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Highlights:

What are the main findings?
• The Urbanite project developed a unified open-source simulation platform applied to four diverse

European cities, effectively addressing specific mobility challenges in each city.
• The integration of simulation, advanced visualizations, decision support tools, and machine

learning modules significantly enhances the decision-making process in urban planning.
What is the implication of the main finding?
• Policymakers can utilize these AI-driven tools to make more informed, data-supported decisions,

improving urban mobility and sustainability.
• The methodology can be adapted to other cities, demonstrating the scalability and flexibility of

the Urbanite platform in various urban settings.

Abstract: To address the growing need for advanced tools that enable urban policymakers to conduct
comprehensive cost-benefit analyses of traffic management changes, the Urbanite H2020 project
has developed innovative artificial intelligence methods. Among them is a robust decision support
system that assists policymakers in evaluating and selecting optimal urban mobility planning mod-
ifications by combining objective and subjective criteria. Utilising open-source microscopic traffic
simulation tools, accurate digital models (or “digital twins”) of four pilot cities—Bilbao, Amsterdam,
Helsinki, and Messina—were created, each addressing unique mobility challenges. These challenges
include reducing private vehicle access in Bilbao’s city center, analysing the impact of increased
bicycle traffic and population growth in Amsterdam, constructing a mobility-enhancing tunnel in
Helsinki, and improving public transport connectivity in Messina. The research introduces five
key innovations: the application of a consistent open-source simulation platform across diverse
urban environments, addressing integration and consistency challenges; the pioneering use of Dexi
for advanced decision support in smart cities; the implementation of advanced visualisations; and
the integration of the machine learning tool, Orange, with a user-friendly GUI interface. These
innovations collectively make complex data analysis accessible to non-technical users. By applying
multi-label machine learning techniques, the decision-making process is accelerated by three orders
of magnitude, significantly enhancing urban planning efficiency. The Urbanite project’s findings
offer valuable insights into both anticipated and unexpected outcomes of mobility interventions,
presenting a scalable, open-source AI-based framework for urban decision-makers worldwide.

Keywords: smart city; simulation; mobility policy; decision support; machine learning

1. Introduction
1.1. Motivation

The rapid pace of urbanisation poses complex challenges for contemporary urban
centers. In response, the smart city concept [1–4] has emerged, harnessing digital technolo-
gies and innovative methodologies to transform urban management. These advancements
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enable cities to overcome traditional limitations, fostering greater sustainability, environ-
mental stewardship, resilience, and livability. Central to this urban evolution is the “digital
twin” concept [5,6], which utilises digital technologies to create dynamic, real-time rep-
resentations of a city’s physical and social infrastructures. Digital twins provide urban
planners and policymakers with critical insights, allowing them to anticipate challenges
and develop effective solutions to improve the quality of urban life.

Artificial intelligence (AI) [7] plays a pivotal role in addressing smart city challenges,
leveraging subfields such as machine learning (ML) and artificial general intelligence (AGI).
AI models are invaluable for analysing complex urban data and identifying patterns that
may elude human analysts. This analytical capability generates predictive insights into
urban trends, assesses policies’ impact, and informs infrastructure optimisation recom-
mendations. Additionally, incorporating AI is crucial for thoroughly evaluating the broad
effects of changes within urban environments. Whether introducing new infrastructure,
redesigning transportation systems, or adopting innovative policies, these changes must be
carefully evaluated to ensure their effectiveness and alignment with the city’s goals and
values [1,8]. These innovative AI-based approaches enhance traffic management efficiency
and contribute to broader smart city development by enabling a more holistic approach to
urban planning [9].

These technologies, including machine learning (ML)—a subset of AI that focuses
on building systems capable of learning from and making decisions based on data—have
become essential tools for evaluating and selecting the most effective urban mobility
strategies [10,11]. By processing vast amounts of real-time data, these AI-driven systems
provide dynamic, evidence-based recommendations that empower city planners to optimise
traffic flow, reduce congestion, and enhance overall urban efficiency. Projects like Urbanite
have been at the forefront of this transformation, incorporating AI technologies to support
decision-making processes and ensure that urban traffic planning remains responsive and
adaptive to the evolving needs of modern cities.

In addition to AI and ML, the development of Generative Pre-trained Transformers
(GPTs) has introduced a new dimension to artificial intelligence. GPT models, a type
of AI capable of generating human-like text, have demonstrated remarkable capabilities
in natural language processing, excelling in tasks such as translation, summarising, and
creative writing. The implications of these models extend beyond technical applications,
prompting comprehensive analyses of AI consciousness and the potential of models like
ChatGPT to pass the Turing Test [12].

These emerging technologies offer advanced solutions to smart-city challenges. For in-
stance, constructing a new tunnel might reduce pollution, but it could also introduce other
benefits or drawbacks. Decision-makers often face a multitude of options, each accompa-
nied by its own set of advantages and disadvantages. This complexity arises from the need
to consider a wide range of factors, including economic feasibility, environmental sustain-
ability, social equity, and community well-being [3,4]. Effective solutions must address both
objective criteria, such as cost-effectiveness and efficiency, and subjective considerations,
including public opinion, cultural values, and stakeholder engagement [6]. Tackling urban-
isation challenges requires a careful balance between quantitative data-driven analysis and
qualitative insights that are socially inclusive, environmentally sustainable, and culturally
relevant [13].

Urban traffic management has long employed various tools and methodologies to
optimise traffic flow and minimise congestion. Traditional approaches include traffic
signal control systems, adaptive traffic management systems (ATMSs), and real-time traffic
information services. These systems typically rely on sensor networks, traffic cameras, and
GPS data to monitor conditions and make real-time adjustments. For example, adaptive
traffic signal systems can modify light timings based on current traffic patterns to improve
flow efficiency. Additionally, predictive traffic modelling is widely used, allowing cities to
anticipate congestion based on historical data and current trends.
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While traditional methods have been somewhat effective, they often struggle to meet
the increasingly complex demands of modern urban environments. Challenges such as
unpredictable traffic patterns, the integration of new modes of transportation, and the
need to evaluate potential city modifications, particularly when considering cultural and
societal impacts, highlight the limitations of these conventional approaches. The Urbanite
project addresses these gaps by enhancing existing traffic management tools through the
integration of advanced AI-driven decision support systems and ML algorithms. These
technologies enable more accurate predictions and adaptive responses to traffic conditions,
facilitating more dynamic and flexible management strategies better suited to today’s cities’
evolving needs.

1.2. Contribution

This paper is grounded in the findings and methodologies developed through the
Urbanite H2020 project, a three-year initiative involving numerous contributors (for more
details, visit the Urbanite project website: https://urbanite-project.eu, (accessed on 11
September 2024)). The project focuses on leveraging disruptive technologies to enhance
urban decision-making processes.

The Urbanite project’s foundation lies in its open-source simulation tools incorporating
real-time data to model various traffic scenarios. These tools are enhanced with AI and
ML modules, offering decision-makers actionable insights to manage traffic proactively.
Moreover, Urbanite’s approach is designed to engage local stakeholders in decision-making,
ensuring that the solutions are technologically advanced, contextually relevant, and so-
cially inclusive.

Through these innovations, Urbanite addresses the limitations of traditional traffic
management systems. It sets a new standard for urban mobility solutions, contributing to
the broader goals of sustainable and innovative city development based on subjective and
objective evaluations. This paper introduces several innovations encapsulated in the five
integrated modules of the Urbanite platform. Each of these modules represents a novel
approach in a specific domain:

1. A unified, upgraded, open-source simulator tested on four diverse cities: The imple-
mentation of a unified open-source simulator to model realistic urban environments
in four major cities—Bilbao, Amsterdam, Helsinki, and Messina—represents a novel
achievement in urban planning, to the best of our knowledge.

2. An advanced decision support and recommendation module with the Dexi tool: This
paper presents the first application of DEXi for several smart cities, demonstrating its
capability to deliver prototype decision support tailored to the unique needs of four
different urban environments.

3. Advanced visualisations for comprehensive policy assessment: In addition to existing
visualisation methods, we introduce advanced visualisations that support up to a five-
dimensional presentation of various scenarios based on policy impacts, significantly
enhancing the depth and clarity of policy assessment.

4. An ML module with the Orange tool: The integration of simulation outputs with
the Orange machine learning tool [14] enables city teams to harness advanced ML
capabilities without the need for traditional programming, thereby making these
powerful tools accessible to a broader audience.

5. An advanced multi-label ML module: This module, besides enabling multi-label
analysis, significantly accelerates the decision-making process, reducing the time
required to simulate novel policies by three orders of magnitude, enabling policy
evaluations to be performed in seconds instead of hours [15,16].

The Urbanite approach was evaluated on four cities: Bilbao, Amsterdam, Helsinki, and
Messina, each with unique requirements identified by the Urbanite city team. The success
of this software platform in these diverse scenarios suggests its potential applicability to
other European cities. By encouraging collaboration, melding human insights with AI
technologies, and integrating a simulation tool, city-specific subjective key performance

https://urbanite-project.eu
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indicators (KPIs), a recommendation engine, and ML techniques, this project aspires to
enrich the evolution of European cities into intelligent, future-prepared urban centres.

The remainder of this paper is organised as follows. Section 2 reviews and analyses
the related work. Section 3 provides an overall description of the proposed system. In this
section, the architecture and each of the modules are described. Sample results of the data
collected with the proposed system are presented in Section 4 and further discussed in
Section 5. Section 6 concludes with a plan for future work.

2. Literature Review

Smart-city initiatives are part of a transformative era in urban development, integrating
technology to foster intelligent, efficient, and sustainable urban ecosystems. Urbanite, a
pioneering project at the forefront of these initiatives, focuses on revolutionising mobility
policy and decision-making processes in European cities through disruptive technologies.

Smart cities signify a shift in urban development, using technology for intelligent,
efficient, and sustainable ecosystems. These initiatives address challenges like traffic
congestion and sustainability and enhance urban life. The concept’s evolution, seen in
projects like Songdo and the Barcelona Smart City, integrates digital technologies for
comprehensive urban-living improvements [17,18]. Key concepts include the Internet of
Things (IoT) and sensor networks for real-time data on traffic, air quality, and energy
consumption [19], decision support systems and data analytics for informed choices [20,21],
urban-mobility solutions for sustainable transport, simulation tools for policy impact
assessments, and digital twins for real-time city optimisation [22–25]. Sustainability, citizen
engagement, cybersecurity, open-data initiatives, collaboration, and resilience planning
are integral to creating technologically advanced, environmentally conscious, and citizen-
responsive cities.

In single-city smart-city projects, various initiatives showcase the multifaceted ap-
plications of technology for urban development. Singapore’s Smart Nation Initiative [26]
employs extensive IoT solutions and predictive analytics for efficient traffic management
and informed decision-making. Barcelona’s Smart City Project [18] prioritises sustainable
transportation and data-driven decision-making by implementing IoT sensors and data
analytics. Songdo, South Korea’s International Business District, stands as a greenfield
smart city, integrating advanced technologies such as intelligent transportation systems
and digital twins for urban planning [17]. Dubai’s Smart Dubai project [27] focuses on a
comprehensive transformation, utilising blockchain and AI for secure transactions and
decision support. In Copenhagen, the Connecting project [28] emphasises data-driven
urban planning, integrating information from diverse sources to inform decisions about
smart traffic management and sustainable transportation. Toronto’s Sidewalk Labs [29]
introduced innovative urban solutions using advanced sensors, data analytics, and simula-
tion tools. The transformative potential of machine learning combined with wireless sensor
networks in sustainable urban development was comprehensively reviewed in [30], high-
lighting their significance in smart-city initiatives. Amsterdam’s Smart City [31] initiative
promotes sustainable urban development, using IoT applications for traffic optimisation
and electric mobility.

In multi-city, smart-city projects, the European Innovation Partnership on Smart Cities
and Communities (EIP-SCC) [32] is a collaborative platform fostering smart-city initiatives
across Europe. As a specialised solution, Urbanite excels in the smart-city landscape
by providing tailored mobility-policy management, advanced decision support systems,
and efficient simulation tools for urban planning. Its focus on innovation in ML further
enhances decision-making efficiency. Aligned with the broader goals of the EIP-SCC,
Urbanite contributes to collaborative efforts in advancing smart-city solutions, offering a
specialised and innovative approach within the evolving landscape of urban development.

Recent studies underscore the importance of data-driven approaches in promoting
urban sustainability within smart cities. The need for smart-city policies that foster stake-
holder collaboration, as emphasised in [33], aligns with Urbanite’s aim to accelerate Eu-
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ropean city transformation through knowledge exchange. The role of big data analytics
in decision-making, highlighted in [34], resonates with Urbanite’s utilisation of advanced
decision support systems. The exploration of digital solutions for urban efficiency in [35]
also aligns with Urbanite’s focus on enhancing urban life quality. Furthermore, refs. [36,37]
discuss leveraging artificial intelligence for decision-making and innovation, which mirrors
Urbanite’s innovative approach. The sustainability evaluation frameworks proposed in [38]
complement Urbanite’s commitment to sustainability. Additionally, ref. [39] highlights the
multi-dimensional nature of urban competitiveness, emphasising the importance of inte-
grating socio-cultural, environmental, and security aspects in urban planning to enhance
the overall competitiveness of cities.

A comprehensive overview of the smart-city literature in the Scopus database is pro-
vided in [40]. The following hits were obtained when posting a specific query: “smart city”
(4282 in 2021, 3537 in 2022, 3306 in 2023), “artificial intelligence” (33,735 in 2021, 35,689 in
2022, 43,409 in 2023), and both combined (282 in 2021, 230 in 2022, 246 in 2023). These fig-
ures reveal a substantial increase of about one-third of the hits for the “artificial intelligence”
keyword over the same period. This trend underscores AI’s growing prominence as a
central field of research and development in the smart-city field, especially as the European
Union faces intense competition from China, some Asian countries such as Singapore, and
the United States in this area.

Urbanite stands out by integrating disruptive technologies like UAVs [41] and AI and
ML into a unified platform for smart-city development. Unlike other studies focusing on
specific aspects, Urbanite offers a holistic solution for urban mobility challenges. Its tailored
approach addresses the unique needs of European cities, ensuring contextual relevance. Ur-
banite’s advanced decision support systems and simulation tools, utilising technologies like
Dexi and Orange ML, enable informed decision-making and policy simulation. Moreover,
Urbanite implements real-world solutions, validating its effectiveness in pilot cities and
bridging the research–application gap. Its emphasis on stakeholder collaboration ensures
inclusivity and reflects diverse perspectives, making it a leading initiative in smart-city
development. The references are schematically presented in Table 1.

Table 1. Key References in smart-city development and technologies.

Reference Focus/Contribution Technology/Theme

[17,18] Evolution of smart city concepts with
examples from Songdo and Barcelona

Digital technologies, urban
development

[19] Use of IoT and sensor networks for
real-time urban data collection IoT, sensor networks

[20,21] Decision support systems and data
analytics for urban planning

Decision support systems, data
analytics

[22–25] Urban mobility solutions, policy impact
assessments, and digital twins

Simulation tools, urban mobility,
digital twins

[26]
Singapore’s Smart Nation Initiative using
IoT and predictive analytics for traffic
management

IoT, predictive analytics, traffic
management

[27] Dubai’s Smart City transformation using
blockchain and AI

Blockchain, AI, urban
transformation

[28] Copenhagen’s Connecting project for
data-driven urban planning Data analytics, urban planning

[29]
Toronto’s Sidewalk Labs with advanced
sensors, data analytics, and simulation
tools

Sensors, data analytics, simulation
tools

[30] Transformative potential of ML and WSNs
in sustainable urban development

Machine learning, wireless sensor
networks
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Table 1. Cont.

Reference Focus/Contribution Technology/Theme

[31]
Amsterdam’s smart-city initiative for
sustainable urban development using IoT
applications

IoT, sustainable development

[32]
European Innovation Partnership on Smart
Cities and Communities (EIP-SCC) as a
collaborative platform

Collaboration, smart-city initiatives

[33] Importance of collaboration in smart-city
policies Collaboration, policy development

[34] Role of big data analytics in urban
decision-making Big data analytics, decision-making

[35] Digital solutions for urban efficiency Digital solutions, urban efficiency

[36,37] Leveraging AI for urban decision-making
and innovation Artificial intelligence, innovation

[38] Sustainability evaluation frameworks for
smart cities

Sustainability, evaluation
frameworks

[39]
Integration of socio-cultural,
environmental, and security aspects in
urban competitiveness

Urban competitiveness,
socio-cultural, environmental,
security

[41] UAVs and AI for urban mobility
enhancement UAVs, AI, urban mobility

Urbanite’s innovation lies in its use of ML, simulation tools, and decision support
systems. This technology-driven approach not only enhances urban planning but also
addresses the dynamic complexities of modern cities. The project’s emphasis on mobility
policy management aligns with the critical challenges that cities face today.

3. Methodology
3.1. General Schema

The proposed framework, illustrated in Figure 1, begins with collecting essential
city-related data, encompassing people’s movements and the city’s infrastructure. Decision-
makers then outline a range of potential scenarios to address specific urban challenges.
These scenarios are simulated and predefined using a microscopic traffic simulator, and
subjective KPIs are computed to assess the changes relative to the baseline scenario.

Key performance indicators (KPIs) are essential metrics used to assess the effectiveness
and progress of urban mobility strategies within the Urbanite project. These indicators
offer a quantitative foundation for evaluating diverse dimensions of urban development,
such as traffic flow, environmental impact, and public satisfaction. The percentage ranges
provided are designed for flexibility, enabling each participating city to adapt the KPIs
to its unique context and specific objectives. These values are derived from a synthesis
of historical data, simulations, and expert insights, ensuring that they are both feasible
and grounded in reality. While the Urbanite 1.0 software system employs these KPIs as
decision-making inputs, it is important to recognise that they are not universally applicable.
Rather, they are customised to reflect the specific conditions and priorities of each city,
encompassing both objective measures (e.g., traffic flow) and subjective factors (e.g., citizen
satisfaction). This generalised framework serves as a foundation, with more detailed
KPIs being developed on a case-by-case basis to account for the distinct constraints and
opportunities within each urban environment. This tailored approach ensures that the KPIs
remain relevant and actionable, thereby enhancing the project’s overall impact on urban
mobility and sustainability.
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Figure 1. General Urbanite schema.

Subsequently, the calculated KPIs are inputs for four distinct modules, each con-
tributing to a comprehensive analysis. These modules include advanced visualisations
for user-friendly representations, a decision support system, an ML module that uses
the Orange tool for pattern recognition and predicting non-simulated scenarios, and an
advanced ML module that proposes policies based on user-defined preferences.

The Orange tool, tailored for use by non-programmers, enables the seamless imple-
mentation of one of the ML modules. The advanced ML module, leveraging KPIs as input
features and a mobility policy as the target, refines its algorithm through data learning. This
process allows the module to predict optimal mobility policies that align with user-specified
preferences. In essence, this architecture integrates data collection, scenario simulation,
and analysis into a unified and accessible solution for addressing urban challenges. The
following subsections provide a detailed discussion of each of these modules.

3.2. Simulation

The Urbanite simulation module is characterised by its ability to model four distinct
cities simultaneously, each of which contends with unique demands and urban challenges.
The simulation in this study serves two primary purposes: first, to construct an accurate
model of the current traffic dynamics within each city, and second, to evaluate various
scenarios based on this foundational representation. Microscopic traffic simulations are
integral to achieving these goals, as they provide a detailed, data-driven framework for
understanding complex urban traffic patterns.

The simultaneous modelling of four cities faces many challenges, mainly due to
the inherent complexities and idiosyncrasies associated with each urban environment.
These complexities are driven by various factors, including the diverse formats of the data
provided by each city, variations in data characteristics, and the overarching concerns
surrounding data privacy. The modelling process relies on the MATSim (Multi-Agent
Transport Simulation) tool [42], which was deemed the most appropriate choice for our
purposes when compared to other leading simulation methods such as SUMO (Simulation
of Urban Mobility) [24] and PTV Vissim [43]. Several simulation software packages were
considered for selection, the most appropriate are listed in Table 2. The required features



Smart Cities 2024, 7 2677

for the tools include ease of integration and extensibility, the ability to support multi-modal
simulations—encompassing at least car, bicycle, and public transport modes—and the
capability to perform microscopic simulations. Most modern traffic simulation tools fulfil
these criteria; however, MATSim was ultimately chosen for its superior extensibility and
ease of integration.

Table 2. Comparison of selected traffic simulation tools. Only open-source software packages were
evaluated as outlined in the project proposal, while commercial tools were considered the industry
standard and used as a benchmark for feature completeness.

Simulation Open Source Multimodal Microscopic Comment

MATSim Yes Yes Yes Easy to extend and integrate
SUMO Yes Yes Yes Hard to extend and integrate
TRANSIMS Yes Partially Yes Development inactive
Anylogic No Yes Yes Commercial
PTV Vissim No Yes Yes Commercial

SUMO, a widely adopted microscopic traffic simulation tool, excels at replicating ex-
pansive transportation networks with intricate detail. It adeptly captures the characteristics
of individual vehicles, their interactions, and the dynamics of urban traffic. SUMO factors
in lane changes, traffic lights, and road infrastructure, resulting in highly realistic urban
traffic simulations.

In contrast, PTV Vissim specialises in public transport simulations, offering compre-
hensive modelling of various public transport system components, including schedules,
routes, and passenger behaviour. PTV Vissim enables analysts to assess public transport
performance and identify opportunities for improving efficiency, reliability, and passen-
ger satisfaction.

MATSim is an activity-based, multi-agent simulation framework specifically designed
to model complex transportation systems. The agents within MATSim simulate the intricate
behaviours and interactions of individual travellers across a comprehensive network. At
its core, the framework replicates the daily activities of each traveller, including commut-
ing patterns, transportation mode choices, and route selection. This detailed simulation
approach offers a granular understanding of transportation dynamics and their significant
implications for urban mobility. To execute the simulation, various input files related to
population demand, such as city maps and traffic data (as depicted in Figure 2), must
be provided. MATSim was selected for its flexibility and seamless integration into larger
software systems.

Figure 2. MATSim input/output data.
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The simulation begins with an initial demand, which is processed within the Mobsim
module, followed by an assessment in the scoring module. This evaluation is based
on criteria such as journey time, cost, environmental impact, and user preferences. The
simulation is highly adaptive, running through multiple iterations to continuously optimize
system performance. This flexibility allows the simulation to swiftly respond to changing
conditions and policy interventions, which are managed by the re-planning module. The
cyclical and adaptive nature of this process is illustrated in Figure 3.

Figure 3. MATSim cycle.

To successfully implement MATSim across the four cities, several adjustments to
the input data were necessary, including the development of realistic agents and their
corresponding demands. For example, a student might follow a typical route to a faculty in
the morning under normal conditions but would opt for an alternative route in the event of
a traffic jam. Agents and their demands form a plan, which is developed within a general
framework unique to the Urbanite project. It incorporates city-specific data on people’s
movements, categorised by attributes such as age, on a particular day, like a typical Monday.
A flowchart illustrating the Urbanite simulation model is provided in Figure 4.

Figure 4. Flowchart of Urbanite simulation model.
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3.3. Calculation of the KPIs

In this subsection, we examine the algorithms used to determine the objective and
subjective KPI metrics that capture the essence of a traffic simulation. The KPI algorithms
calculate the values of specific metrics based on the traffic simulation results, defined
in collaboration with the city’s decision-makers. The KPIs enable a unified evaluation
framework across all four pilot cities, further elaborated in the DSS (Decision Support
System) section. Additionally, the calculated KPIs define the preference space, allowing for
the evaluation and comparison of different mobility policies.

Several KPIs were developed in collaboration with each pilot city, as listed and ex-
plained in Table 3. These KPIs provide an expert method for assessing quality of life within
a consistent framework. This framework facilitates automatic integration with the decision
support and recommendation system.

KPI calculations are based on analysing the simulation results, which involves filtering
out relevant events and mapping and aggregating the data appropriately. Section Results
details how specific KPIs are calculated for each city.

Table 3. Descriptions of key performance indicators and their relevance to various aspects of urban
mobility and sustainability.

KPI Description Used in Pilot

Bike infrastructure

Scores are assigned to each road segment based on Open-
StreetMap data (OSM), which categorises road types. The
highest score is allocated to segments classified as “cy-
cleway”, while the lowest scores are given to segments
designated as “motorway” or “steps”.

Amsterdam

Bike speed limit

Scores are allocated to each road segment based on the
maximum speed limit tag provided by OpenStreetMap.
The highest scores are given to road segments with a speed
limit of up to 30 km/h, while the lowest scores are assigned
to segments with a speed limit exceeding 50 km/h.

Amsterdam

Bike intensity The volume of bicycle traffic recorded per road segment. Amsterdam

Bike congestion

The total length of congested road segments is measured
for all bikeable segments, excluding those where cycling
is prohibited or infeasible. This metric is based on the
calculated traffic flow values.

Amsterdam

Share of bikes The proportion of bicycle trips relative to the total number
of trips.

Bilbao,
Messina

Share of cars The proportion of car trips relative to the total number of
trips.

Bilbao,
Messina

Share of
public transport

The proportion of public transport trips relative to the total
number of trips.

Bilbao,
Messina

CO2, PM10, NOx

Air pollutant emissions, estimated using the Handbook of
Emission Factors for Road Transport (HBEFA) based on
simulated traffic data.

Bilbao,
Helsinki,
Messina

Average pedestrian
trip time The mean duration of pedestrian trips. Bilbao

Congestions and
bottlenecks

The cumulative length of road segments experiencing con-
gestion, determined based on calculated traffic flow val-
ues.

Helsinki

Harbour area
traffic flow

Traffic flow measured at a specific location, Jätkäsaari
Smart Junction. Helsinki
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Table 3. Cont.

KPI Description Used in Pilot

Public transport usage The total number of passengers across all public trans-
port vehicles. Messina

Average speed of
public transport The mean speed of all public transport vehicles. Messina

Number of bike trips The overall count of trips completed using bicycles. Messina

3.4. Advanced Visualisations

In multi-criteria decision analyses, advanced visualisations are critical in presenting
the complex interplay between various factors and criteria, thereby supporting a com-
prehensive understanding of their impact. Furthermore, visual tools are essential for
comparing diverse policy options, providing stakeholders with clear insights into each
proposal’s relative strengths and weaknesses, and enabling understanding of complex
relations. Innovative and advanced visualisation techniques are well suited to address
these needs, enabling a detailed evaluation of multiple KPIs within the context of mobility
policy decisions.

The novel method developed in the Urbanite project enables the incorporation of
additional dimensions through the use of attributes such as colour, time, and multi-figure
overlays, allowing for visualisations of up to 9 dimensions (9D). However, based on experi-
ments conducted in the Urbanite project, an up to 5-dimensional (5D) visualisation scheme
was adopted as it strikes an optimal balance between complexity and user comprehensibil-
ity. This approach enables decision-makers to compare multiple scenarios simultaneously,
with each dimension representing a specific KPI or attribute. While the system is still capa-
ble of supporting 9D visualisations, 5D was determined to be the practical limit for most
users, as higher-dimensional representations tend to overwhelm the cognitive capacity of
an average human user. Even 5D visualisations pose challenges for many, although they
offer a highly effective tool for advanced users capable of grasping complex, interacting
variables in a single viewpoint. In contrast, 3D and 4D visualisations are generally accepted
as more intuitive and easier to interpret.

By employing these novel visualisation techniques, decision-makers are better equipped
to interpret and analyse the intricate relationships between KPIs. These techniques allow
users to visualise and understand the complex interplay and cause–effect relationships
between different variables, significantly improving both the speed and quality of compre-
hending the changes introduced. This enhanced understanding enables decision-makers to
engage in more informed, strategic, and timely decision-making processes.

3.5. Decision Support System

This decision support system was implemented for all four cities in the Urbanite
project. Due to the varying requirements and goals of each city, four distinct decision
models were developed. Each model was tailored using the essential KPIs relevant to the
specific city. In this context, KPIs are referred to as attributes, and the decision model was
structured as a multi-attribute model.

The Dexi tool was employed for the decision support system (DSS) [44]. DEXi utilises
qualitative (symbolic) attributes, which are expressed as discrete scales composed of words
rather than numerical values. Depending on the complexity of the decision model, it may
be necessary to group several attributes under a parent attribute. This grouping is crucial,
as the model requires the definition of a rule set that encompasses all possible combinations
of scale values. Without such grouping, the model could face a combinatorial explosion
if the number of attributes without a parent attribute is large and/or their scales involve
multiple values.

The flowchart of the Urbanite DSS model is illustrated in Figure 5. Following the
simulation of various scenarios and the computation of the KPIs, the next step involves
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preparing the data for DEXi. The DSS (DEXi) compares a baseline simulation, where no
modifications have been made, with a scenario simulation, where a modification has been
made to its parameters and/or city network. The KPIs of both simulations are compared,
and a relative number is calculated to represent the percentage change between the two.
This percentage is assigned to the range it falls into from the following options:

• <−15% indicates a large decrease;
• <−5% indicates a small decrease;
• >−5% & <5% indicates no or negligible change;
• >5% indicates a small increase;
• >15% indicates a large increase.

The ranges were determined after conducting numerous simulations and performing a
statistical analysis of the resulting KPI values, followed by the manual selection of sensible,
rounded numbers. These ranges are applied to attributes that are not classified as parent
attributes. In contrast, parent attributes are assigned one of three possible values: Better,
Same, or Worse. These values provide a subjective score, indicating whether the KPI
from the scenario simulation is better, the same, or worse compared to the KPI from the
baseline simulation.

Figure 5. Flowchart of the Urbanite DSS model illustrates the decision support system process,
including the comparison of baseline and scenario simulations, KPI computation, and the application
of multi-attribute modelling using DEXi.

When the DSS evaluates a simulation against a baseline, the results obtained are the
subjective values for each KPI and the top-level attribute, the Mobility Policy Quality. This
attribute serves as a comprehensive score, providing a general recommendation about
whether the scenario is better, equal to, or worse than the baseline. It encapsulates an over-
arching assessment of the simulation’s performance compared to the established baseline.
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A comprehensive ±1 and ±2 analysis was ultimately performed on the top-ranked
policies for the final evaluation. This analytical approach generates specific recommenda-
tions aimed at improving the overall quality of mobility policies. These recommendations
are classified into the ±1 suggestion and the ±2 suggestion. The ±1 recommendation
provides insights for incremental improvements in specific areas, such as air quality or
public transportation, leading to a gradual enhancement of the policy. In contrast, the
±2 recommendation suggests more substantial adjustments, potentially addressing mul-
tiple dimensions simultaneously, to achieve a broader improvement in the scenario’s
overall quality.

The ±1 and ±2 analyses operate by iteratively adjusting the input values of DEXi’s
child-level attributes, increasing or decreasing them by 1 or 2 units. This adjustment shifts
the range in which a particular KPI falls. The process is applied to each child-level KPI,
and the entire DEXi evaluation is rerun to generate updated results. These new results
are then compared with the original outcomes. If a change is detected, it indicates that an
improvement has occurred in the parent-level KPIs.

This analysis provides the city team with valuable hints on how to influence the
overall policy evaluation (i.e., improve the analysed city modification), identifying which
KPIs should be prioritised for enhancement. For example, the analysis might reveal
that implementing public campaigns to shift behaviour from individual car use to public
transport could significantly improve the overall quality of life in the city when a new bus
lane is introduced. Conversely, neglecting such measures may lead to stagnation or even
a decline in key metrics. By targeting the right KPIs for improvement, the city team can
make informed decisions that lead to broader benefits across multiple aspects of urban life.

3.6. Machine Learning with Orange

In this subsection, we introduce the Urbanite ML module, designed to enable decision-
makers to assess the quality of proposed policies by harnessing ML advantages without
programming. For example, the impact of closing a specific part of a city on traffic can be
assessed based on prior simulations, eliminating the need for conducting new simulations
each time a policy change is proposed.

Traditionally, a comprehensive microscopic traffic simulation is required to evaluate
the effects of each policy change. For attributes with a wide range of possible values, this
typically involves splitting the attribute into several discrete values and running simulations
for each scenario. Since each simulation can take approximately one hour on a fast PC, this
process becomes time-consuming. However, by applying ML techniques to learn from the
outcomes of a reasonable number of previously simulated scenarios, this time-intensive
process can be bypassed. The Urbanite ML module predicts policy impacts and provides
rapid and efficient evaluations without the need for repeated resource-heavy simulations.

This particular module aims to evaluate the objective and subjective preferences at-
tributed to these policies. It adopts an innovative approach that relies on a single simulation
run as a training example, allowing the ML model to learn from the simulation results.
Once trained, the ML model enables further analysis, such as visualising or evaluating new
scenarios. The simulation’s input and output parameters serve as features, while the KPIs
represent the target variables. For each ML task, only one target variable can be chosen,
such as CO2 emissions.

This approach offers two significant advantages: First, the analysis and visualisation
can be performed using an ML tool without requiring any programming. Second, scenario
parameters (e.g., policy changes) can be adjusted within the ML module, eliminating the
need for running new simulations, thus providing the city’s decision-makers with faster
and more efficient means to identify the optimal solution.

The primary goal is to enhance the simulation tool with ML services, e.g., visualisation,
discovery of new relations, etc. This will save valuable time, energy, and resources when
evaluating the quality of the mobility policies. The second goal is to obtain additional
services from the ML modules, such as transparency.
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To make this process accessible to a broader audience, including city officials and
decision-makers, the user-friendly Orange tool is employed [45]. Unlike many other ML
tools, Orange is designed for non-programmers. Simulation results are connected to the
Orange input via an API, enabling a seamless flow of data. Through a diagrammatic
interface in Orange, which serves as a visual programming environment, users can select
the ML method and the desired type of reporting or visualisation. The process, illustrated
in Figure 6, begins with collecting the necessary data for the simulation. A series of
potential scenarios is then defined, followed by the execution of the simulation. Upon
completion, a set of predefined KPIs are calculated to create the dataset, where each instance
represents a vector of simulation input/output data and corresponding KPIs. These data
are subsequently imported into the Orange tool, where various analyses can be performed
using different widgets. Multiple ML models can be applied, and these models can
ultimately be tested on unseen examples to ensure accuracy and predictive performance.

Figure 6. An example of a flowchart of the machine learning process using the Orange tool. This
diagram illustrates the step-by-step tasks, including data import, model training, and visualization,
connected through an interactive pipeline for seamless analysis.

An example of an Orange program is illustrated in Figure 7. In this Orange workflow,
widgets represent distinct tasks such as data import, model training, and visualisation.
Each widget is responsible for a specific function, such as selecting relevant data columns,
training machine learning models, or visualising the output, like a decision tree. The
connections between widgets visually depict the flow of data from one step to the next,
ensuring that the outputs from one widget serve as the inputs for another. This structure
creates a seamless, interactive analysis pipeline, enabling users to explore various models
and scenarios efficiently and without the need for programming.
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Figure 7. An example of a flowchart of the machine learning process using the Orange tool. This
diagram illustrates the step-by-step tasks, including data import, model training, and visualization,
connected through an interactive pipeline for seamless analysis.

3.7. Multi-Output Machine Learning for Suggesting Mobility Policies

When aiming to enhance decision-making processes in European cities as part of
the Urbanite project, advanced ML techniques have the potential to play a pivotal role.
Specifically, multi-output or multi-label ML can be leveraged to generate more effective
recommendations for mobility policies, leading to improvements in urban areas beyond
what is achieved by integrating simulation outputs with tools like Orange. While in
previous cases, only one class was chosen from available options, addressing complex
challenges in smart-city decision-making requires the application of multi-output learn-
ing. This approach enables the simultaneous prediction of multiple variables and their
interdependencies.

The advanced ML module employed in Urbanite integrates sophisticated tools to
tackle these complex problems. Its key innovation lies in the application of multi-output ML
models that are directly connected to simulation results. This allows for the simultaneous
prediction of multiple outcomes based on a diverse set of input variables, offering a more
comprehensive analysis of policy impacts. Since the primary objective of the ML module is
to assist decision-makers in defining potential city scenarios and utility functions, the ML
model must identify complex policy solutions that best align with the given constraints
and preferences. For example, this advanced ML module might significantly enhance both
the depth of analysis and the speed of policy testing, with performance improvements
potentially reaching several orders of magnitude.

The complexity of the problem arises from the need to predict multiple target variables
that are both discrete and continuous. For example, the policy we aim to predict involves
the start times, the duration of the closure, and the specific area of the city centre to be
closed. This creates two distinct types of machine learning tasks: classification, which
handles the categorical nature of the closure area, and regression, which deals with pre-
dicting continuous variables such as start times and closure duration. In addressing this
multi-output problem, this study tested various machine learning algorithms across both
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classification and regression tasks. For multi-label classification, a logistic regression (LR)
base classifier was implemented. This method efficiently generates distinct predictions for
each label, allowing simultaneous predictions for multiple binary targets. On the regression
side, transformation techniques were applied to a variety of algorithms, including a linear
support vector machine (LSVM), a gradient boosting regressor (GBR), an elastic net (EN),
stochastic gradient descent (SGD), support vector regression (SVR), Bayesian ridge (BR),
linear regression (LNR), k-nearest neighbors (KNN), a decision tree (DT), and random forest
(RF) regressors. These algorithms were selected for their ability to handle multi-output
regression and for their interpretability, making them suitable for providing actionable
insights. Tables 4 and 5 summarise the algorithms involved in the transformation process,
as well as the adapted algorithms capable of supporting multi-output regression.

Table 4. Transformed algorithms for multi-output regression.

Transformed Algorithms Explanation

linear support vector machine Linear regression models using support vector machines.
gradient boosting Ensemble method combining weak learners, often decision trees.
elastic net Linear regression with both L1 and L2 regularization.
stochastic gradient descent Optimization algorithm for training machine learning models.
support vector regression Extension of support vector machines for regression tasks.
Bayesian ridge Bayesian linear regression for probabilistic modelling.

Table 5. Adapted algorithms for multi-output regression.

Adapted Algorithms Explanation

linear regression Simple linear modelling of the relationship between variables.
k-nearest neighbours Instance-based learning using the majority class of k-nearest neighbors.
decision tree Tree-like model making decisions based on input features.
random forest Ensemble learning method constructing multiple decision trees.

The primary task can be defined as follows. Let D be the training dataset containing
N Ei = (Xi, Yi) examples, where i = 1, . . . , N. Each instance Ei is associated with a feature
vector Xi = (xi1, xi2, . . . , xim) and a subset of Yi ⊆ L, where L = {yj : j = 1, . . . , q} is the
set of q possible labels. The task is to create a classifier H that will accurately predict an
unlabelled instance E described with the feature vector x and an undefined subset of labels
Y, i.e., H(E)− > Y.

Figure 8 presents the flowchart of the Urbanite Advanced ML approach. Unlike the
Orange tool, this approach demands actual coding. The resulting program is not fully
universal, meaning another application might require modifications. However, the program
is open-source, and only the modifications need to be coded.

Multi-label algorithms require distinct evaluation methods compared to single-label
algorithms. In single-label tasks, instances are classified as either correct or incorrect,
whereas in multi-label tasks, they can be partially correct. This introduces the concept of a
soft match, where a prediction is not entirely correct but closely aligns with the actual result,
allowing for partial credit. For evaluation, both micro-averaging and macro-averaging
can be used to calculate the average difference between the true and predicted values.
Micro-averaging aggregates results by summing the true positives, false positives, and false
negatives across all labels, providing a more holistic view of performance. Macro-averaging,
on the other hand, calculates the average of a specific metric for each label, treating all
labels equally. In both cases, the performance of the proposed method was evaluated using
K-fold cross-validation, with the results compared to those of other methods using the
same technique. The soft match concept was particularly important for evaluating partial
correctness in multi-label predictions, ensuring that predictions closely matching the true
values were appropriately rewarded.
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Figure 8. Flowchart illustrating the advanced machine learning process (a); workflow of the machine
learning model (b), detailing the sequential steps from data input to model training, evaluation, and
output analysis.

The precision and recall are computed to determine the effectiveness of a classification
model.

Prcmicro(H, D) =
∑yy∈Y TPs(yi)

∑yi∈Y TPs(yi) + FPs(yi)
(1)

Rclmicro(H, D) =
∑yi∈Y TPs(yi)

∑yi∈Y TPs(yi) + FNs(yi)
(2)

Prcmacro(H, D) =
∑yi∈Y Prc(D, yi)

Y
(3)

Rclmacro(H, D) =
∑yi∈Y Rcl(D, yi)

Y
(4)
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To determine the effectiveness of the regression model, the following metrics were
computed: the mean squared error (MSE), the mean absolute error (MAE), the coefficient
of determination (R2), and the root mean squared error (RMSE).

The MAE (Equation (5)) measures the average absolute difference between the pre-
dicted and true values. It quantifies the average magnitude of the errors:

MAE =
∑n

i=1 Ypred − Ytrue

N
(5)

The MSE measures the average squared difference between the predicted and true
values (Equation (6)). Also, it emphasises larger errors due to the squared term. The
negative sign indicates that the lower values of the MSE correspond to a better model
performance. By negating the MSE, we align it with the convention where smaller values
indicate better accuracy.

negMSE = −
∑n

i=1(Ypred − Ytrue)2

N
(6)

The R2 is a statistical measure representing the proportion of the variance in the
dependent variable that can be explained by the independent variables (Equation (7)). It
indicates the goodness of fit for the regression model.

R2 = 1 −
∑n

i=1(Ytrue − Ypred)
2

∑n
i=1(Ytrue − Ȳtrue)2 (7)

The RMSE is a variant of the MSE that measures the square root of the average squared
difference between the predicted and true values (Equation (8)). It is used to quantify the
typical magnitude of the errors in the predictions:

RMSE =

√
∑n

i=1(Ypred − Ytrue)2

N
(8)

In Equations (5)–(8) above, Y(i)
pred represents the predicted value for the ith instance,

Y(i)
true represents the true value for the ith instance, N represents the total number of instances,

and Ȳtrue represents the mean of the true values.
The overall performance of the models is calculated as the mean value of the evaluation

metrics for each target variable yi ∈ Y:

Mmean =
∑

q
i=1 Myi

q
(9)

In Equation (9), q represents the number of target variables, and M refers to a specific metric.
Overall, the Urbanite project’s multi-output module explains complex relationships

between factors like traffic patterns and travel behaviour. It provides insights and recom-
mendations to city planners, aiding their informed decisions. This study is the first to
address policy testing in a real city using multi-output ML. Additionally, the ML module
speeds up the simulations by several orders of magnitude, transforming time-demanding
simulations into nearly interactive ML modules.

3.8. Data

This subsection outlines the data sources utilised within the Urbanite framework.
The baseline scenarios were meticulously developed using publicly available data that
accurately represent the current state of each city, supplemented with additional data
provided by city teams. Most of the data were collected from city teams and pre-existing
databases, forming a robust foundation for the simulations. Detailed city maps were
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sourced from OpenStreetMap. To model travel plans, a synthetic population was generated
using data from the European Union Statistics on Income and Living Conditions (EUSILC).
This synthetic population was further refined using marginal distributions specific to each
pilot city to ensure accuracy. Where available, origin–destination matrices were used to
represent the flow of travellers between locations. Emissions were calculated using the
Handbook of Emission Factors, applied to the simulation outputs to estimate environmental
impact. A summary of the data used for the simulations is provided in Table 6.

Table 6. Key data sources used for the Urbanite simulations, including city maps, synthetic population
data, origin–destination matrices, and emission factors.

Synthetic Population

Sample data Sample data containing individuals with age and sex attributes.

Marginal
distributions Distributions of individuals per district by age and sex.

Travel Demand

OSM data Detailed information about city map represented by nodes, ways, and
relations in XML format.

GTFS Transit system details in CSV files

OD matrices Origin–destination matrices

Emissions

HBEFA Handbook of Emission Factors.

4. Results

The following subsections present the outcomes from various modules, focusing
specifically on Bilbao. Given the complexity of the system and the space limitations of this
paper, it is not possible to provide detailed results for all four cities. As such, Bilbao is used
as a representative case to demonstrate the system’s functionality and performance.

4.1. Simulating Diverse Scenarios

Gathering the data for four cities involves addressing privacy considerations and
data availability, as each city has its unique requirements and specifications. A consistent
methodology was applied across all pilot cities, beginning with the modelling of a baseline
scenario to capture the current traffic conditions. This was followed by the implementation
of changes to simulate a new mobility policy for comparison with the baseline. For each
city, at least two simulations were conducted: one for the baseline scenario and another
reflecting the proposed mobility policy. For the modified scenario, from one to hundreds of
variations were executed to explore different outcomes. In the case of Bilbao, adjustments
were made to the second scenario to meet the requirements of the ML modules. The specific
scenarios for each city are outlined as follows:

• Bilbao: Closure of Moyua Square in the city centre to private vehicles. Modifications
to this scenario include the closure of various surrounding areas for different times
and durations and changing the number of cyclists nearby.

• Messina: Introduction of a new bus line in the city centre.
• Amsterdam: Construction of a new district—Amsterdam Nord.
• Helsinki: Construction of a new tunnel to connect the harbour area to the highway.

4.2. KPIs

Amsterdam is focused on bicycle mobility, bicycle safety, and bicycle congestion. The
following KPIs were developed:

• Bicycle infrastructure: the extent and quality of the infrastructure available to support
cycling. A score is given to each road segment based on how appropriate the road is
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for cyclists. Bicycle-only roads, bicycle lanes, and living streets are scored high, while
motorways, main roads, and paths with stairways are scored low.

• Bicycle intensity: the number of cyclists on each road segment.
• Bicycle safety: estimation for the mixed-use of roads by bicycles and motor vehicles,

and their interactions. Road segments with cyclists are given a high score, while road
segments where cyclists and motor vehicles share the road are scored low.

• Bicycle congestion: the length of all the congested road segments combined. Any
traffic situation where cyclists are moving slowly due to the road being at or near
capacity is considered congestion.

Bilbao is focused on the quality of life in the inner city while considering multimodal
transport, including public transport, cyclists, and private cars. The following KPIs were
developed:

• Air pollution, including CO2, NOx, and PM10: calculated using the Handbook of
Emission Factors (HBEFA). The emission estimation takes into account the simulated
traffic situations (slow moving, congested traffic vs. free-flowing conditions, etc.),
vehicle fleet composition, including type of engine and EURO-standard support, and
even whether the vehicle’s engine is cold or hot.

• Noise pollution: estimated on a grid over a section of the city, based on the simulated
traffic situation and the geometry of the buildings in the city.

• Daily city bicycle journeys:
• Pedestrian journey time: average length of a pedestrian journey in minutes. All

journeys are considered, but only long pedestrian journeys over 60 min are visualised
and reported.

Helsinki is focused on the traffic caused by the arrival of ferries to the West Harbour.
The harbour is located on a peninsula, connected to the mainland with a single road causing
congestion and lowering the quality of life in the area. The following KPIs were developed:

• Air pollution, including CO2, NOx, and PM10: as described above.
• Noise pollution: as described above.
• Congestion and bottlenecks: the length of all congested road segments combined. Any

traffic situation where vehicles are moving slowly due to the road being at or near
capacity is considered congestion.

• Harbour area traffic flow: the traffic flow on the main road connecting the harbour
with the mainland.

Messina is focused on the public transport in the city. The following KPIs were
developed:

• Average speed of public transport: the average speed is calculated for each vehicle,
and a weighted average is calculated by considering the total length of the vehicles’
journeys.

• Public transport usage: the number of people using public transport.
• Shares of cars, bicycle, and public transport journeys: the daily shares of journeys

made, by transport mode.

4.3. Advanced Visualisations

Advanced visualisations were applied across all four cities to enable a comprehensive
comparison of multiple scenarios. These Urbanite visualisations allow for the selection of
up to five dimensions with the y-axis representing the time per hour over a 24 h day, and
the x-axis and z-axis representing two key performance indicators (KPIs). Additionally,
colour is employed to depict another KPI, facilitating a detailed comparison. An illustrative
example from Bilbao is presented in Figure 9, where four dimensions are showcased for
clarity. In this 4D visualisation, the x-axis represents the different scenarios, the y-axis
indicates the time of day, and the z-axis reflects local NOx pollution levels. The colour
gradient represents the local CO2 concentration, ranging from dark blue (indicating low
pollution) to yellow (indicating high pollution). For example, the term “Bilbao Moyua
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LTZ” denotes a complete closure of the square for the entire day, with the scenario names
indicating specific closure times. The z-axis shows the cumulative local NOx pollution
across five scenarios. Notably, closing the square from 4 p.m. to 8 p.m. results in higher
cumulative NOx levels compared to the baseline scenario, likely due to increased congestion
during peak afternoon hours. In contrast, closing the square from 8 a.m. to 12 p.m. results
in no significant difference in cumulative NOx, while a closure from 10 a.m. to 1 p.m. leads
to increased pollution levels.

Figure 9. Comparison of different scenarios using advanced visualisations.

4.4. DSS

The results from the DSS are presented as two major components of the Urbanite
platform: the spider chart and the recommendation system. The spider chart visualizes
the relative change between the selected simulation and the baseline. A value of three
in the spider chart indicates no significant change in the relevant attribute, while higher
or lower values signify improvement or deterioration, depending on how the attribute is
defined in the decision model. Additionally, the recommendation system offers tailored
suggestions based on the simulation results, helping decision-makers identify the most
effective mobility policies. This system leverages the multi-output machine learning models
to recommend specific actions or adjustments that could improve various KPIs. Together,
these two components provide comprehensive insights into the performance of different
scenarios, enabling a more informed and data-driven decision-making process.

In Figure 10, the spider chart illustrates the changes after a simulated scenario was
introduced for the city of Bilbao. It includes the relevant KPIs, representing attributes in the
decision model. Parent attributes, providing a broader context for lower-level attributes, are
also displayed. A key observation from the scenario “Bilbao Moyua LTZ (Limited Traffic
Zone) 16–20 (from 4 p.m. to 8 p.m.)” is that emissions, such as local NOx and CO2, were
reduced, contributing to an overall improvement in the mobility policy. These reductions
are visualised in the spider chart, where values for environmental KPIs show improvement
compared to the baseline scenario. This improvement is largely due to the restricted traffic
flow during peak hours, which reduced pollution in the affected area. However, as is
often the case with such analyses, some KPIs show deterioration. For example, the “Entry
capacity to centre” attribute worsened, indicating reduced accessibility to the city centre
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during the closure period. This reduction in capacity is likely due to the limited traffic
zone restrictions, which, while improving environmental quality, also restrict the flow of
vehicles, affecting convenience for residents and visitors. In contrast, some KPIs, such as
“Public transport usage”, remain the same, suggesting that the closure did not significantly
impact public transport ridership within the specified time frame.

Figure 10. Spider chart for a scenario simulation for the city of Bilbao illustrating the relative perfor-
mance of key KPIs for the “Bilbao Moyua LTZ (Limited Traffic Zone) 16–20” scenario, comparing
changes in emissions, entry capacity, and other attributes against the baseline.

This balance between improvements in environmental factors and potential trade-
offs in accessibility highlights the complexity of urban mobility policy decisions, where
enhancing one attribute can lead to a decline in others, requiring careful consideration by
decision-makers.

In the recommendation component of the Urbanite system, the DSS is also used to
provide textual information to the user on whether a selected scenario simulation is better,
the same, or worse than the baseline. Below are textual recommendations generated by the
recommendation engine:

• In order to change the KPI of Mobility Policy Quality by 10%, PM should be improved
by 10%.

• In order to change the KPI of Local Emissions by 10%, PM should be improved by
10%.

• In order to change the KPI of Entry capacity to centre by 20%, PM should be improved
by 10%.

• In order to change the KPI of Mobility Policy Quality by 10%, Entry capacity to centre
should be improved by 20%.

These recommendations provide actionable insights for decision-makers aiming to
optimise specific KPIs within the urban mobility context. The results from the DSS are
available for Bilbao on the web platform created during the Urbanite project. (For more
details, visit the Urbanite Bilbao project website: https://bilbao.urbanite.esilab.org/pages/
home (accessed on 11 September 2024).)

4.5. Machine Learning with Orange

For a practical demonstration, the analysis in Bilbao focuses on the potential effects
of closing Moyua Square in the city centre and increasing the number of cyclists on the
levels of air pollution, with a specific focus on estimating the CO2 emissions. Multiple ML
algorithms were tested, and the findings suggest that closing the city centre square and
promoting cycling has a positive impact on reducing CO2 emissions.

https://bilbao.urbanite.esilab.org/pages/home
https://bilbao.urbanite.esilab.org/pages/home
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To generate the dataset for Orange, 14 simulations were conducted in Bilbao, exam-
ining the consequences of closing Moyua Square in the city centre to private vehicles.
Two scenarios were implemented: the baseline reflecting the current network state and
a modified scenario with the closure of Moyua square. Variations in the latter included
adjustments in the number of cyclists (ranging from 1500 to 19,000) and inhabitants (rang-
ing from 2000 to 20,000). These variations illustrated the potential outcomes if the applied
policy and the number of cyclists changed.

Figure 11 illustrates the results of the implemented policy, explicitly showcasing the
correlation between the number of cyclists and the CO2 emissions. The x-axis indicates
cyclists near the square, while the y-axis represents those in the centre. Different colours
signify varying levels of CO2 emissions, with the orange circle indicating the baseline
scenario. The findings suggest that closing the main square to private vehicles and reducing
the number in proximity leads to a decrease in CO2 emissions.

Figure 11. Displaying the relationship between the number of cyclists and CO2 emissions.

Several inferences can be drawn from Figure 11, including the observation that the
number of cyclists inside and outside the square is strongly correlated—the more cyclists
enter, the more cyclists leave. This expected relationship is captured by the simulator.
Additionally, the figure confirms the anticipated result that closing the main square to
private vehicles (such as cars and motorbikes) leads to a significant drop in CO2 emissions.
Furthermore, the presence of more cyclists in the square, which is closed to private vehicles,
correlates with fewer cars and thus reduced emissions.

However, the relation is not purely linear since there is some traffic remaining, e.g.,
public transport vehicles and their CO2. The left-down simulation in Figure 11 indicates a
large amount of CO2 emissions; however, it turned out that there was an error in the input
data. This underscores the importance of verifying simulation outputs and highlights how
transparent visualisations and human verification play a crucial role in identifying and
addressing such issues.

After constructing the ML model (decision tree) using the data mentioned earlier,
it becomes possible to forecast outcomes for new instances not simulated previously. In
Figure 12, the outcomes of predicting CO2 emissions for novel data points, without prior
simulation, are presented. The new data points are scaled up, and it can be inferred that
the colour, representing the level of CO2, aligns consistently with the other instances.

After constructing an ML model, potentially in the form of a decision tree using the pre-
viously mentioned data, it becomes possible to predict outcomes for unseen
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examples—instances that were not part of the initial simulations. In Figure 12, the out-
comes of predicting CO2 emissions for these new data points, which were not simulated
previously, are displayed. The new instances are scaled up for clarity, and it can be ob-
served that the colour representing the level of CO2 rather consistently aligns with the other
previously simulated examples. This demonstrates the effectiveness of ML knowledge
models in forecasting results for novel scenarios, enabling faster and more efficient policy
evaluation without the need for additional simulations.

Figure 12. New Additional data points generated by the ML model, showcasing predicted outcomes
for unseen instances of CO2 emissions. These predictions align with previously simulated scenarios,
demonstrating the ML model’s capability to extend analysis beyond the original simulation results.

4.6. Advanced Machine Learning

The advanced ML model underwent testing in Bilbao’s Moyua area, while trying to
find the best policies for closing specific districts to private vehicles and determining the
ideal timing for these closures based on data from simulated and learned scenarios. The
scenarios specified the start time and the duration of the closures, resulting in 1452 possible
combinations. Due to time and resource constraints, Latin hypercube sampling was em-
ployed to choose a subset of scenarios for the simulation. The KPIs related to pollutants
(CO2, NOx, and PM) were measured across different geographical levels, providing insights
into the effectiveness of the pollution-mitigation measures. The analysis considered the
impact of specific measures, such as closing streets in the city centre, on pollution levels
and congestion. Different transportation modes’ contributions to pollution were examined,
helping to formulate effective mobility policies. The analysis also factored in congestion,
modelling it by incorporating travel times to develop policies addressing both congestion
and pollution for a sustainable urban environment. The target variables in the analysis
represented a mobility policy influenced by input features, including KPIs, with continuous
values for the start time and the duration and closed areas encoded in a binary format with
nine attributes.

The advanced ML model was tested in Bilbao’s Moyua area to identify the optimal
policies for closing specific districts to private vehicles and determining the best timings for
these closures based on data from both simulated and learned scenarios. The scenarios in-
cluded variables such as the start time and duration of closures, resulting in 1452 potential
combinations. Due to time and resource constraints, Latin hypercube sampling was em-
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ployed to select a reasonable subset of scenarios for simulation. KPIs related to pollutants,
such as CO2, NOx, and particulate matter (PM), were measured across different geographic
levels, providing insights into the effectiveness of pollution-mitigation strategies. The anal-
ysis assessed the impact of specific interventions, such as closing streets in the city centre,
on pollution levels and traffic congestion. The contributions of different transportation
modes to overall pollution were also examined, aiding in the development of more effective
mobility policies. In addition to pollution levels, the analysis factored in congestion by
incorporating travel time data to develop policies that address both congestion and pollu-
tion, fostering a more sustainable urban environment. The target variables in the analysis
represented a mobility policy influenced by various input features, including continuous
values for start time and duration, and closed areas encoded as binary attributes across
nine variables.

The process initiates with a regression task aimed at predicting the start time and
duration. The predicted values are then appended to the feature space, serving as features
for the subsequent classification step. In this latter stage, the area of closure is predicted,
and modelled as nine binary classes, using logistic regression. Each task is evaluated
independently to ensure a comprehensive assessment.

In the first part of the analysis, a thorough evaluation was conducted by testing
10 diverse regression algorithms: linear regression, k-nearest neighbors (KNN), decision
tree, random forest, linear support vector machine (LSVM), gradient boosting, elastic net,
stochastic gradient descent (SGD), support vector regression (SVR), and Bayesian ridge. The
first four algorithms—linear regression, KNN, decision tree, and random forest—natively
support multi-label regression through algorithmic adaptation, while the remaining models
are trained using problem-transformation techniques to handle multiple outputs.

The application of k-fold cross-validation is commonly used for evaluating the perfor-
mances of ML models. The results for k = 10 are presented in Figure 13, which displays
the distribution of scores across each fold using a boxplot. Linear regression emerges as the
most effective algorithm, with a mean mean absolute error (MAE) of 1.514 and a standard
deviation of 0.230. This indicates that linear regression provides accurate predictions for the
start time and duration of the Moyua square closure for private vehicles, with an average
error of approximately one and a half hours.

The next challenge involves constructing a model to predict the area of closure, using
the previously predicted start time and duration as input features. To address this, a
problem-transformation method is essential for handling the multi-label classification
task. Logistic regression, applied individually to predict each area, is identified as a
suitable approach.

The overall performance of the ML model is illustrated in Figure 14. The model
achieved a 90-percent recall score (true positive rate) and 77-percent accuracy when exact
matches between features and labels were considered (depicted in orange). In addition to
this, two alternative approaches were explored to provide a more comprehensive assess-
ment of the model’s effectiveness.

The limitation of exact matching lies in the potential misclassification of instances due
to a single erroneous prediction for an area. This overlooks the opportunity for improved
outcomes through a combination of predicted closures, leading to reduced CO2 emissions
and shorter journey times. To address this, an alternative approach incorporated the
Euclidean distance between the predicted and actual values. The introduction of a defined
threshold allowed a distinction between accurate and inaccurate classifications for each
instance. The bar plot, highlighting the results in blue, revealed an accuracy enhancement,
increasing from 77 to 87 percent. This modification suggests that a solution that is close
enough is likely to be acceptable, even if it is not an exact match. Fine-tuning through
actual simulations might be necessary in such cases.
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Figure 13. Comparison of methods for the regression task, presenting the mean absolute error
(MAE) and standard deviations for each of the 10 regression algorithms tested, highlighting the
performance differences across methods in predicting the start time and duration of Moyua square
closures. Linear regression demonstrates the lowest MAE, with other models displaying varying
degrees of prediction accuracy.

Figure 14. Accuracy of different evaluation approaches for the classification task, including ex-
act matching, Euclidean distance-based classification, and feature vector alignment, with results
displayed in orange, blue, and green.

The limitation of exact matching is that a single erroneous prediction in one dimen-
sion, such as a closure area, can result in the misclassification of an entire instance. This
strict approach overlooks the potential for improved outcomes through a combination of
predicted closures, which could lead to reduced CO2 emissions and shorter journey times.
To address this, an alternative approach was introduced that incorporates the Euclidean
distance between the predicted and actual values. By defining a threshold, this method
distinguishes between accurate and inaccurate classifications for each instance, even when
the predictions are not an exact match.

The bar plot in Figure 14, with results displayed in blue, shows a notable accuracy
improvement, increasing from 77 percent to 87 percent. This adjustment suggests that a
“close enough” solution is often acceptable, even if it does not perfectly match the actual
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values in every dimension, but provides an acceptable overall result. However, fine-tuning
through additional simulations may still be necessary in such cases to ensure optimal
outcomes and further refine the predictions.

Additionally, a third approach was introduced to explore the feature vectors asso-
ciated with similar policy outcomes, closures, and durations using Euclidean distance
measurements. In the case of the predicted class vector being closely aligned with any of
these selected feature vector classes, the prediction was considered accurate. This semantic
approach, represented in green on the bar plot in the figure, achieved a 91-percent accuracy
without requiring parameter tuning. The implication is that similar or even better outcomes
can be achieved through policies aligned with decision-makers’ objectives, eliminating the
need for manual or automatic parameter scaling.

4.7. Summary List of Modules

A list of several Urbanite modules is presented in Table 7.

Table 7. Tools and technologies employed in the Urbanite project, including simulation platforms,
machine learning models, and visualization techniques, highlighting their roles in data analysis,
policy evaluation, and decision support.

Tool Name Description Role in Urbanite

Orange

An open-source data visualization and
analysis tool for machine learning. It
provides a user-friendly interface for
conducting complex data analysis
without programming.

Used to facilitate data analysis for
non-programmers using visualization
and machine learning modules, using
the input from the results of simulations.

MATSim

A microscopic traffic simulation tool
models individual travellers’ behaviour
and interactions within a transportation
network.

Employed to simulate traffic scenarios in
various cities, providing detailed
insights into urban mobility and the
impact of different policy decisions.

DEXi

A decision support tool that uses
qualitative multi-attribute models to
evaluate complex scenarios and generate
recommendations based on subjective
preferences.

Supports decision-making by evaluating
policy scenarios against various criteria,
helping urban planners balance diverse
stakeholder inputs and preferences.

Multi-label ML

Involves algorithms that can predict
multiple output labels for a single input
instance, which is useful in scenarios
where decisions or classifications are
interdependent.

Used to predict the outcomes of different
urban policies and assess their impact
across multiple criteria simultaneously,
accelerating the decision-making
process.

Advanced
Visualization Tools

Tools that enable the graphical
representation of complex data in
multiple dimensions, making it easier to
interpret and understand the outcomes
of different scenarios.

It enables policymakers to visualize up
to five dimensions of data, although
typically three and rarely four,
facilitating a comprehensive assessment
of policy impacts in a user-friendly
manner.

5. Discussion and Implications

The Urbanite H2020 project introduces several innovative AI-based modules, provid-
ing a unified framework that empowers decision-makers to tackle complex urban mobility
challenges efficiently. By addressing a wide range of urban challenges, from reducing
pollution to enhancing infrastructure, the Urbanite system demonstrated its adaptability
and efficacy in tackling real-world mobility issues. Moreover, Urbanite’s focus on fostering
collaboration and knowledge sharing promotes a culture of innovation and continuous
learning in smart-city development. Through establishing partnerships and disseminating
best practices, Urbanite plays a pivotal role in a collective endeavour to enhance urban
sustainability and resilience. The project’s collaborative spirit, bridging diverse geographic
and professional groups, is vital for addressing the multifaceted challenges of urbanisation
and championing inclusive, participatory approaches to urban development.
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Regarding particular modules, the simulations are adaptable to any city with minimal
adjustments, such as incorporating a city map and travel data through enhancements to
the open-source simulation platform. The system was successfully tested across four pilot
cities; however, due to space limitations, only the results from Bilbao are presented in
detail. Discussions with the city teams confirmed the system’s efficacy and its potential
to address real-world challenges. Furthermore, in leveraging the Orange tool, simulation
outputs are seamlessly linked to machine learning methodologies, enabling effortless pat-
tern identification without the need for direct programming. Additionally, the advanced
multi-ML approach drastically reduces the time required to test a policy, cutting it down
to mere seconds. Computing outcomes using machine learning was approximately three
orders of magnitude faster than running full simulations, while still achieving 90-percent
accuracy. Final verification was required only after identifying the most promising solu-
tions, reducing the need to run hundreds of simulations to just a few, streamlining the
process significantly.

In addition, the comprehensive decision support tool provides both subjective and
objective analyses of the benefits and drawbacks of proposed urban modifications, ensuring
a well-rounded evaluation process. In summary, both the project team and EU reviewers
acknowledged the innovations introduced by the project as functionally significant, even at
the stage of a functional prototype.

The advanced visualisation module enables the display of complex results, allowing
the representation of up to five dimensions within a single graphical display. It visualises
simulation results hourly over 24 h for various scenarios, with specific dimensions dedi-
cated to KPIs. This module is primarily used in two scenarios, focusing on selected KPIs.
Initially, 3–5 KPIs are chosen to detect disparities, though no variance is often observed
across several KPI perspectives. Subsequent analyses typically concentrate on the KPIs
exhibiting notable differences.

The ML modules operate on two levels: they identify patterns within the simulated
data and construct an ML model that mirrors the simulator. One particular ML module,
developed using Orange, with which no coding experience is needed, can predict specific
KPIs, such as CO2 emissions, eliminating the need for comprehensive simulations. For
example, it can estimate the CO2 impact of closing Moyua Square, providing accurate
predictions for scenarios not previously encountered, as shown in Figure 12.

The advanced ML module further enhances the decision-making process by recom-
mending mobility policies that align with predefined user preferences, reducing reliance
on the traditional, time-consuming cycle of simulations and expert analysis. This approach
effectively creates a rapid ML model of the simulator, significantly accelerating the policy
development process. In the context of Bilbao, the module suggests closures of streets
in the city centre and surrounding areas, guided by the improvement of user-specified
KPIs. This innovation enables the quick evaluation of mobility policies in just seconds, a
substantial improvement compared to the hours previously required for full simulations.
While the ML-based model does not replicate the original simulator’s results exactly, it
achieves over 90% accuracy, as demonstrated in Figure 14. Consequently, employing the
ML simulator module for testing various mobility policies enables the fast verification of
mobility policies, with the final adjustments verified through the original simulator.

However, while Urbanite’s comprehensive approach and innovative application of
AI and ML technologies represent a significant advancement in smart-city planning, the
project’s complexity and magnitude introduce considerable challenges. The project’s status
as a detailed and complex research prototype is a primary concern. Although it illustrates
the feasibility of fully operational software, a significant rewriting may be required for its
practical, real-world implementation. This need for potential re-engineering highlights
the divide between prototype creation and the development of deployable, user-friendly
solutions. Another problem is updating a submodel or system support every few months.
The current prototype’s size and complexity render it somewhat inaccessible for community
groups unfamiliar with the system’s intricacies.
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The practical application of the Urbanite system introduces additional complexities.
In reality, it is usually not feasible to undertake infrastructural modifications in urban
settings, such as the construction of tunnels or the development of new districts, within
this project’s scope. Furthermore, the necessity for comprehensive data gathering to ensure
accurate simulations and predictions underscores the requirement for multiple simulations,
underlining a resource-demanding facet of the project that may impede its scalability and
adaptability in varied urban landscapes.

From a social standpoint, Urbanite’s open-source framework offers a transparent and
accessible platform for exploring AI-driven mobility solutions, democratizing smart city
planning and encouraging the broader adoption of innovative technologies. This frame-
work allows any community to assess potential urban mobility improvements. Moreover,
Urbanite’s approach can be extended to other sectors, such as energy and water manage-
ment, providing data-driven insights to optimize resource use and promote sustainability
across urban services.

Regarding the five major contributions declared in the Introduction, the following can
be summarily derived:

1. A unified, upgraded, open-source simulator tested on four diverse cities: Tested
across four cities, this platform addresses the challenge of standardising simulations
for diverse urban settings. It enhances reliability and consistency in comparing urban
policies, though the need for substantial execution time remains a challenge.

2. An advanced decision support and recommendation module with the Dexi tool:
The integration of the DEXi tool enables context-aware decision support, providing
detailed recommendations based on subjective preferences. However, training is
required for users to fully leverage its potential.

3. Advanced visualisations for comprehensive policy assessment: Visualisation tools
simplify the exploration of complex data, though most users can handle only up to
3D or 4D representations. Presenting higher-dimensional data remains a challenge.

4. An ML module with the Orange tool: This module democratises machine learning for
urban planning, making data-driven decision-making accessible to non-experts. How-
ever, users still require a few hours of training to maximise the system’s capabilities.

5. The advanced multi-label ML module: The module introduces significant speed
improvements, allowing rapid scenario testing. However, its complexity requires
users to develop expertise in interpreting results and applying insights effectively.

6. Conclusions

In conclusion, the Urbanite H2020 project introduces a groundbreaking framework
aimed at tackling the intricate challenges brought about by urbanisation and city expan-
sion. By harnessing the power of disruptive technologies such as AI and ML, the project
delivers a holistic strategy for decision-makers grappling with urban mobility dilemmas.
The initiative is distinguished by five innovative components: an open-source simulator, so-
phisticated decision support and recommendation modules, state-of-the-art visualisations
for policy evaluation, and two ML modules.

Urbanite’s approach revolutionises traditional urban planning, which has historically
relied on expert knowledge, limiting exploring potential solutions due to the impracticality
of exhaustive testing. While software simulators have helped mitigate this challenge, Ur-
banite takes it further by standardising and informing the decision-making process, offering
valuable insights into diverse scenarios. This framework marks a significant advancement
over prior studies focusing on individual cities or domains. Rigorous testing on four Euro-
pean cities—Bilbao, Messina, Amsterdam, and Helsinki—demonstrated Urbanite’s ability
to address a range of challenges, from pollution reduction to public transport and cyclist
safety improvements. The system provided critical insights into the effects of proposed
changes and offered recommendations based on both objective and subjective criteria.

Two key observations emerged from the analyses. First, urban planning changes do
not always produce outcomes that surpass the baseline scenario, often yielding complex
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results. For example, reducing CO2 emissions in city centres may inadvertently increase
congestion in peripheral areas. This highlights the importance of evaluating the broader
impact of each KPI on the overall urban quality of life. Second, the complexity of the
Urbanite system requires proper user training to fully harness its capabilities. While most
users can easily interpret three-dimensional (3D) and four-dimensional (4D) visualisations,
five-dimensional (5D) representations prove challenging. However, with sufficient practice,
approximately one-third of users become proficient in understanding 5D visualisations,
making comprehensive training essential for maximising the system’s potential.

Despite its strengths, the Urbanite project does face certain limitations. One of the
primary challenges lies in the sheer size and complexity of the software system, which
consists of approximately a million lines of code and tens of modules. This vast codebase
makes maintenance, debugging, and updates particularly difficult, creating potential
barriers to its scalability and user adoption. The complexity of the system may also
limit its accessibility for non-expert users or smaller municipalities without dedicated
technical teams, reducing its broader appeal. Secondly, the Urbanite system remains a
research prototype rather than a fully verified and tested application ready for large-scale
deployment. While its proof of concept has been demonstrated in multiple pilot cities, the
system has not undergone the rigorous validation required for real-world implementation
at scale. This means there could be undiscovered issues, especially in scenarios that were
not thoroughly tested during the development phase. As a prototype, it also lacks the
fine-tuning and user-friendliness that a production-level system would require for seamless
integration into existing city infrastructures.

A key area for further development is extending the framework to encompass a wider
range of European cities, allowing for a broader evaluation of potential solutions across
different urban contexts. Additionally, the framework could be expanded to address other
city sectors, such as water consumption or public lighting, further enhancing its utility.
There is also an opportunity to apply only specific modules like the ML modules in more
cities, increasing the versatility and overall impact of the Urbanite framework. To ensure
broader adoption, it will be crucial to provide user-friendly interfaces and comprehensive
manuals, making the system more accessible and practical for a wide range of users.

In summary, Urbanite’s ongoing research and development efforts signal continued
progress in smart city planning. Through leveraging AI-based methodologies and the
insights gained from the four pilot cities, Urbanite is poised for further innovation. The
project not only addresses today’s urban challenges but also envisions a future where tech-
nology drives sustainable growth and improves urban living. Urbanite’s use of AI in urban
development emphasises the importance of considering social, economic, and environ-
mental factors, laying the groundwork for more resilient and sustainable cities. Although
the goal of providing EU citizens with an open-source platform for independent mobility
modifications has not yet been fully realised, this functional prototype demonstrates the
concept’s viability and sets the stage for future advancements.
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