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Highlights:
What are the main findings?

• Developed a novel methodology for real-time mapping of mobility restrictions using spatial
crowdsourcing and Telegram in data-limited regions.

• Achieved validation rates (67–100%) and precision (73%) for traffic event data collected and
analyzed through this methodology.

What is the implication of the main findings?

• Enhanced traffic management and informed decision-making in regions with limited traditional
data collection infrastructure.

• Provided a scalable model that can be applied to other regions with similar data limitations,
contributing to the field of smart city technologies.

Abstract: This paper introduces a novel methodology for the real-time mapping of mobility restric-
tions, utilizing spatial crowdsourcing and Telegram as a traffic event data source. This approach is
efficient in regions suffering from limitations in traditional data-capturing devices. The methodology
employs ArcGIS Online (AGOL) for data collection, storage, and analysis, and develops a 3W (what,
where, when) model for analyzing mined Arabic text from Telegram. Data quality validation methods,
including spatial clustering, cross-referencing, and ground-truth methods, support the reliability of
this approach. Applied to the Palestinian territory, the proposed methodology ensures the accurate,
timely, and comprehensive mapping of traffic events, including checkpoints, road gates, settler
violence, and traffic congestion. The validation results indicate that using spatial crowdsourcing
to report restrictions yields promising validation rates ranging from 67% to 100%. Additionally,
the developed methodology utilizing Telegram achieves a precision value of 73%. These results
demonstrate that this methodology constitutes a promising solution, enhancing traffic management
and informed decision-making, and providing a scalable model for regions with limited traditional
data collection infrastructure.

Keywords: mobility restrictions; mapping; crowdsourcing; Telegram; NLP; ArcGIS; clustering

1. Introduction

This research aims to develop a methodology for real-time mapping of mobility
restrictions, utilizing spatial crowdsourcing and Telegram as a novel source for traffic
event data. This approach addresses the limitations associated with traditional traffic
event detection methods and Twitter’s uneven popularity, particularly in regions like
the Palestinian territories. The study leverages advancements in Web GIS and natural
language processing (NLP) to provide the accurate, timely, and comprehensive mapping of
mobility restrictions.
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Real-time mapping has emerged in urban emergency events for human safety, such
as health emergency services [1], explosion evacuation [2], flood mapping [3–5], and fire
evacuation [6,7]. In the realm of traffic studies, it has been widely applied for mapping
traffic congestion [8,9] and hazards such as traffic crashes [10] and natural hazards on the
highways [11,12].

Mapping traffic events is crucial to traffic management plans [13,14]. It facilitates the
development of visualization platforms and dashboards to disseminate traffic informa-
tion to the public and transportation authorities [15–17]. This enables travelers to make
informed decisions about their trips, optimizing travel time and distance while allowing
transportation agencies to adjust policies to improve current traffic conditions proactively.

In the traditional approach, mapping traffic events is based on collecting traffic data
using physical sensors and cameras [18–21]. In most cases, these sensors are installed along
major freeways rather than another road network due to the high cost of installation and
maintenance [22]. Therefore, information on traffic events far from the freeway will likely
be missed because of the limited data coverage. In the unstable geopolitical environment,
there may be limited digital sovereignty over capturing devices and excessive regulatory
requirements regarding data coverage, storage, and usage [23]. These factors can impact
the effectiveness of detecting and mapping traffic events.

To overcome these challenges, spatial crowdsourcing (SC) technologies have
emerged [24–26], leveraging people’s proximity to traffic events to gather data [27]. In this
approach, individuals are considered the primary data source, either opportunistically
or participatory. In the opportunistic approach, users are unaware of the data collec-
tion process [9,27], which involves collecting data from mobile device sensors like GPS,
accelerometers, and gyroscopes to map vehicle movements [28]. For example, during
the 2011 East Japan Earthquake, real-time traffic data were collected using GPS sensors
from moving vehicles to create high-fidelity road passage maps to identify blocked roads,
facilitating disaster recovery activities [29].

In the participatory approach, users actively contribute to data collection by capturing
photos or reporting via mobile applications [27]. For example, ref. [1] developed a real-time
health emergency response framework using the participatory approach. They incorporated
the volunteer’s vicinity to an incident to trigger an alert notification to the rescue services
with crucial information such as location co-ordinates, type of incident, and number
of victims.

A recent approach in crowdsourcing leverages social network services such as Twitter,
Facebook, and Telegram to collect traffic data, thanks to data mining techniques and natural
language processing advancements. Social media platforms allow users to post short
messages, images, and videos with timestamps and geolocation information, providing a
cost-effective way to capture traffic information from continuous data streams at any time
and place [30]. Twitter is one of the most dominant platforms used in the literature for
traffic disruption management, including tasks such as traffic event detection [31,32], traffic
congestion prediction [8], traffic flow predictions [33], and managing emergencies [30]. For
the sample, ref. [8] proposed a methodology to geocode traffic-related events collected from
Twitter and create a model for spatial-temporal traffic congestion.

Most Twitter-based studies’ methodology relies on historical datasets retrieved through
keyword-based querying to detect traffic events. This approach generates massive amounts
of traffic event-related tweets suitable for applying prediction models and spatiotemporal
clustering. However, detecting and mapping traffic events in real-time or near real-time
remains challenging. Another area for improvement is Twitter’s uneven popularity in
different countries, especially in the MENA region [34]. For example, in the Palestinian
territories, only 0.7% of the population uses Twitter, amounting to 36,800 users [35].

This study introduces the Telegram social platform as a novel crowdsourcing tool
and source for mapping traffic events, addressing the limitations of Twitter. Telegram
boasts a large user base of around 550 million active monthly users, surpassing Twitter’s
approximately 436 million users [34]. Also, it offers the feature of pure instant messag-
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ing, enabling real-time communication and updates, which makes it an ideal source for
obtaining accurate and timely data.

This study proposes a methodology for mapping mobility restrictions, a novel type of
traffic event in the literature, including checkpoints, road gates, settler violence, and traffic
congestion, using the Palestinian territories as a case study. This approach relies on collect-
ing spatio-temporal data through opportunistic and participatory spatial crowdsourcing.
Opportunistic crowdsourcing is facilitated by mining geosocial data from the Telegram plat-
form, where voluntary citizens and drivers share information about mobility restrictions
as part of their regular social interactions. Participatory crowdsourcing involves actively
engaging users through Survey123 to provide specific, structured reports on mobility re-
strictions. The methodology utilizes ArcGIS Online (AGOL), an advanced web GIS tool, to
gather, store, and analyze crowdsourced data. It also employs natural language processing
(NLP) to analyze Arabic text to detect and identify mobility restriction information.

This study’s main contributions and innovations include introducing Telegram as a
novel data source for traffic event data and addressing the limitations of Twitter’s uneven
popularity. The study also develops a methodology that enables the real-time mapping of
mobility restrictions, a type of traffic event not extensively covered in the literature.

The remainder of this paper is structured as follows: Section 2 provides an overview
of mobility restrictions in the Palestinian territories. Section 3 outlines the materials and
methods used, including detecting and identifying restrictions, processing and analyzing
identified restrictions, and mapping and visualization techniques. Section 4 details the
validation methods employed to ensure data quality. Section 5 presents the results of
applying the proposed methodology and summarizes the outcomes of the validation
methods. Finally, Section 6 discusses the limitations of this study and draws conclusions
based on the findings.

2. Mobility Restrictions in the Palestinian Territories, West Bank (WB)

Mobility restrictions related to the occupation started in the WB around thirty years
ago with checkpoints [36,37] and walls [36]. According to a recent survey conducted
by the Office for the Co-ordination of Humanitarian Affairs (OCHA), there are approxi-
mately 645 permanent or intermittent movement obstacles (Figure 1), including road gates,
checkpoints, earth mounds, roadblocks, road barriers, and other types of barrier [38].

In recent years, a new form of mobility restriction has emerged that poses a safety
threat to travelers in the West Bank. This is known as settler-related violent incidents,
which involve acts of violence performed by Israeli settlers living in Israeli settlements [39].
These violent actions range from road blockages and stone-throwing at vehicles, to physical
attacks on travelers and even the use of live ammunition. According to a report by OCHA,
the year 2022 witnessed an unusual increase in settlers’ violence, with an average of 6.6
injuries occurring daily [40]. Approximately 21% of all settler-related incidents were related
to violence targeting vehicles, drivers, passengers, and road blockages [39].

The impact of these mobility restrictions extends across social, economic, and en-
vironmental aspects, significantly affecting the traveling experience by exposing longer
waiting times and detours and undermining sustainability drivers [41]. Economically, they
have increased costs, reduced employment opportunities, working days, and wages [42].
Socially, these restrictions disrupt the social fabric of Palestinian communities, limiting
cultural exchange [43] and implementing arbitrary rules, which negatively impact daily
life [44,45]. Additionally, incidents of violence perpetrated by settlers against travelers have
further destabilized the prospects for a peaceful and just society [46].

From an environmental standpoint, these mobility restrictions have significantly
increased energy consumption and CO2 emissions. The prolonged travel times caused by
checkpoints can be up to 27 times longer, substantially elevating energy consumption and
CO2 emissions. Estimates indicate a 275% increase in CO2 emissions for gasoline vehicles
and a 358% increase for diesel vehicles [47].
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Most of the existing literature on mobility restrictions in the WB focuses on describing
and evaluating their socioeconomic [43,45,46,48] and environmental impacts [47–49]. More
studies need to be aimed at monitoring and mapping these restrictions. This gap primarily
arises from limited digital sovereignty over the interurban road network in the West Bank,
which prevents traditional traffic monitoring methods from collecting geolocated data,
timestamps, and descriptions of restrictions. The lack of such data has long challenged
travelers, government officials, and transportation authorities. Additionally, mobility
restrictions in this region are influenced by unpredictable geopolitical factors, including
sudden road closures, military checkpoints, and settler violence, which complicate real-time
monitoring and response efforts.

Travelers typically obtain updates on mobility restrictions from social media due to
the availability of smartphones and 2G and 3G networks [50]. According to [51], 74.6%
of WB users use social media to be informed about news and recent updates. Although
there are some initiatives to develop applications for sharing road traffic data, such as
Doroob (https://www.doroob.net/) (accessed on 22 May 2023), these applications have
limitations. Doroob, a location-based app, provides navigation services based on reported
traffic information, like traffic crashes and police activity. However, it is unsuitable for
sharing information on mobility restrictions since it does not explicitly support report-
ing checkpoints or road gates. Additionally, the data collected by such applications are
proprietary and accessible only to approved partners, posing data access challenges for
researchers and government departments [22].

This study represents the first contribution to addressing the Palestinian territories’
long-term mobility challenges. It develops a novel solution that visualizes the mobility re-
striction, including real-time temporal and type-specific information. By leveraging spatial
crowdsourcing, social networks, and web GIS, the study offers a dynamic and interactive
map of mobility restrictions, enabling residents and authorities to make informed decisions
regarding travel routes and schedules. For residents, this means optimizing their daily
commutes and avoiding restricted areas, saving time and reducing stress. Real-time data
can facilitate better traffic management and resource allocation for authorities, ensuring
quick and effective responses to mobility issues.

https://www.doroob.net/


Smart Cities 2024, 7 2576

3. Materials and Methods

The literature on traffic event management inspired the research methodology here,
which is composed of sequential steps, including (i) mobility restriction detection and
identification [21,52,53]; (ii) processing and analysis of the identified restrictions [52,54,55];
and (iii) mapping and visualization [56,57]. While some of the literature extends the process
of managing traffic events to suggest reactive responses, the author covers this dimension
in a separate work [58].

3.1. Data Collection: Mobility Restriction Detection and Identification

Mobility restrictions are seen as constantly changing and unpredictable traffic events [59],
which makes traditional sensor-based capturing methods inefficient and costly. Conse-
quently, this study embraces modern approaches that leverage the collective knowledge
of individuals through crowdsourcing techniques [33,60]. It involves travelers acting as
human sensors [61], voluntarily providing information about mobility restrictions. Addi-
tionally, the study utilizes the Telegram platform as a novel alternative source of mobility
restriction-related data [62].

This study harnesses the capabilities of Web GIS for capturing data from travelers,
along with natural language processing for retrieving data from Telegram in real- and near-
real-time. Data, including restriction descriptions, locations, and times, will be captured
from these sources, as illustrated in Figure 2.
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3.1.1. Data Transmitted from Travelers Using Survey123

This component concerns participatory data transmitted from travelers using ArcGIS
Survey123, a simple and intuitive form-centric data-gathering tool with the power to pub-
lish results in real-time through the Web Feature Service (WFS) in the web GIS. Survey123
contributed to the participatory crowdsourcing approach in various domains, including
health and wellness [63], urban development [64], and tourist planning [65].

Survey123 has superiority over other applications, such as Ushahidi, Maptionnaire,
Open Data Kit, and GIS Cloud, etc. in providing a built-in database, supporting the removal
and editing of single data entries, sorting and filtering, and many supported format options.
Also, Survey123 offers data analysis and provides high visualization options. Survey123
is the only platform offering web and mobile applications that support Android and IOS
devices [66].

Users submitting reports will actively disclose the particular type of mobility restric-
tions. Additionally, they grant the system permission to access their location data obtained
from the GPS sensors on their mobile devices [9,27]. The event timestamp is automatically
populated and is considered the reporting timestamp. Optionally, the users can record a
voice to add more explanation, as illustrated in Figure 3.
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platform.

All reported types of restriction will be stored within AGOL, a certified cloud-based
Software-as-a-Service (SaaS) platform dedicated to creating, sharing, and managing geo-
graphic information via cloud-based servers and infrastructure [67,68]. Reported events
will be stored based on their restriction type (R) as a point-hosted feature layer (Figure 3).
This layer is ideal for housing event information data due to its capacity for the real-time
addition, editing, and deletion of data.

Each hosted feature layer contains tabular attributes, including an autogenerated
report ID, device ID, submission time and date, and attached audio files (if available)
(Figure 3). A device ID is a unique identifier assigned to a smartphone used to collect data.
This ID helps in distinguishing between different devices, and can be useful for tracking,
managing, and analyzing data collection processes. The storage of location data adheres to
the schema of the feature layer and general GIS data storage format. The location attributes
are stored within the geometry of the features rather than as separate attributes in the table.
Consequently, the data’s location will be visually represented on the map without a related
location field. Figure 3 depicts the importation and integration of data from Survey123 into
the ArcGIS Online platform. This ingestion allows the data to be processed, analyzed, and
visualized effectively.

3.1.2. Data Retrieved from Telegram

Telegram is an instant messaging (IM) service where users can send text messages,
photos, videos, stickers, and files of any type. Telegram’s message sender or receiver can
be a user, group, or channel. In addition to user–user messaging, channels and groups
can be used to broadcast messages in Telegram, such as a group where users interested in
the same topic send and receive messages in the group. In contrast, channels are features
that broadcast public messages to many users. A channel usually has one or just a few
administrators who are the only ones who can publish messages in the channel [69].

In this study, retrieving data from Telegram involves using public groups where
discussions and reports on mobility restrictions occur. The selection methodology of the
target source is based on the following: (i) high participants and interaction; (ii) commonly
known for providing reliable and up-to-date mobility restrictions and traffic data; and
(iii) covering broad geographic areas to have an inclusive and comprehensive mapping of
mobility restrictions.

Once these sources are identified, text data will be retrieved using the Telegram API,
which interacts programmatically with the Telegram messaging platform [62,70]. The
purpose is to access the most recent text data posted within the last 24 h, allowing for
near-real-time information updates. For this research, a Telegram account (https://core.
telegram.org/#getting-started) (accessed on 11 July 2023) was created (Figure 4), and an

https://core.telegram.org/#getting-started
https://core.telegram.org/#getting-started
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application was developed in Python using the Telethon library [71], which facilitates
integration with the Telegram API.
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The Telethon library allows the creation of a client to establish a connection between
Python and Telegram environments. The purpose of this connection is to keep the client
running as long as the connection is not interrupted. As we aim to capture text messages
in real-time, we chose to keep the client running constantly. Next, the client uses the
Telethon library to obtain more detailed information, including text messages, dates, and
times; this information will be stored in the Pandas Data Frame format, as illustrated in
Figure 4. This DataFrame format allows the organization and manipulation of the data
efficiently using Pandas’ functionalities for analysis or further processing within a Python
environment. Each row in the DataFrame represents a message, with columns indicating
different attributes of the message, such as “text” and “date”. The “text” column contains
the actual text of the messages, while the “date” column stores the timestamps of the
messages (Figure 4).

3.2. Data Processing and Analysis

This phase focuses on processing the collected data, transmitted by travelers and
retrieved from Telegram. The aim is to validate the data and eliminate noise, such as
duplicate entries, transmission errors, and incomplete data. Additionally, this phase
involves analyzing the processed data to extract useful spatio-temporal information about
the mobility restrictions in real-time, preparing it for subsequent mapping and visualization.

The collected data from travelers will be processed and analyzed using ArcGIS On-
line’s capabilities. This involves applying filtering rules to the data stored in the hosted
feature layers based on their attributes. For example, only reports containing near-real-time
data (within the past 24 h) will be retained to ensure the most recent restriction updates are
presented. Additionally, Survey123 forms were configured to capture and store metadata,
such as time zone information, upon survey submission. While the time zone does not
provide precise location details, it can indicate a general geographic region (e.g., a country
or a large area within a country). As a result, reports from device IDs outside the designated
study area will be excluded.

The methodology for processing and analyzing Telegram data is composed of sequen-
tial steps. These steps aim to mine the shared text to reveal valuable information related
to mobility restrictions, including their types, locations, and times of occurrence. Figure 5
shows the general methodology followed to process and analyze Telegram data using
natural language processing (NLP).
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3.2.1. Telegram Data Processing

This phase focuses on processing retrieved messages in Arabic using Natural Lan-
guage Processing (NLP). Over the last decade, significant attention has been devoted to
NLP research concerning the Arabic language and its various dialects. Numerous stud-
ies have explored diverse aspects of processing this language, including morphological
analysis, resource development, and machine translation [72]. Most of these studies have
primarily focused on Modern Standard Arabic (MSA), which is utilized for formal writ-
ing and conversations, as well as Arabic dialects (AD), which are employed in everyday
communication and vary among different communities (Alkhatib 2019) [32].

Various Arabic processing tools, such as Farasa [73], MADAMIRA [74], and YAMAMA,
are commonly used for processing MSA. These tools offer modules for a wide array of
processing and analysis tasks, encompassing tokenization, lemmatization, part-of-speech
tagging, named entity recognition, phrase chunking, etc.

However, this study focuses on the Palestinian dialect utilized informally in Telegram
chat groups, where the availability of natural language processing tools for this specific
dialect is limited. The Shami corpus introduced by [75] encompasses data from the four
dialects spoken in Palestine, Jordan, Lebanon, and Syria, containing 117,805 sentences
and [76] presented Curras, a morphologically annotated corpus of the Palestinian Arabic
dialect with over 56,000 tokens and rich morphological and lexical features. Unfortunately,
these available tools do not offer public access to their modules or efficiently address
tokenization tasks [72].

Consequently, this study utilizes the Natural Language Processing Toolkit (NLTK)
modules for Arabic text processing. The NLTK is a prominent Python package explicitly
designed for working with human language data [31]. This phase involves developing a text
processing function that performs the following tasks: (i) removing numbers and special
characters, as they do not provide meaningful information for tasks like regular expression
and keyword extraction; (ii) tokenizing the text into individual words; and (iii) eliminating
stopwords from the list using Arabic stopwords. Figure 6 shows these steps.
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3.2.2. Telegram Data Analysis

This phase delves into further textual analysis to extract valuable information from
the processed Telegram text. The Telegram data undergo analysis utilizing the “3W”
communication model to accomplish this. It captures the spatio-temporal event data
through three main questions (what, where, when) from Telegram data. The first use of a
communication model was presented in Lasswell’s “5W” model in 1948, which depends
on the main five questions “Who (says) What (to) Whom (in) Which channel (with) What
effect [77]. The “5W” communication model in crowdsourcing has been customized to meet
real-time data needs. For example, (Z. Xu et al., 2020) [30] used the communication model
“5W” methodology: what, where, when, who, and why to describe the urban emergency
event from social media.

The “5W” model of (Z. Xu et al., 2020) [30] obtains spatial and temporal information
from social media and investigates the actors and reasons causing the emergency event.
However, this model has some limitations, for example, the methodology was exclusively
applied to the Weibo Chinese application. The Weibo application provides prepared real-
time information for urban events and localized data, which is not true in most social
media platforms. Also, the data of the (Who) element could undermine the privacy of the
system’s users.

Compared to the 5W model of (Z. Xu et al., 2020) [30], the 3W model presented in
this study preserves user privacy by adopting only three questions (What, Where, When),
which are sufficient to provide accurate actual-time data about mobility restrictions and
traffic conditions using Telegram data without revealing the identity of the users and the
reasons behind that event.

The study employs the Regular Expressions (regex or regexp) module to facilitate this
analysis. This module is well suited for searching, matching, and manipulating text strings
according to specific rules and patterns [30,78,79]. Specifically, in this research, the regex
module is employed to search for patterns in the Arabic text, enabling the identification of
restriction names and their associated statuses. The methodology of analyzing text using
the 3W model is illustrated in Figure 7.
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Figure 7. Methodology of analyzing text using the 3W model.

This process involves creating a set of keywords derived from frequently used words
that express mobility restriction-related statuses. Subsequently, a keyword list is compiled,
encompassing the most commonly utilized words to describe status and their synonymous
counterparts. These words encompass Modern Standard Arabic (MSA) and Dialectal
Arabic (DA), as illustrated in Table 1. For example, the word “open” manifests in messages
through various synonyms combining MSA and DA, such as “salik” and “salkeh” (both
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denoting “open” in Palestinian DA), and “maftouh”, which signifies “open” in MSA. The
keywords list will undergo continuous updates and enrichment with new words as they
are encountered and utilized in the data.

Table 1. Keywords for identifying restriction status in Palestinian Dialect (DA) and Modern Standard
Arabic (MSA).

Keywords of
Restriction Status Palestinian DA MSA

Open ½ËA� Salik hñ
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Violent incidents �
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After creating the keywords, a regular expression is employed to detect patterns in
the Arabic text. In this phase, the code runs a loop over all the listed rows in the processed
text, searching for patterns within the text data. When a match is found, it captures the
restriction name and its associated status. The code identifies all the names corresponding
to the previously matched keywords for status. For example, if the sentence is “Huwara
checkpoint is closed”, which is written in Arabic as “ �

�Ê
	
ªÓ

�
èP@ñk 	Qk. Ag”, the code will capture

the status that matches the keyword “closed” and identify “Huwara checkpoint” as the
restriction name.

A dictionary stores the latest status for each unique restriction name. The first matching
group captures the restriction name, allowing for the inclusion of one, two, or three words as
the restriction name. On the other hand, the second matching group captures the restriction
status. The extracted restriction names are checked for repetition and duplication, and
the timestamps are compared to ensure that the most recent timestamps are added to
the dictionary. Based on the data in the dictionary, three lists are created: “checkpoints”,
“statuses”, and “times”.

3.2.3. Geocoding Mobility Restrictions Mined from Telegram Data

This phase aims to convert human-readable locations into latitude and longitude
co-ordinates for the previously observed mobility restrictions. This transformation visually
maps these restrictions and facilitates efficient spatial analysis [80]. The geocoding process
utilizes the Nominatim 4.4.1 geocoding service, an open-source software developed by
the OpenStreetMap (OSM) project. Nominatim is available in the geopy Python package
and supports several popular geocoding services. It leverages data from OSM to carry out
geocoding tasks. A study by [81] compared Nominatim with other geocoding services and
found that Nominatim’s geocoding service excels in identifying more locations. Addition-
ally, Nominatim is widely recognized and commonly used for geocoding services [81].

However, it is essential to note that, due to limitations in data availability within
geocoding services, specific geographic locations in the Palestinian territories, particularly
checkpoints and road gates, may not be found in the Nominatim database. To address this
challenge, the methodology leverages the ability to add and edit points in OSM, allowing
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users to include locations with attributes such as names and types. Therefore, a list of
permanent and temporary checkpoints and road gates has been added to OSM so that
Nominatim services can identify them.

3.3. Mapping and Visualizing Mobility Restrictions to the End-Users

This phase concerns visualizing (i) the analyzed Survey123 data stored in the hosted
feature layer; and (ii) geocoded mobility restrictions using their longitude and latitude data.

i. Mapping mobility restrictions transmitted from travelers

This section concerns disseminating and visualizing the processed data stored in the
hosted feature layer (R) for public use. This phase will enable users to access information
about mobility restrictions and adjust their travel plans accordingly. The hosted feature
service configuration is required for sharing the reported data with the public. It includes
configuring the accessibility of the users to the data by assigning the feature service to
support public data collection, which enables users to add or modify their data.

The real-time mapping service will be published as a reporting widget on a web
mobile application. To ensure the application is intuitive and user-friendly, a User-Centered
Design (UCD) approach was employed [82,83]. The UCD focuses on understanding users’
needs, goals, and frustrations, guiding the design process to create an easy-to-use interface.
Using techniques like the Scenario Persona method, we gathered insights into potential
users’ behaviors and preferences, which informed the design of an efficient and navigable
interface. We conducted a Likert scale survey to collect data on users’ profiles, commuting
habits, and mobility needs, and used scenario-based questions to assess their preferences
and willingness to interact with the app’s features [84].

The published data include information about the location, time, descriptive audio,
and type of mobility restriction or traffic congestion. Users can access this information
through a mobile application, which displays an interactive map with icons representing
reported incidents. Users can access detailed information about the incident by clicking on
these icons.

ii Mapping mobility restrictions mined from Telegram data

This methodology includes the following steps, as illustrated in Figure 8: (i) using
ArcGIS Python API to interact with AGOL; (ii) establishing a connection with AGOL using
user credentials through the GIS module; (iii) data transformation—the observed mobility
restrictions will be transformed into a dictionary containing “geometry” information (lat-
itude and longitude co-ordinates with the Palestine1923 projection, a projection tailored
explicitly to the Palestinian context). This choice ensures that geographic features are accu-
rately positioned within the Palestinian territories. It will also include “attributes” data,
including the checkpoint name, status, and timestamp; (iv) creating a temporary Feature
Layer, which acts as a container for the geospatial data, allowing them to be displayed and
manipulated within the SRMS platform; and (v) adding the temporary feature layer to the
web map as an operational layer to make the geospatial data visible and interactive within
the web map.
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4. Data Quality Validation Methods

This section focuses on ensuring the quality and reliability of data received from
individuals and mined from Telegram. The accurate mapping of mobility restrictions
is crucial for making informed decisions [9]. The validation methods for crowdsourced
data vary based on the reported mobility restriction type. For example, checkpoints, road
gates, and acts of settler violence will be validated using third-party ground-truth data, as
their spatial references are available. Traffic congestion reports, on the other hand, will be
validated using spatial clustering methods.

Telegram data are submitted to two validation methods: (i) the cross-reference method,
which compares the performance of the developed 3W model with information shared
on the Telegram group, and (ii) ground-truth data, which evaluate the accuracy of the
developed mapping service against the spatial distribution of the mobility restrictions.
Figure 9 presents the methods for validating crowdsourced and Telegram data.
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4.1. Validation of Crowdsourcing Data

The literature presents various approaches to ensure data quality in spatial crowdsourc-
ing. A standard method involves user incentive mechanisms, which motivate participants
to contribute accurate and reliable data [9,85]. Another approach is the redundancy-based
strategy, which aggregates data from multiple users, considering the most redundant data



Smart Cities 2024, 7 2584

to be high quality [86]. Additionally, some researchers validate crowdsourced data through
an institutional honest third party [87] or by using data from the surrounding environment,
known as the ground-truth method [88]. Another innovative approach involves spatio-
temporal event clustering, which utilizes unsupervised machine-learning techniques to
group large datasets based on spatial and temporal similarities [89].

Given the type of data and format used in this research, where each reported event is
stored as a triplet consisting of longitude, latitude, and timestamp, and due to the limitation
of the volume of the reported data, this research harnesses two methods for ensuring data
quality, including (i) the spatial event clustering approach. This method clusters reported
traffic congestion events based on their spatial proximity. Future work can enhance this
approach by incorporating temporal parameters into the clustering analysis; and (ii) the
ground-truth method, which uses a third-party database to check the reported checkpoints,
road gates, and settlers’ violence data [90]. Both methods were implemented using the
geoprocessing capabilities of ArcGIS Pro 3.1.

For the spatial clustering of traffic congestion reports, the HDBSCAN (Hierarchical
Density-Based Spatial Clustering of Applications with Noise) algorithm was employed [91].
This method constructs a hierarchy of clusters by varying the density threshold, starting
from a very high density (leading to small, tight clusters) to a very low density (leading to
larger, more inclusive clusters) [92]. To identify the prominent clusters from this hierarchy,
a stability value of a cluster (C) is established. It indicates how stable a cluster is over a
range of density thresholds. The stability value is calculated by summing the cluster’s
lifetime (i.e., the range of density levels over which the cluster persists) weighted by the
number of points in the cluster. The stability for a cluster can be computed, as shown in
Equation (1).

Stability (C) = ∑
t∈T

(λt−1 − λt)·|c t| (1)

where λt and λt−1 are consecutive density levels, and C is the size of the cluster at density
level t.

For the ground-truth method, the spatial distribution of fixed and temporary check-
points, road gates, and settlement polygons served as the spatial reference for validating
checkpoints, road gates, and settler violence reports. The validation process began by
creating a buffer zone around each referencing mobility restriction and Israeli settlements
where the exposure to violence from settlers is high. The purpose of this buffer is to
define an acceptable spatial distance within which each report should fall to be consid-
ered valid [93]. This distance depends on various factors, including stopping distance
and visibility conditions influencing drivers’ or passengers’ perceptions. In this study,
the buffer distance was set at 250 m from the mobility restrictions and settlements. It is
worth mentioning that checkpoints and road gates are physical structures with an area of
influence extending beyond their exact co-ordinates. A 250-m buffer represents the zone
within which a checkpoint or road gate affects mobility and security. This distance accounts
for the operational impact radius where people are likely to report such structures. As
a result, reports located within this buffer zone or touching its boundaries were deemed
validated reports.

4.2. Validation of Telegram Data

Telegram data were validated in two phases. The first phase involves validating the
3W model using a cross-reference method. A sample of Telegram messages from a common
group dedicated to sharing mobility restriction information was used. The test dataset
included messages with checkpoint names, statuses, and timestamps. The second phase
concerned validating the geocoding service. This phase was conducted using ground-truth
data. The spatial distribution of checkpoints, road gates, Palestinian built-up areas, and
Israeli settlements was used to verify the accuracy of the geocoded events.
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5. Results and Discussion

This section presents the results of applying the methodology of mapping the mobility
restrictions using crowdsourced and Telegram data.

5.1. Mapping of Mobility Restriction Using Crowdsourced Data

Mapping mobility restrictions involved deploying a Survey123 form embedded in a
customized web app widget created using AGOL, as shown in Figure 10. This form was
distributed to a group of daily commuters experiencing various mobility restrictions over
two weeks, resulting in 35 reports related to checkpoints, settlement violence, road gates,
and traffic congestion. The distribution of these reports is visualized in Figure 11.
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Figure 10. Application of mapping mobility restrictions using Survey123; (a) visual presentation of
checkpoints and traffic congestion events on the map; (b) Survey123 checkpoint reporting page with
mandatory filed marked with asterisk; (c) detailed information on the reported checkpoint.
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The validation of these reports involved the application of two data quality assurance
methods: the spatial clustering method (HDBSCAN) and the ground-truth method. The
HDBSCAN method was used for reports related to traffic congestion, while the ground-
truth method was applied to reports associated with checkpoints, road gates, and settler
violence. Both methods were implemented using the geoprocessing capabilities of ArcGIS
Pro 3.1.

Figure 12 presents the results of the HDBSCAN application in the traffic congestion
reports. It illustrates the stability value for the observed clusters. The results show that the
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reports were created in two main clusters and one noise. The first cluster, characterized by
a moderate stability value of 0.64, comprised ten submitted reports, accounting for 67% of
the total reports. The second cluster, with a stability value of 0.11, consisted of four reports,
representing 27% of the submitted reports. The remaining 6% of the submitted reports
were classified as noise with 0 stability value.
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Figure 12. Results of applying HDBSCAN on the traffic congestion reports, showing the distribution
of stability values and the visualization of two clusters along with one noise cluster.

For the ground-truth method, a buffer zone with 250 m around temporary and fixed
checkpoints, road gates, and Israeli settlements was created, as depicted in Figure 13. The
analysis results for the submitted reports reveal that (i) for checkpoint reports, 11 out of
13 reports were located within the accepted buffer distance, representing an 85% validation
rate; (ii) for road gate reports, all submitted reports were located within the accepted buffer
distance, resulting in a 100% validation rate; and (iii) regarding settler violence reports,
only one out of four reports was located within the buffer distance, accounting for a 25%
validation rate. Figure 13 presents the results of the validation method for checkpoint and
road gate reports.
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These findings highlight the efficacy of using spatial crowdsourcing for reporting and
mapping mobility restrictions, particularly checkpoints, road gates, and traffic congestion.
However, they show a challenge in accurately positioning the settler violence reports, which
may be attributed to the nature of these restrictions, as settlers typically have a mobile
nature, which differs from the fixed and stationary nature of road gates or checkpoints.
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This mobility can make it more challenging to capture and validate reports related to settler
violence accurately. Future efforts should focus on developing more advanced methods for
tracking and validating mobile restrictions.

5.2. Mapping Mobility Restriction Using Telegram Data

Mapping mobility restrictions using Telegram data involves using the Telegram Public
group “Ahwaltareq” [94] to share mobility restrictions and road information. With approxi-
mately 220,000 members, this group provides instant updates around the clock, seven days
a week. Additionally, it covers updates on restrictions distributed throughout the West
Bank region, making it a valuable data source.

This phase was applied by developing a comprehensive script using Python 3.11. It
includes (i) message retrieving, (ii) text processing, (iii) a 3W analysis model, (iv) geocoding
the extracted restrictions, and (v) the mapping of geocoded restrictions. The author can
find the script on GitHub in the repository [76].

5.2.1. Validation of 3W Model

The performance of the developed script was validated using the cross-referencing
method by preparing a test dataset, which included a sample of Telegram messages re-
trieved for the period 12:15–13:15 on 15 May 2023. This dataset comprised 13 messages
detailing various restrictions names, statuses, and timestamps, as depicted in Figure 14.
Upon conducting the 3W model analysis, the script successfully identified eight restrictions,
statuses, and timestamps, reflecting the true positive detections. However, it incorrectly
identified three restrictions that did not match the ground-truth dataset, resulting in a
precision ratio of 72.7%. Additionally, the script failed to detect four values from the test
dataset, leading to a recall of 66.6% and an F1 score of 69.5%.
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sharing road traffic information, alongside the outcomes of the 3W model analysis.

Achieving a precision ratio of 72.7% indicates that the majority of the restrictions
identified by the script were accurate when compared to the reference dataset. However, the
script’s recall rate of 66.6% indicates it missed detecting some restrictions in the test dataset.
This implies that while the script performed well in identifying relevant information,
there was room for improvement in capturing all events mentioned, potentially due to
variations in how information was presented in Telegram messages or nuances in language
processing. The overall F1 score of 69.5%, which balances precision and recall, provides a
comprehensive measure of the script’s performance. It indicates that the script achieved
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a reasonable balance between correctly identifying relevant restrictions and minimizing
false positives.

5.2.2. Validation of Restrictions Geocoding

The primary objective of this phase was to verify whether the geographical co-
ordinates (latitude and longitude) extracted from Telegram messages accurately corre-
sponded to the ground-truth data. This validation was performed using the ground-truth
method, leveraging the known spatial distribution of Palestinian communities, Israeli
settlements, and both temporary and fixed mobility restrictions in the West Bank. AGOL
was utilized to map these reference elements, as illustrated in Figure 15. This step ensures
the reliability and accuracy of the geocoding process, confirming that the mapped locations
reflect the actual positions of the reported locations and mobility restrictions.
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To verify the geocoded locations against their spatial references, a Point-In-Polygon
(PIP) method was employed. This method checks whether the geocoded points, extracted
from Telegram messages, fell within the correct built-up areas represented as polygons. For
example, a traffic congestion report extracted from a Telegram message about the Awarta
community was geocoded and then validated using the PIP method, ensuring that the
point was accurately located within the Awarta community, as shown in Figure 16.
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6. Conclusions

This paper presented an innovative methodology for the real-time mapping of mobility
restrictions using spatial crowdsourcing and Telegram, specifically targeting regions where
traditional data collection methods fall short. By integrating ArcGIS Online and natural
language processing (NLP), the proposed methodology offered a reliable and efficient
solution for mapping traffic events, including checkpoints, road gates, settler violence,
and congestion, as demonstrated through a case study in the Palestinian territories. The
methodology employed ArcGIS Online for comprehensive data collection, storage, and
analysis, and NLP for creating the innovative 3W model (what, where, when) to analyze
Arabic text mined from Telegram. The robustness and reliability of this approach were
validated through spatial clustering, cross-referencing, and ground-truth methods. The
validation results indicate that using spatial crowdsourcing to report restrictions yields
promising validation rates ranging from 67% to 100%. Additionally, the developed method-
ology utilizing Telegram achieves a precision value of 73%. These results confirm the
potential of the proposed method to enhance traffic management and enable residents to
optimize their daily commutes.

This research faced limitations related to the volume of collected data. Due to time
constraints, gathering a substantial number of reports took a lot of work, which would
have been beneficial for applying temporal-spatial clustering. Another challenge was
the analysis model for the Arabic language, which is influenced by the dialects used
in the study area. Any reuse of the 3W model in this study needs to be customized
and tailored to the local dialects. Future work will integrate temporal aspects into the
clustering analysis to validate the received reports. Additionally, efforts will focus on
developing a methodology for validating mobile restrictions beyond using clustering
methods. Additionally, with a sufficient volume of data, we plan to assess the impact of
mapping mobility restrictions on people’s mobility and their related socioeconomic and
environmental aspects. Through continued collaboration with local and governmental
bodies, and by incorporating user feedback, we aim to refine this solution to provide more
accurate and actionable insights into mobility restrictions, ultimately improving mobility
and quality of life for affected populations.
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