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Abstract: The timely and accurate recognition of multi-type structural surface damage (e.g., cracks,
spalling, corrosion, etc.) is vital for ensuring the structural safety and service performance of civil
infrastructure and for accomplishing the intelligent maintenance of smart cities. Deep learning
and computer vision have made profound impacts on automatic structural damage recognition
using nondestructive test techniques, especially non-contact vision-based algorithms. However,
the recognition accuracy highly depends on the training data volume and damage completeness in
the conventional supervised learning pipeline, which significantly limits the model performance
under actual application scenarios; the model performance and stability for multi-type structural
damage categories are still challenging. To address the above issues, this study proposes a dual-stage
optimization-based few-shot learning segmentation method using only a few images with supervised
information for multi-type structural damage recognition. A dual-stage optimization paradigm is
established encompassing an internal network optimization based on meta-task and an external
meta-learning machine optimization based on meta-batch. The underlying image features pertinent
to various structural damage types are learned as prior knowledge to expedite adaptability across
diverse damage categories via only a few samples. Furthermore, a mathematical framework of
optimization-based few-shot learning is formulated to intuitively express the perception mechanism.
Comparative experiments are conducted to verify the effectiveness and necessity of the proposed
method on a small-scale multi-type structural damage image set. The results show that the proposed
method could achieve higher segmentation accuracies for various types of structural damage than
directly training the original image segmentation network. In addition, the generalization ability for
the unseen structural damage category is also validated. The proposed method provides an effective
solution to achieve image-based structural damage recognition with high accuracy and robustness
for bridges and buildings, which assists the unmanned intelligent inspection of civil infrastructure
using drones and robotics in smart cities.

Keywords: structural health diagnosis; multi-type damage segmentation; few-shot learning; meta
learning; limited annotated images

1. Introduction

The civil infrastructure is inevitably impacted by a variety of complicated factors
throughout the life-long service period, leading to the initiation, propagation, and accumu-
lation of multi-type structural damage. The timely and accurate recognition of multi-type
structural surface damage (e.g., cracks, spalling, corrosion, etc.) is vital to ensure the
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structural safety and service performance of civil infrastructure and accomplish intelli-
gent maintenance of smart cities. Structural health monitoring and damage identification
serve as pivotal techniques for condition assessment and maintenance decisions, thereby
maintaining structural integrity and enhancing the structural reliability of civil infrastruc-
ture. Vision-based surface structural damage recognition, as one of the most intuitive and
convenient approaches, is considered as a vital task in structural health diagnosis.

As the civil infrastructure continues to expand in scale and volume, current demands
for intelligent and automated structural damage recognition have become increasingly
urgent. This is attributed to the inherent limitations of conventional manual inspection
methods, which are labor-intensive, time-consuming, lack stability and efficiency [1],
and can often yield subjective results when attempting to obtain quantitative results.
However, recent advances in computer vision and deep learning offer a non-contact and
nondestructive solution for structural damage recognition using vision-based data. These
data can be sourced from various platforms such as unmanned aerial vehicles, robotic
inspections, and monitoring cameras [2,3]. By integrating these automated approaches
with intelligent algorithms, it becomes possible to quantify damage, assist in monitoring,
and establish thresholds to eliminate operational variability.

Initially, most studies of structural damage detection were conducted based on digital
image processing techniques that required numerous pre-defined operations and parame-
ters, including edge detection [4,5], threshold segmentation [6], and template matching [7].
Machine learning algorithms are investigated to train data-driven prediction models for
new samples, which have been widely applied in areas of structural damage detection [8,9],
condition assessment [10,11], and scene classification [12,13]. However, conventional ma-
chine learning typically relies on hand-crafted features and parameters that require prior
knowledge and professional understanding of the source domain data. This would limit its
generalization ability in target domains under new scenarios.

Deep learning has recently witnessed significant advances, particularly in the auto-
matic extraction of abstract feature representations from large-scale datasets. This has
propelled it to become a potent tool for structural health monitoring [14]. The application of
computer vision in conjunction with novel deep learning algorithms facilitates the swift and
precise identification and localization of structural surface damage by discerning intricate
patterns from multi-source sensing data [15–18]. Sun et al. [19] conducted a comprehensive
review of recent advances in artificial intelligence-enhanced bridge health monitoring.
Bao and Li [20] established a unified framework of machine-learning-based structural
health diagnosis to elucidate underlying mechanisms and structural dynamics within the
multi-type monitoring data.

As one of the most frequently utilized deep learning models, convolutional neural net-
works (CNNs) are designed to extract multi-level image features and establish end-to-end
connections with structural damage annotations. CNNs for computer vision have been
utilized extensively in the field of structural damage recognition, including image classifica-
tion [21,22], object detection [23,24], and semantic segmentation [25,26]. Crack recognition
stands out as a key task in structural damage identification. Zhang et al. [27] introduced a
novel gated recurrent unit that incorporated multi-layer nonlinear transformations into a
recurrent neural network, thereby extracting embedding features of surface cracks. Xu et al.
successively proposed high-performance identification frameworks for tiny steel fatigue
cracks with complex handwriting marks [28] and further designed a lightweight segmenta-
tion model using real-world inspection images [29]. Pan et al. [30] integrated DeepLabV3+
and the dual attention module to explicitly model local feature representations of steel
defects. In addition, a series of deep CNNs have been also established to tackle specific
structural damage identification tasks, e.g., concrete wind-erosion [31], steel rust [32], and
water leakage in tunnels [33].

The previously mentioned conventional deep-learning-based methods for structural
damage identification predominantly utilize supervised learning, specifically designed
for a particular type of damage. These methods lack the capacity to generalize across
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small training datasets and new damage categories. Despite the consistent differences
in morphological features among various types of structural damage, it is challenging to
directly apply models trained on specific datasets under diverse real-world scenarios in
engineering practices. This inevitably leads to the fragmented requirement of individual-
ized models trained on different damage types. Additionally, the model performance and
recognition accuracy are highly dependent on the quantity of training samples and class
balance within the collected multi-type structural damage images. However, acquiring
real-world images and the corresponding precise annotations of one particular damage type
remains significantly challenging along with time-consuming and labor-intensive tedious
labeling processes. Therefore, it is urgent to develop a stable training-testing approach
of a high-performance, universal, and robust method for multi-type structural damage
segmentation under limited supervised image-label pairs.

Few-shot learning has garnered significant attention in the deep learning field, serving
as an efficacious cross-task learning paradigm, especially for computer vision recognition
tasks of image classification, object detection, and semantic segmentation. In contrast to
conventional deep learning methods that rely on a large-scale labeled dataset to ensure
high training robustness and model accuracy, few-shot learning emphasizes the efficient
acquisition of universal knowledge from limited datasets and rapid adaptation to new tasks.
The primary objective of few-shot learning is to discover the underlying relationships and
inherent similarities across various recognition tasks, which can be shared as transferable
prior knowledge applicable to new object categories.

Based on intrinsic learning mechanisms and the utilization patterns of limited su-
pervision information, few-shot learning can be categorized into four types: metric-
learning-based methods, optimization-based methods, transfer-learning-based methods,
and generative-model-based methods. Metric-learning-based methods utilize various
prototypical networks to learn the optimal prototype approximations of each category,
thereby classifying the unseen samples [34–36]. The model agnostic meta-learning (MAML)
algorithm has garnered significant attention in the few-shot learning field due to its strong
universality and effectiveness as an exemplary optimization-based method [37]. Nichol
et al. [38] further proposed a simplified first-order optimization-based meta-learning algo-
rithm to facilitate rapid fine-tuning on new tasks. Transfer-learning-based methods, for
instance, the meta-transfer learning paradigm [39], simultaneously combine the benefits of
both transfer learning and meta-learning to leverage prior knowledge from the meta-learner
for fine-tuning on unseen tasks. In addition, recent large-scale pre-trained language models
have demonstrated great potential in transferring generalized cross-task knowledge that
can be adapted to specific tasks via only a few samples [40]. Generative-model-based
methods focus on generating synthetic samples from the learned probability distributions
of small samples for actual data, thereby augmenting the training dataset using mature
generative models [41,42].

Recently, researchers have focused on few-shot learning applications in structural
health monitoring and damage recognition. Guo et al. [43] developed a defect classifier
based on meta-learning that iteratively adjusted the weight coefficients of loss function
to alleviate the adverse effects of data imbalance. A metric-learning-based model was
introduced for few-shot pavement defect classification, improving the distinguishability
between various defect classes [44]. Xu et al. [45] proposed a meta-learning classification
framework based on attribute representation vectors of multiple damage categories, where
damage attributes act as the common inter-class transferable knowledge. A few-shot
classification approach for previously unseen classes was presented by incorporating an
extensible classifier with contrastive learning, addressing the challenges of data imbalance
in small datasets [46].

The aforementioned methods offer viable solutions for certain few-shot learning tasks
in structural health monitoring; however, they primarily concentrate on structural damage
classification, neglecting to provide more detailed and nuanced predictions at the pixel
level. In addition, although some recent, related studies have started to focus on the specific
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task generation in meta learning, the task significance was represented with an interpretable
task generation strategy by high-dimensional feature density clustering. The knowledge
gap still clearly exists between theoretical meta-learning algorithms and the actual ap-
plication of structural damage segmentation. To address this challenge, this study aims
to establish an optimization-based few-shot learning approach for multi-type structural
damage segmentation with inadequate supervised pixel-level annotations. Specifically, this
study proposes a dual-stage optimization-based few-shot learning (DOFSL) framework
for multi-type structural damage segmentation, mitigating the severe training instability
and insufficient model robustness observed in conventional supervised learning when
applied to small-scale annotated datasets. Furthermore, comparative studies and ablation
experiments are systematically conducted to demonstrate the effectiveness, robustness,
and generalization of the proposed method. The proposed method provides an effective
solution to achieve image-based structural damage recognition with high accuracy and
robustness for bridges and buildings, which assists the unmanned intelligent inspection of
civil infrastructure using drones and robotics in smart cities.

The remainder of this article is organized as follows. Section 2 introduces the proposed
DOFSL methodology for multi-type structural damage segmentation. Section 3 elaborates
on the implementation details of the investigated multi-type damage image dataset, training
hyperparameter configurations, loss function, and evaluation metrics. Section 4 shows
the test results, comparative studies, and ablation experiments to validate the efficacy and
necessity of the DOFSL method. Finally, Section 5 draws conclusions for this study.

2. Methodology

This study proposes a dual-stage optimization-based few-shot learning (DOFSL)
algorithm inspired by the original MAML to enhance the model generalization ability for
different structural damage categories. The methodology section is structured as follows.
Section 2.1 provides the problem definition of few-shot learning for identifying multi-types
of structural damage with only a limited set of images. Section 2.2 introduces the dual-
stage optimization-based few-shot learning paradigm, which includes an internal semantic
segmentation model optimization process based on an individual meta-task and an external
meta-learning-machine optimization process based on various meta-batches. Section 2.3
presents the internal semantic segmentation model for the proposed DOFSL optimization
algorithm in detail.

2.1. Problem Definition

The entire dataset D containing multi-type structural damage images is defined as follows:

D = {Di} =
{
(Ii,j, Yi,j)

}
, i = 1, . . . , ND, j = 1, . . . , Ni (1)

where Di denotes the image subsets for the ith structural damage category; ND represents
the overall quantity for considered damage categories; Ni represents the number of damage
images included in the ith subsets Di; and (I, Y) denotes a pair of the input image and
associated annotation at the pixel level. Then, D is randomly divided into a training set
Dtrain and a test set Dtest, in which Dtrain is used for model training, while Dtest is used to
evaluate model performance as follows:

Dtrain =
{
(Itrain

i,j , Ytrain
i,j )

}
, i = 1, . . . , Ntrain, j = 1, . . . , Ntrain

i

Dtest =
{
(Itest

i,j , Ytest
i,j )

}
, i = 1, . . . , Ntest, j = 1, . . . , Ntest

i

(2)

where Ntrain and Ntest denote the quantity of damage categories including in training and
test sets and Ntrain

i and Ntest
i denote the image number for the ith damage category within

them. It should be noted that there exist two representative scenarios in the model test
stage: (1) prediction for the known categories in the training set, and (2) prediction for the
completely new categories that have not been seen during the training stage.
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Subsequently, the meta-task T is selected in N-way-K-shot form with K images from
each of N categories from the training set by random sampling with replacement, which is
randomly separated into a support set Strain and a query set Qtrain as follows:

Tk = Strain
k ∪Qtrain

k ⊆ Dtrain, k = 1, . . . , Ntask

Strain
k =

{
(Itrain,S

k,i , Ytrain,S
k,i )

}N×KS

i=1
, Qk =

{
(Itrain,Q

k,i , Ytrain,Q
k,i )

}N×KQ

i=1

(3)

where the support set and the query set for a specific meta-task contain KS and KQ samples,
respectively, i.e., KS + KQ = K; N denotes the included categories for structural damage in
the meta-task Tk; and Ntask denotes the number of meta-tasks within one meta-batch. The
meta-batch Γ can be generated by iteratively absorbing the meta-task as follows:

Γ =
Ntask∪
k=1

Tk (4)

For the test stage, the N-way-K-shot test tasks should also be generated to maintain
consistency with the training stage. The only difference is that the test support set is
randomly sampled from the annotated samples, while the test query set is sequentially
sampled from the predicted samples as follows:

Ttest
k = Stest

k ∪Qtest
k =

{
(Itest,S

k,i , Ytest,S
k,i )

}N×KS

i=1
∪
{
(Itest,Q

k,i , Ytest,Q
k,i )

}N×KQ

i=1
(5)

where the superscript “test” indicates the test stage. Annotated test support images Stest
k are

adopted for obtaining the fine-tuned model, which can be directly adapted to the unseen
query samples in Qtest

k to calculate the model performance for prediction accuracy on the
test query set.

2.2. Dual-Stage Optimization-Based Few-Shot Learning (DOFSL)

The overall schematic of the proposed DOFSL is illustrated in Figure 1. For the single-
stage optimization method of conventional machine learning, the entire training data
are generally fed into the network for gradient descent and parameter optimization. In
contrast, the dual-stage optimization method separately utilizes the support and query sets
for parameter updating in the training tasks of internal and external optimizers, respectively.
The dual-stage training process can be basically summarized as follows:

(1) Multiple meta-tasks are generated by randomly sampling with replacement from the
training set and disordered to form meta-batches for the latter model optimization;

(2) Each task inside a meta-batch is individually fed into the internal semantic segmenta-
tion network, in which the support set is utilized to update model parameters in the
internal optimization stage, and the query set is adopted to compute the prediction
loss by the updated model;

(3) The external optimization stage for the meta-learning machine is performed based on
all the query losses inside a meta-batch, which is concretized as updating the initial
network parameters. Following this manner, the internal semantic segmentation
model learns universal prior knowledge among various damage categories from the
training meta-tasks and transfers it to the test tasks.
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Suppose that the internal semantic segmentation model fθ is defined with learnable
network parameters θ. As shown in Figure 1, DOFSL comprises an internal optimization
process based on an individual meta-task Tn

k and an external optimization process based on

a meta-batch Γn =
{

Tn
1 , . . . , Tn

k , . . . , Tn
Ntask

}
, n = 1, . . . , Nmeta, where Nmeta is the quantity

of meta-batches for the training process. The dual-stage optimization process can be
formulated as shown below.

(1) The internal optimization stage is performed on the individual meta-task Tn
k , in

which each support set is separately utilized to update the internal semantic segmentation
network fθ to obtain a series of updated network parameters θ̂n =

{
θ̂n

1 , . . . , θ̂n
k , . . . , θ̂n

Ntask

}
as follows:

θ̂n
k ← θn − α∇θ Linternal, Linternal =

1
NS

NS

∑
i=1

Lseg[Ytrain,S
i , fθn(Itrain,S

i )] (6)

where θn represents the initial network parameters for the nth meta-batch; θ̂n
k denotes the

optimized network parameters for the kth meta-task in the nth meta-batch; α denotes the
internal learning rate; ∇θ denotes the parameter gradient computation; and Lseg denotes
the segmentation loss for model training.

(2) The external optimization stage is performed on a meta-batch Γn, in which all the
query losses for meta-tasks are calculated based on the updated parameters θ̂n to optimize
the initial parameters θn. Subsequently, the training process of across-task meta-learning
machine is conducted in the external optimization stage via gradient descent considering
all query losses in the meta-batch Γn as follows:

θn+1 ← θn − β∇θ Lexternal, Lexternal =
1

Ntask

Ntask

∑
k=1

1
NQ

NQ

∑
i=1

Lseg[Y
train,Q
i , fθ̂n

k
(Itrain,Q

i )] (7)

where β denotes the external learning rate. After completing all the external optimization
processes for Nmeta meta-batches, the updated model parameters θNmeta are obtained for
the test tasks.

2.3. Internal Model Structure for Semantic Segmentation of Multi-Type Structural Damage

In this study, U-Net [47] is utilized as the internal model for the semantic segmentation
of multi-type structural damage. The overall network structure of the internal semantic
segmentation U-Net model is shown in Figure 2, adopting a classic encoder–decoder
symmetric structure with a U-shape. It introduces multi-level feature concatenation by



Smart Cities 2024, 7 1894

short-cut skip connections between the same stage of encoder and decoder, leading to
clearer edge detection and more refined segmentation granularity of multi-scale structural
damage regions.
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Figure 2. Network structure of internal semantic segmentation U-Net model.

The left-side encoder part serves as the feature extractor of structural damage, which
performs image downsampling operations in succession via four convolutional stages. Each
convolution module contains two 3 × 3 convolutional layers, a ReLU nonlinear activation
layer, and a 2 × 2 max pooling operation perceiving the most significant sub-regions of
convolutional feature maps. The horizontal and vertical size of feature maps is reduced to
1/2, and the number of channels is doubled through each encoder stage.

The right-side decoder part is utilized to accomplish image upsampling and restore the
original resolution through four transposed convolutional stages. Compared with preset
bidirectional interpolation, transposed convolution is regarded as a learnable upsampling
operation with a richer complement of information, thereby leading to higher reliability
and less loss of segmentation accuracy. The plane size transformation between the input
and output feature maps for transposed convolution can be expressed as follows:

Hl+1 = S× (Hl − 1)− Pl+
H − Pl−

H + H′ (8)

where H represents the feature map size (width as the horizontal size or height as the
vertical size); S represents the sliding stride; P represents the zero-padding size, + and −
represent positive and negative paddings in the horizontal or vertical directions; and H′

represents the size of the transposed convolution kernel. Each transposed convolutional
layer first employs a 2 × 2 transposed convolution with a stride of 2 to double the plane
resolution of feature maps, followed by a 3 × 3 convolutional layer for feature fusion. The
upsampling feature maps are then concatenated with the corresponding feature maps in
the same stage of the encoder along the channel direction via skip connection. Then, the
1 × 1 point convolution is adopted to recover the original channel number. The schematic
of the ship connection between the same stage of encoder and decoder is shown in Figure 3.
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It should be noted that utilizing the pre-trained model based on large-scale datasets
and transferring the learned knowledge to downstream tasks can achieve few-shot learn-
ing in another manner, which is an alternative manner and does not conflict with the
proposed dual-stage optimization method. Furthermore, the proposed DOFSL algorithm
is actually model-agnostic, and the internal network can be adjusted based on the task
objective and data quality for an optimal match. When a large number of samples are
available, the foundational meta-learner can be trained to employ internal networks with
large-volume parameters for universal structural damage recognition of both known and
unknown categories.

3. Implementation Details
3.1. Multi-Type Structural Damage Image Dataset

The investigated multi-type structural damage dataset includes four distinct cate-
gories: concrete cracks, steel fatigue cracks, concrete spalling, and steel corrosion. The
collected images are derived from actual civil infrastructure inspections under real-world
scenarios and cut into patches with a consistent resolution of 512 × 512 pixels. The in-
vestigated images were obtained through manual onsite inspection by various inspectors,
and the shooting angles are unknown and different under diverse scenarios. However, a
straightforward principle was utilized during the image capturing process to ensure that
the shooting direction of the collected damage images is approximately perpendicular to
the damage plane. This fundamental operation would thereby reduce image distortions
and quantification errors as far as possible.

Figure 4 presents the partial representative image-label pairs of the investigated multi-
type structural damage dataset. The images, featuring a yellow background and white
foreground corresponding to structural damage, are labeled masks of the original left-sided
images. These labels were manually obtained using the “labelme” tool to achieve pixel-level
annotations. The training set is independently chosen from concrete cracks, steel fatigue
cracks, and concrete spalling comprising 100 images in each category. Conversely, the test
set is composed of four categories (including known categories of concrete cracks, steel
fatigue cracks, and concrete spalling along with a new category of steel corrosion), each
also containing 100 images. Half of them are randomly selected as annotated samples to
form the test support set, while the remaining samples serve as the test query set.
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3.2. Training Hyperparameter Configurations

Hyperparameter settings are critical to the model performance of deep learning net-
works, thereby affecting the training stability of segmentation models for multiple damage
categories, especially few-shot recognition under limited supervision. A series of trials were
first conducted to obtain the preferable learning rate settings for model optimization as
α = 0.01, β = 0.001. Subsequently, the fairness criterion is emphasized for hyperparameter
settings to ensure more reliable and convincing results in the comparative experiments.
The main principle is to keep an approximate equivalence of the total utilization of dam-
age images during the training process between the DOFSL algorithm and the original
U-Net network.

The approximation for the total utilization of images of the proposed DOFSL can be
computed by the following:

NDOFSL = Nstep_e × Nmeta × [Ntask × (Nstep_i × KS + KQ)] (9)

where Nstep_e denotes the quantity of external optimization iterations for the meta-learning
machine and Nstep_i denotes the quantity of internal optimization iterations for the semantic
segmentation network.

The approximation for the total utilization of images of the proposed DOFSL can be
computed by the following:

NO = Nepoch_O × Ntrain
i × Ntrain (10)

where Nepoch_O denotes the total training epochs using all labeled training images.
Following the fairness principle of NO ≈ NDOFSL, the hyperparameter configurations

are determined as follows: Nepoch_O = 20, Ntrain
i = 100, Ntrain = 3, Nstep_e = 1, Nmeta = 100,

Ntask = 2, Nstep_i = 5, KS = 5, KQ = 2.

3.3. Specifications of Training Loss Function and Test Evaluation Metrics

Due to the area imbalance problem existing between the damage regions and the
background, the dice segmentation loss [48] is adopted in the training updating and test
fine-tuning processes as follows:

Lseg =
1
B

B

∑
j=1

1− 2
H×W

∑
i=1

pi × yi

H×W
∑

i=1
pi + yi

(11)

where H and W represent the height and width of image; B represents the batch size; pi
represents the probability that the ith pixel is identified as a damage pixel; and yi represents
the ground-truth label of the ith pixel. According to Equation (11), the value of dice loss
ranges from 0 to 1, thereby simplifying or reducing additional standardization techniques.
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For practical application, a scaling parameter would be employed for observation quantifi-
cation during the image capturing process to obtain the sizes of the damage from image
pixel coordinates to physical parameters.

The Adam algorithm is adopted to update the internal U-Net segmentation model
as follows:

gt =
1

Ns∇θ Lossinternal
mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2

t
m̂t = mt/(1− βt

1), v̂t = vt/(1− βt
2)

θt = θt−1 − αm̂t/(
√

m̂t + ε)

(12)

where mt and vt denote the first-order and second-order moment estimates for the average
loss gradient for the model parameters; m̂t and v̂t denote the gradient moment after
deviation correction; β1 and β2 denote the exponential decay rates for the first-order and
second-order moment estimates with the default values of β1 = 0.9, β2 = 0.999; and ε is a
small value for numerical stability.

Typical evaluation metrics are utilized to evaluate the segmentation performance of
structural damage regions, including mIoU (mean intersection-over-union) and mPA (mean
pixel accuracy), as follows:

mIoU =
1

N + 1

N+1

∑
i=1

pii

∑
j ̸=i

pij + ∑
j ̸=i

pji + pii
, mPA =

1
N + 1

N+1

∑
i=1

pii

∑
j ̸=i

pij
(13)

where N represents the number of pixel categories for foreground damage regions and pij
represents the pixel number of the pixels belonging to the ith class identified as the jth class.

The model training and testing are conducted with the software environment of
PyTorch 1.9.1 and Python 3.8 on a 24 G GPU of NVIDIA RTX A6000.

4. Results and Discussion
4.1. Test Results for Multi-Type Structural Damage Segmentation

This section compares and analyzes the performance of the proposed DOFSL method
and the original semantic segmentation network (U-Net) for multi-type structural damage
segmentation. Several representative segmentation results for concrete cracks, steel fatigue
cracks, and concrete spalling are shown in Figure 5, and the comparative boxplots of
average mIoU and mAP are shown in Figure 6. Compared to the original U-Net, the
proposed DOFSL achieves higher recognition accuracies for multi-type structural damage,
accommodating multi-scale, multi-morphology, diverse damage severities, and complex
backgrounds under few-shot supervised scenarios. The proposed DOFSL method verifies
its stability and robustness by the accurate identification of clear damage edges, resisting
interference from complex noise and damage-like backgrounds, and exhibiting sensitivity
to local, tiny damage regions. The quantitative evaluation results indicate that utilizing
the proposed DOFSL over the original segmentation network U-Net leads to an average
increase in mIoU and mPA of 5.5% and 10.0%, respectively. In summary, test results
demonstrate the effectiveness of the proposed method for the cross-task recognition of
multiple damage categories compared to the internal segmentation model itself.
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4.2. Validation of Generalization Ability for Unseen Structural Damage Category

To demonstrate the generalization capacity for the newly emerging damage category,
the known damage images with annotations (i.e., concrete cracks, steel fatigue cracks, and
concrete spalling) are employed to train the meta-learning machine, which can be fine-
tuned on the images of unseen steel corrosion in the test process. For the new steel corrosion
damage, the test support set consists of 50 annotated images, and the test query set consists
of the remaining 50 images. A few representative segmentation results and comparative
boxplots of the test evaluation measures for the unseen damage of steel corrosion are
illustrated in Figures 7 and 8, respectively. As shown in Figure 7, the comparison results
clearly demonstrate that the proposed method can achieve reasonable perception and
accurate recognition of steel corrosion regions. The quantitative analysis results reveal
that the steel corrosion segmentation achieved an average increase in mIoU and mPA of
21.9% and 6.6%, which further verifies the robustness and generalization capacity of the
DOFSL method for unknown and diverse damage categories. It should be noted that the
corrosion damage is randomly selected as the unseen category to validate the generalization
ability. The concrete cracks, steel fatigue cracks, and concrete spalling can also be arbitrarily
considered as the unseen damage. In these instances, once an unseen category has been
selected, the remaining three categories would be employed to train the model using the
proposed method.
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4.3. Ablation Studies for Individual-Type Damage Segmentation

The adaptability and universality of the proposed method are further considered when
faced with various operational conditions encountered in actual engineering. This section
demonstrates the model performance on individual-type damage as ablation studies (i.e.,
concrete cracks, steel fatigue cracks, and concrete spalling). The corresponding comparative
analyses are conducted with the results obtained from the original segmentation model of
U-Net. The comparative boxplots of test evaluation metrics using the proposed DOFSL
method and original U-Net for distinct damage categories are shown in Figure 9. The
comparative results indicate that the proposed DOFSL achieves the optimal performance on
total datasets with noticeable improvements in both evaluation metrics, and can adapt to an
arbitrary damage class. According to the test results, the proposed DOFSL method exhibits
higher accuracies across all three types of structural damage with significant improvements
in both average mIoU (9.2%, 7.3%, and 4.3%) and mPA (7.8%, 7.6%, and 6.6%) for concrete
cracks, steel fatigue cracks, and concrete spalling, respectively. It also indicates that the
proposed DOFSL can adapt and generalize to any structural damage category.

The variances in mIoU and mPA were larger for the proposed DOFSL compared to
directly training the original U-Net. The main possible reasons are as follows: (1) the small-
scale dataset and scattered data distribution within the same task for a specific damage
type may lead to unstable test results; (2) samples of randomly selected damage images
may exhibit significantly varied features, which result in intra-class diversity with a large
variance; (3) the original U-Net tends to be generally insensitive to damage regions with
only a few samples, in which the recognized damage regions are typically smaller with
stable but much lower test accuracy.
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Table 1 compares the average test evaluation metrics using different numbers of
annotated training samples for individual damage categories. The proposed DOFSL
method always yields optimal model performances with an average mIoU and mPA of
81.5% and 91.5% for concrete cracks, 75.5% and 81.1% for steel fatigue cracks, and 64.8%
and 78.6% for concrete spalling. It is worth highlighting that the proposed DOFSL method
exhibits insensitivity to variations in the number of training samples when compared to
the original U-Net, which could maintain high recognition accuracy even with half of the
training samples. This observation further underscores the effectiveness, stability, and
robustness of the proposed DOFSL method for different damage categories segmentation
with only a few supervised samples.
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Table 1. Comparisons of average test metrics with different numbers of training samples.

Damage
Category Model Ntrain

i Average mIoU Average mPA

Concrete cracks

Original U-Net 100 72.7% 83.7%
Original U-Net 200 77.1% 84.2%

Proposed DOFSL 100 81.4% 91.5%
Proposed DOFSL 200 81.5% 89.7%

Steel fatigue
cracks

Original U-Net 100 68.2% 73.5%
Original U-Net 200 68.5% 81.3%

Proposed DOFSL 100 75.5% 81.1%
Proposed DOFSL 200 73.4% 80.9%

Concrete
spalling

Original U-Net 100 58.0% 68.2%
Original U-Net 200 59.9% 76.3%

Proposed DOFSL 100 62.3% 74.8%
Proposed DOFSL 200 64.8% 78.6%

5. Conclusions

This study proposes a dual-stage optimization-based few-shot learning approach for
multi-type structural damage segmentation using limited pixel-annotated images. The
primary conclusions of this study are provided as follows.

(1) The dual-stage optimization-based few-shot learning framework is established con-
taining the internal network optimization stage based on meta-task and the external
meta-learning-machine optimization based on meta-batch. The mathematical for-
mulation of few-shot learning-based multi-type structural damage segmentation is
formed exclusively relying on limited supervised images.

(2) Comparative experiments are conducted to verify the effectiveness and necessity
of the proposed dual-stage optimization-based few-shot learning method using the
multi-type structural damage image set including concrete cracks, steel fatigue cracks,
concrete spalling, and steel corrosion. The results indicate that compared with the
original image segmentation model, the proposed DOFSL achieves an average increase
in mIoU and mPA of 5.5% and 10.0%, respectively.

(3) Furthermore, ablation studies for individual damage types and new damage cate-
gories are implemented to validate the model stability, generalization capacity, and
universal applicability of the proposed DOFSL method for semantic segmentation
of arbitrary structural damage categories. The quantitative analysis results achieve
a significant improvement in average mIoU and mPA of 21.9% and 6.6% for unseen
damage in the training dataset.

Future studies should be further performed on constructing a universal image segmen-
tation model for any structural damage type via one-shot or zero-shot learning when facing
completely new damage types that have rarely or never appeared in the training dataset.

6. Future Directions

Several possible directions could be further investigated to enhance the performance
and applicability of vision-based structural damage recognition.

(1) Incorporating geometric constraints, such as curvature shapes and boundary condi-
tion features, can promote the robustness and accuracy of image segmentation [49,50].
These constraints can provide supplementary contextual information, facilitating
model training to understand input images, predict structural damage, and avoid
reliance on extensive labeled data.

(2) Network integration and modular design can be adopted to simplify network struc-
tures and reduce network complexity and training difficulty. Separate modules are
designed and individually optimized for specific damage types, and they are subse-
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quently integrated to the initial shared network to process and analyze multi-type
structural damage using ensemble deep convolutional neural network models [51].

(3) Leveraging transfer learning and domain adaptation techniques can significantly
improve the model performance for multi-type damage recognition, particularly when
training samples are limited. The transferable knowledge is adaptively involved and
optimized in specific fields, which enhances the generalization ability under different
application scenes and damage scenarios [52].
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