or models that measure the dependence of demand on the accessibility and
attributes of community centers. However, the problem of accessibility to amenities has
been heavily studied for the past 50 years for other types of infrastructure, namely com-
mercial or retail infrastructure, using gravitational models, accessibility to transportation,
and Agent-Based Modeling [4–8].

For a long time, gravitational models, such as the Huff model [4], have been the
baseline for measuring attendance to a facility. They combine attractiveness and distance
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as the main factors influencing the likelihood of the public visiting a facility. Although they
have been mainly used in retail settings, gravitational models have been refined over time
to account for many factors influencing consumer attendance and are thus a perfect fit for
our study.

Another important factor when considering the likelihood that an individual visits any
kind of facility, whether public or commercial, is the accessibility of transportation to said
facility. Sevtsuk et al. [5] as well as Wang et al. [9] have shown how a facility’s popularity
is directly impacted by how difficult it is to reach it, which relates to our work with
community centers, as public transportation or pedestrian accessibility is rather important
to enabling access.

More recent advancements in the research of public service facility accessibility include
taking into consideration spatial accessibility and equity [10–12], oftentimes working with
Geographic Information System (GIS) data in order to simulate urban mobility to public or
commercial facilities.

More recently, Agent-Based Modeling has been used to understand these interactions
in urban settings, allowing researchers to directly simulate mobility to a community center,
measuring how both accessibility and feature changes can impact the communities’ behav-
ior. Doorley et al. [7] and Antonelli [8] have shown how effective ABM is in predicting
behavior due to infrastructure changes.

Nevertheless, these methodologies have never been employed in the context of com-
munity centers. This research attempted to fill this gap by developing and applying
advanced human mobility gravitational models to predict attendance at Boston Centers for
Youth and Families (BCYF).

This study is the first in its application of enhanced gravitational Huff models to
community centers, using unique datasets that include census data and specific center
attributes. Our approach provides a novel analytical framework for understanding and
predicting attendance patterns, which has not been explored in the literature. This exten-
sion is crucial as it adapts well-established models to a new and under-served domain,
which is key to fostering more equitable urban communities. Our research allows owners
and policymakers in those sectors to make better, data-driven decisions to benefit their
respective infrastructures.

2. Methodology

In focusing on the Boston Centers for Youth and Families (BCYF) [3] (see Figure 1), our
collaboration with BCYF directors has provided access to key data, enabling an in-depth
analysis of the BCYF system, its utilization patterns, and the diverse factors influencing
engagement within the urban demographic [13,14]. Following established methodologies
identified in our literature review [4,5,15] and a unique dataset for community center
attendance across the BCYF network, we developed enhanced gravitational Huff models
for modal transportation. In our study, we built two models. One of these models represents
the total population, and one represents the population aged 5 through 17. The models
were built with the same equations; the only difference is that they were trained with
different eligible populations and thus provide guidance for specific actions regarding
the different types of populations. This separation between our model’s populations is
due to key distinctions in the way the two populations behave. For example, the weekly
schedule of someone aged 5 through 17 is very different from an adult, as one follows the
academic day, whereas the other follows the work day. Furthermore, adults have much
more independence when it comes to mobility and are more likely to drive rather than
take public transportation [16], ultimately creating an important difference in their mobility
behavior. The accuracies of our models allow us to study potential interventions and offer
insights into better, data-driven decisions for policymakers or center directors to increase
attendance at BCYF community centers.
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Figure 1. Map of the BCYF community centers in the Boston area. Symbol size is proportional to
attendance, and colors indicate if they are school-based.

2.1. Data

In our methodology, we use a variety of data to analyze attendance patterns at the
BCYF community centers. Our research utilized anonymous data from visits to each
community center, including variables such as age, class, encrypted name, and contact ID.
To calculate the number of unique visitors at each center, we identified distinct encrypted
names and contact IDs. The data were anonymized using the SHA-512 Algorithm [17].
For consistency across all data, we limited our time range to 1 January 2022–31 May 2023.
We also accessed a specific dataset of visit data only for the BCYF Quincy Community
Center that includes the same variables with the addition of a zip code, which let us fit our
probability equations for distance.

Furthermore, we gathered the different attributes of each center [3], as shown in
Table 1. We used these data to optimize the attractiveness function as well as inform
our interventions. We also used geographic and demographic data from the U.S. Census.
This included, for each CBG [18], the number of current residents, the age distribution
(specifically focusing on the total and 5–17-year-old population), and socioeconomic data
regarding the number of people below the poverty line.

Table 1. Attributes of the different BCYF community centers considered in the study.

Community # of Hours Facilities School-Based Pool Computer Dance Fitness
Center Classes Open/Week Lab Studio Center

Quincy 84 58 6 1 1 1 1 0
Blackstone 21 58 11 1 0 1 1 0
Nazzaro 183 60 8 0 0 0 0 1
Condon 22 58 6 1 1 1 0 0
Tobin 61 73 10 0 0 1 1 1
Mason Pool 82 66 2 0 1 0 0 0
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Table 1. Cont.

Community # of Hours Facilities School-Based Pool Computer Dance Fitness
Center Classes Open/Week Lab Studio Center

Charlestown 59 40 6 0 1 1 0 1
Tynan 73 50 4 1 0 0 0 0
Curley 54 78.5 9 0 1 1 1 1
Paris Street 73 68 12 0 1 1 1 1
Hennigan 61 70 6 1 1 1 0 0
Curtis Hall 266 78 13 0 1 1 1 1
Holland 18 58 8 1 1 1 0 0
Marshall 43 50 4 1 1 1 0 0
Perkins 57 68 8 1 1 1 0 0
Gallivan 47 68 6 0 0 1 0 0
Menino 38 55 6 0 0 1 0 0
Flaherty Pool 66 78 2 0 1 0 0 0
Roche 198 73 5 0 0 0 1 0
Hyde Park 61 60 12 0 0 1 1 0
Ohrenberger 264 40 7 1 0 1 0 1

2.2. Models

We developed two models: one encompassing the entire available population and
another focusing on individuals aged 5–17. Our methodology, akin to the Huff model,
employs a gravitational approach. In this framework, the likelihood of an individual from
CBG c visiting community center z is inversely related to the distance between c and z
and directly related to the attractiveness of z:

Pcz = sz/ f (dcz), (1)

where f (d) is a function that grows with distance d, and sz measures the attractiveness of
community center z. Traditional forms of f (d) are power law or exponential functions,
and they vary depending on the transportation modal choice [15].

To determine the functional forms of these modal choice functions, we used two
datasets. The first used attendance data from a specific community center known as the
BCYF Quincy Community Center. These data contained Ncz, which is the number of visitors
to the center from each zip code in the Boston area. Using a regression for the probability
Pcz = Ncz/Ec (where Ec is the population in each CBG c), we found that a power law fit
like Ncz ∼ d/(2 + dγ) describes the data accurately for large distances, with exponent
γ = 2.47 ± 0.35 and a Root Mean Square Error (RMSE) of 0.288.

Since driving is the most common mode of transportation at large distances, we used
the previous fit to model the probability that an individual from CBG c visits a community
center z by driving as

P(d)
cz (sz, dcz) =

sc
dcz

2 + dγ
cz

/α if dcz ≥ d(d)min

0 otherwise.
(2)

In this equation, we use the traditional Huff model [4], where the probability is
proportional to the attractiveness of the center, sc, and inversely proportional to the dis-
tance. Furthermore, from our analysis of the data and previous research conducted by
Ibaragoyen et al. (2023) [19] and Hidalgo et al. (2020) [20], we discovered that individuals
typically opt not to drive for distances shorter than d(d)min ≃ 0.25 km.

From the surveys of Ibaragoyen et al. (2023) [19], we approximated the probability of
visiting a community center c by walking as the probability of walking to an elementary
school, and we found that
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P(w)
cz (sz, dcz) = sc A · e−(

d
B )

C

/α, (3)

with A = 0.93 ± 0.00344352, B = 0.903 ± 0.00359974, and C = 2.21 ± 0.03706364. Finally,
from Ibaragoyen et al.’s (2023) [19] research, we estimated the probability of visiting a
community center c by public transportation with the following equation:

P(t)
cz (sz, dcz) =

sc
dcz

2 + dβ
cz

/α if dcz ≥ d(t)min

0 otherwise,
(4)

where β = 3, and d(t)min ≃ 0.5 km. We tested that our results do not depend critically on
these assumptions for their functional form.

In our equations, α is a normalization so that the probabilities of going to all community
centers z from a CBG c equal one:

n

∑
c

P(d)
cz (sz, dcz) + P(w)

cz (sz, dcz) + P(t)
cz (sz, dcz) = 1 (5)

To determine the number of individuals visiting community center z from a CBG c, we
multiply each probability by the relevant eligible population, Ec, which varies depending
on the model used. In our primary model, the eligible population is the total population of
the CBG. Conversely, in our student model, the eligible population is restricted to those
aged 5–17 within each CBG. This results in the following equations:

N(w)
cz = ϕP(w)

cz (sz, dcz)Ec (6)

N(d)
cz = ϕP(d)

cz (sz, dcz)Ec (7)

N(t)
cz = ϕP(t)

cz (sz, dcz)Ec, (8)

where ϕ is a normalization factor so that ∑c,z N(w)
cz + N(d)

cz + N(t)
cz equals the known amount

of individuals that attend the entire network of BCYF community centers. From the BCYF
network attendance data, we know that the total amount of people attending the entire
network is 42,686 individuals for the total population model and 20,720 for the 5–17 age
group model.

However, this enhanced Huff model remains a competitive one, where the total
number of visitors remains constant. In other words, demand never increases. Changes
in the center attributes, or the accessibility to them, will only change how the number
of visitors is distributed between centers. However, demand is elastic, and the number
of visitors to all community centers could increase if center attributes or accessibility to
centers were altered. In fact, there is evidence that attendance to public infrastructure
increases with accessibility. For example, in [5], it was found that the number of visitors
to retail centers decreases when residents have less access to these centers. To account for
this accessibility difference between individuals, as was performed in [5], we added a third
component to our Equation (6), which decreases the number of visitors from each CBG c to
a community center z using the same inverse decay function used in our driving model,
Pacc(d) = d

2+d2.33 . Thus, our final equations are

N(w)
cz = ϕP(w)

cz (sz, dcz)Pacc(dcz)Ec (9)

N(d)
cz = ϕP(d)

cz (sz, dcz)Pacc(dcz)Ec (10)

N(t)
cz = ϕP(t)

cz (sz, dcz)Pacc(dcz)Ec. (11)

Note that this change allows for an increasing demand if accessibility or attractiveness
to centers is increased.
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Finally, we modeled sz, the attractiveness of each community center z, as a linear
combination of the community center attributes xz,i:

sz({xz,i}) = exp

(
∑

i
wixz,i

)
(12)

Table 1 shows the attributes of each of our community centers, ranging from the
number of hours open to the number of classes or facilities. We also have binary variables,
such as having a pool, computer lab, dance studio, or fitness center.

These attributes are not independent of one another. For example, the number of
facilities is heavily correlated with the existence of a computer lab, dance studio, and fitness
center (see Figure 2). Thus, we employ a feature selection process, discarding the attributes
that have large correlations with one another in order to prevent multicollinearity. Therefore,
we choose the number of classes based inside a school as well as the possession of a pool,
dance studio, fitness center, and computer lab to model each center’s attractiveness.

A B

Figure 2. (A) Correlation matrix between center attributes. Each square represents how correlated two
attributes are. A score of 1 would mean a perfect positive correlation, and a score of −1 would mean
a perfect negative correlation. A score of zero would mean that the attributes are not correlated at all.
(B) Biplot of the first two PCA components of center attributes. Each dot represents a community
center, projected onto the space defined by the first two principal components. The first principal
component (PC1) explains 33.3% of the variance, and PC2 explains 22.8% of the variance in the data.

3. Optimization of the Model

Since the transportation modal probabilities are fixed to those in the existing literature,
our model only depends on the relative weights assigned to the attributes of a center
as in Equation (12). We fit them using an optimization algorithm [21] to minimize the
RMSE between our predictions and the actual attendance to each center. The result of
this optimization is shown in Figure 3, where we can see that our models for the total
and 5–17-year-old population are very accurate, with RMSE = 0.090 and RMSE = 0.063,
respectively. During our optimization, we found that the most important attributes for
the attractiveness of a center are the number of classes offered and the possession of a
pool. These two factors held the most weight, as can be seen in Figure 3B. Interestingly,
centers that are based inside a school have less attractiveness. This is due to centers located
within schools offering fewer hours and classes, since they are closed during the school
day, and lacking fitness center facilities, as can be seen by the correlations in Figure 2.
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These findings provide insights into our interventions later on, as we now know the most
influential factors that can be altered in order to increase attendance.

Total Population

Age 5-17 Population

A B

C D

Figure 3. Model fitting results. Relationship between our model predictions and real data for the
attendance at each community center for the total population (A) and 5–17-year-old population
(C). The coefficient weights found for our model for the total population (B) and the 5–17-year-old
population (D). For illustration purposes, the coefficient for the number of classes is normalized
to one.

4. Interventions

Given the high accuracy of our models, attributed by an RMSE of 0.090 for the total
population model and 0.063 for the 5–17-year-old population model, we can study the
impact on attendance of two interventions: enhancing the center offerings and changing
the walking accessibility to centers.

The first is an intervention regarding the attractiveness of centers, where we change
their attributes so that more individuals are enticed to visit them. Note that, as Figure 2
shows, individual attributes of a center are not independent. For example, we cannot
independently change whether the center is school-based from the number of classes.
To determine the direction of an intervention, we used the principal component analysis
results for the different attributes to suggest possible linear combinations of changes to a
center’s attributes. We found that the first principal component is mostly described by the
number of classes, having a fitness center, being based inside a school, and having a dance
studio; see Figure 2B. Thus, we chose our interventions along the directions of the first
PCA. Namely, we studied how attendance at a particular community center changes when
the center becomes independent from a school, when we add a fitness center, and when we
increase the number of classes the center offers by one hundred. Our results for different
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centers subject to this intervention can be found in Figure 4. The effect of the intervention
is substantial, with percentage increases in attendance of 100–130% in the total population
and around 40% in the 5–17-year-old population. We also studied the percentage change
in attendance of the low-income population, calculated by multiplying our predicted
attendance for each CBG by the fraction of people living under the poverty line in that
CBG. In this intervention, we did not see any significant difference in attendance change
between the total and low-income populations.

Our second intervention modifies the walking accessibility of a particular center.
To this end, we modified the function P(w)

cz (sz, dcz) so that it becomes more likely that
an individual will come to the center walking. This can be achieved by doubling the B
coefficient in the Equation (3) so that the function decays slower with distance. Our results
for this intervention, shown in Figure 4 Panels B and D, still show a substantial change.
In regards to the low-income population, the percentage change is higher than for the total
population, suggesting that by changing the walking accessibility of a center, we impact
the low-income communities around them more.

Center Attributes Intervention Center Accessibility Intervention
A B

C D

Figure 4. Effect of interventions. (A) Percent changes in attendance for total and low-income total
populations when changing center attributes. (B) Percent changes in attendance for total and low-
income total populations when changing the walking accessibility to centers. (C) Percent changes
in attendance for 5–17-year-old and low-income 5–17-year-old populations when changing center
attributes. (D) Percent changes in attendance for 5–17-year-old and low-income 5–17-year-old
populations when changing the walking accessibility to centers.

The geographical effects of these interventions can be seen in Figure 5. As we can see,
both interventions significantly increase attendance from nearby CBGs. Nevertheless, we
can see in Figure 5B that the increase in attendance extends to CBGs further away from the
community center. We attribute this to the fact that driving is the most probable modal
choice for larger distances.
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Predicted attendance
Predicted attendance after 
center attributes intervention

Predicted attendance after 
walking accessibility interventionA B C

Figure 5. Geographical representation of the effects of each intervention labeled with the square root
of the total attendance per CBG.

5. Conclusions and Future Work

This study offers a detailed analysis of attendance patterns at BCYF community centers,
utilizing enhanced Huff models based on census and real attendance data. Our findings
reveal significant insights into factors influencing attendance and effective policy interven-
tions for increasing it. Although our paper contains data based only on BCYF centers, we
believe that our methodology and model can be applied to other networks of community
centers if we have access to attendance data. We found that the most impactful factor is
enhancing the educational and recreational offerings at each center, notably more than
improving walking accessibility. Centers within schools are less attractive, suggesting that
making centers independent, thereby allowing for more classes, longer hours, and fitness
facilities, would significantly boost attendance.

Predicted attendance increases substantially with certain interventions: independence,
added fitness centers, and additional classes could lead to attendance increases of 100–130%
for the entire population and around 40% for the 5–17 age group, with similar rises in
low-income populations. Modifications to walking accessibility show notable impacts
as well, showing a 20–40% increase in the entire population and a 15–40% increase in
the 5–17-year-old population. However, with this type of intervention, we see a large
percentage increase for the low-income population, suggesting that improving pedestrian
access greatly benefits under-served communities. Walking accessibility changes could
include road closures, limiting the number or type of vehicles permitted on the road past a
certain hour, or increased crossing guards. The City of Boston already has similar changes
in place, such as school crossing guards and the closing of Memorial Drive, proving that
such changes not only have effects but are possible.

Despite these insights, this study has limitations: incomplete data for smaller centers,
unaddressed detailed transit accessibility, and a simplified linear attractiveness function in
the model. Future research could enhance the model accuracy with more a comprehensive
data collection and transportation accessibility analysis. Nevertheless, our model’s high
accuracy renders it a valuable and robust tool, capable of providing policymakers and
center directors with data-driven insights to optimize the BCYF program’s reach.
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