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Highlights:

Main findings:
• By comparing traditional gravity-based and optimization-focused approaches used for trip distri-

bution modeling, we identified spatial conditions under which these two mathematical frame-
works can yield divergent provision assessments that could lead to varying urban planning and
policy decisions. To support the choice of the appropriate modeling approach in the absence of
actual data on population-facility interactions, we revealed each model’s strengths and limitations
in different urban contexts.

• Exploring scenarios where data on facility utilization are available for a part of a city, we tested
supervised machine learning models that integrate the available data to capture prevalent patterns
of human behavior, thereby enhancing the prediction of trip distribution and associated provision
assessments. After a careful examination of the existing benchmarks, we proposed a new modifi-
cation of the deep learning trip distribution model that incorporates physical constraints related
to fixed demand-and-supply conditions, achieving superior performance on synthetic datasets
compared to established baselines.

Implications of the main findings:
• Offer a methodological framework for modeling population–facility interactions that can be

adapted to various urban contexts and data availability scenarios.
• Provide urban planners with enhanced tools for assessing the provision of social facilities, sup-

porting more equitable and sustainable urban development.

Abstract: Assessing the accessibility and provision of social facilities in urban areas presents a
significant challenge, particularly when direct data on facility utilization are unavailable or incomplete.
To address this challenge, our study investigates the potential of trip distribution models in estimating
facility utilization based on the spatial distributions of population demand and facilities’ capacities
within a city. We first examine the extent to which traditional gravity-based and optimization-
focused models can capture population–facilities interactions and provide a reasonable perspective
on facility accessibility and provision. We then explore whether advanced deep learning techniques
can produce more robust estimates of facility utilization when data are partially observed (e.g.,
when some of the district administrations collect and share these data). Our findings suggest that,
while traditional models offer valuable insights into facility utilization, especially in the absence of
direct data, their effectiveness depends on accurate assumptions about distance-related commute
patterns. This limitation is addressed by our proposed novel deep learning model, incorporating
supply–demand constraints, which demonstrates the ability to uncover hidden interaction patterns
from partly observed data, resulting in accurate estimates of facility utilization and, thereby, more
reliable provision assessments. We illustrate these findings through a case study on kindergarten
accessibility in Saint Petersburg, Russia, offering urban planners a strategic toolkit for evaluating
facility provision in data-limited contexts.

Smart Cities 2024, 7, 2741–2762. https://doi.org/10.3390/smartcities7050106 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities7050106
https://doi.org/10.3390/smartcities7050106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0009-0009-1174-2505
https://orcid.org/0000-0001-9877-1687
https://orcid.org/0000-0001-5650-3182
https://orcid.org/0009-0000-5660-2893
https://orcid.org/0000-0001-6281-0656
https://doi.org/10.3390/smartcities7050106
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities7050106?type=check_update&version=2


Smart Cities 2024, 7 2742

Keywords: facility accessibility; urban mobility; trip distribution; gravity model; deep learning

1. Introduction

In modern cities, urban facilities constitute an integral part of urban infrastructure
that directly impacts socioeconomic development and the well-being of the population.
Among them, social facilities (providing educational, healthcare, recreational, and religious
services) hold particular significance as they fulfill fundamental population needs and
ensure a basic level of livability. Thus, one of the vital steps in cities’ socioeconomic and
spatial development lies in identifying potential gaps in social facilities provision, that
may occur due to mismatches in the spatial distribution of demand and supply in different
parts of a city. This, in turn, helps to effectively determine optimal locations for brand-new
facilities, thereby enhancing overall community well-being through improved accessibility
and distribution of essential services.

The location of social facilities is essential for their proximity to residential areas,
as they usually provide daily or urgent services [1,2]. For many of them, urban regulatory
standards and research institutions define a catchment area to specify how far away a
facility can be located to deliver a service to a given population [3–5]. Thus, assessing
social facilities provision frequently involves estimating the probability that residents in a
given city location will be served within a reasonable catchment area [6,7]. This probability
mainly depends on the presence of facilities nearby, their capacities, and how they are
allocated among the surrounding population. The latter reflects who exactly utilizes
facilities’ capacities and to what extent, providing the crucial information that sheds light
on the existing spatial disparities and their root causes.

Therefore, assessing social facility provision requires comprehensive data, including
information on population demand, urban infrastructure (such as places of demand–
supply concentration and road networks), and crucially, realized population–facilities
interactions. While data on population and urban infrastructure can often be sourced
from government data portals or mapping services, information on facilities’ utilization is
typically unavailable or limited to a small observation area. National statistical bureaus
currently do not release data on realized population interactions with any kind of facility,
and big tech companies remain hesitant to share their data on population movements.
At the same time, collecting such data across an entire city requires large-scale sociological
surveys or collaboration with local authorities and facility management, which is often
hampered by bureaucratic nuances. Consequently, urban experts grapple with incomplete
data regarding the utilization of facilities, which hinders the precise evaluation of social
facility provision within a city [8,9].

In response to this challenge, previous studies have developed various approaches
that leverage other available information to assess the facility’s accessibility and provision,
such as mapping catchment areas [10,11], computing travel impedance [12–14], calculating
population-to-provider ratios [15–17], and other approaches [18,19]. Among these approaches,
the Two-Step Floating Catchment Area (2SFCA) family of methods [20–24] has gained special
prominence due to its focus on spatial interactions between population and facilities. Its latest
modifications incorporate the Singly-Constrained Gravity Model [25]—the fundamental trip
distribution model traditionally used in transportation planning—to estimate potential
population interactions with facilities based on the spatial distribution of supply and
demand in a city. The estimated interactions are then used as a proxy of actual facility
utilization data in accessibility assessment, making it possible to apply the approach in
data-sparse environment.

However, despite its widespread use, the 2SFCA and similar approaches still face sig-
nificant limitations in estimating facility utilization. These include insufficient examination
of the impact of the distance decay function [26], a lack of consideration for competition
among population for limited facility capacity [27,28], and an inability to capture complex
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patterns of population behavior in urban settings [29–31]. Such limitations may compro-
mise the accuracy of accessibility assessments, potentially leading to sub-optimal urban
planning decisions. This establishes the need for an in-depth examination of existing trip
distribution models and the development of new ones specifically tailored for assessing
facility accessibility and provision in data-limited contexts.

To address these gaps and enhance the accuracy of facility provision assessments, our
study focuses on two primary research questions:

• First, we assess the extent to which traditional trip distribution models can accu-
rately capture and explain population–facility interaction patterns using only data on
demand–supply distribution and assumptions about mobility behavior. By identify-
ing the specific patterns the models can reveal, we enhance the transparency of these
models’ functionality and provide clearer guidance on their applicability, particularly
in scenarios where direct data on facility utilization are unavailable.

• Second, we investigate the potential of machine-learning-based trip distribution
models to uncover interaction patterns in observed data and generate more accu-
rate estimates of facility utilization. To improve the accuracy of population–facility
interaction predictions, we propose a novel deep learning model that accounts for
population competition over limited facility capacity. Our model demonstrates supe-
rior performance compared to other recently published methods and proves effective
in scenarios where data on facility utilization are only partially available, e.g., when
district administrations collect and share such data.

To conduct our analysis, we use the collected data on the demand and supply of
kindergarten services in Saint Petersburg, Russia.

Among the different traditional models applied to the trip distribution problem,
we consider the Allocation Model [32] and the Doubly Constrained Gravity Model [25],
which are most often found in practice. A key aspect of these models is their ability to
adhere to natural demand and supply constraints, ensuring that total population outflows
and inflows do not exceed the capacities of buildings and facilities. This property allows
accurate provision assessments without biases that might be posed by the spurious inflation
effect in demand or supply, as discussed in [27]. Both models consider population mobility
patterns, reflecting residents’ willingness to travel to a facility based on its remoteness.
However, they approach the trip distribution problem in fundamentally different ways:
the Allocation Model focuses on process optimization, while the Gravity Model uses
probabilistic inferences. Our study demonstrates that applying these models to estimate
population–facilities interactions offers a distinct perspective on provision assessments
within the study area, highlighting the importance of making context-specific decisions
when selecting a trip distribution model.

The availability of partly observed data on facilities’ utilization in some areas of a
city paves the way for the use of machine learning technologies to reconstruct popula-
tion behavior patterns, thereby enhancing the accuracy of facility provision assessments.
In our study, we investigate the effectiveness of Log–Linear Regression, the Deep Gravity
model [33], and its modification employing Graph Neural Networks (GNNs) [34,35] to
identify different interaction patterns and transfer them to previously unseen data. Based
on the in-depth examination of the existing benchmarks, we enhance the performance of
the GNN-based Deep Gravity Model through the incorporation of a balancing mechanism
to combine the robustness of the traditional constrained Gravity Model and the predictive
power of graph representation learning. Due to the absence of actual information on facility
utilization in collected data, in this part of the study, we conduct the experiments using
synthetic datasets on population–facilities interactions generated by the traditional trip
distribution models. The results obtained with synthetic datasets indicate that the enhanced
model outperforms the baselines and accurately predicts facilities’ utilization.

By comparing different traditional trip distribution models and adopting novel deep-
learning techniques to estimate population–facilities interactions, our study introduces a
comprehensive framework designed to assess the provision of social facilities in the context
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where data on facility utilization is absent or incomplete. In contrast to previous studies, we
emphasize the estimation of population–facility interactions as a critical, standalone step
that significantly influences the accuracy of facility accessibility and provision assessments.
Through accurate modeling of facility utilization, our framework uncovers targeted spatial
disparities between population demand and facilities’ capacities, facilitating informed
decision making regarding the optimal locations for new services. The adaptability of
this here-introduced framework allows for its application across different urban contexts,
providing urban planners, developers, and civil servants with a holistic tool to guide
long-term development strategies and ensure that growth is both sustainable and inclusive.

2. Materials and Methods

This section presents the methodologies employed to assess the provision of social
facilities in urban settings through the modeling of trip distribution when direct facility
utilization data are unavailable or incomplete. We begin in Section 2.1 by outlining the
approach used to assess facility provision levels across residential buildings and the impor-
tance of data on population–facilities interactions in this process. In Section 2.2, we describe
the collection and processing of the data necessary for estimating kindergarten utilization
and provision in Saint Petersburg, Russia. Finally, Section 2.3 details the application of
both traditional and machine-learning-based trip distribution models to estimate potential
population–facilities interactions. Among the traditional models, we cover the Linear
Allocation Model and the Doubly Constrained Gravity Model, which estimate population–
facility flows based on fixed demand–capacity constraints and a distance decay function.
Among the machine-learning-based models, we describe the Log–Linear Regression and
Deep Gravity family of models that predict interactions based on patterns identified from
partially observed data. Within the Deep Gravity group, we introduce our modification
of the Graph-based Deep Gravity Model, which incorporates demand–supply constraints
through a balancing mechanism to enhance prediction accuracy.

2.1. Assessing Social Facilities Provision

In the study, we assess the level of provision for each residential building where the
demand for the service provided by the considered type of facility is greater than zero.
The level of facility provision pi is evaluated as the probability of being served within a
facility’s catchment area defined by urban regulatory standards, usually as walking time
or distance. The catchment area limits the territory within which people typically would
apply for a service. Depending on urban regulatory standards, the facility’s catchment
area can impose strict restrictions in terms of serving the population living outside of
it [36] or apply only for planning purposes and ensuring public safety and well-being [37].
Generally, the lack of facilities or spare capacity in proximity to residential buildings forces
people to obtain a service at a greater distance or look for other ways to satisfy their needs.
Nevertheless, in the proposed framework, we deem that people are not provided for by the
required facilities if they do not obtain service within a distance, defining a catchment area.

pi =
Pi
Oi

=
∑j f (yij)

Oi
, if Oi > 0,

f (yij) =

{
yij, if dij ≤ ra

0, if dij > ra.

(1)

In Equation (1), for every building, i, the denominator represents the total number of
people, Oi, who need a specific service; in the nominator, Pi reflects how many of them can
obtain it within a catchment area. In this way, Pi can be represented as the total number of
interactions, yij, of the population from building, i, with facilities, j, located at a distance, dij,
up to a certain radius, ra, limiting a catchment area. In the context of facility utilization, each
“interaction”—or, more generally, “trip”—implies commuting and receiving a service in a
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specific facility. In some of the literature on human mobility, trips between two locations
are referred to as population “flow”, emphasizing their aggregated nature [38].

We estimate the population flows by employing traditional trip distribution models,
such as the Linear Allocation Model and Doubly Constrained Gravity Model, as well
as machine learning techniques, as represented by the Log–Linear Regression and Deep
Gravity family of models. These are discussed in the following subsections. All models
distribute trips based on the prior information about the demand in each residential
building i, the capacity of each facility j, and walking distances between i and j.

2.2. Data Collecting and Processing

The data collected for the study cover the territory of Saint–Petersburg and include
information about kindergartens (locations, capacities, and catchment area), residential
buildings (locations and demand), and the distances between them.

Information on 1264 kindergartens was obtained from mapping services Open Street
Map (OSM) [39] and Google Maps [40]. The approximate capacity of each kindergarten was
determined by analyzing the standardized building type visible in satellite imagery. While
the normative radius for a kindergarten’s catchment area in Russia is established at 300 m,
this study adopted an expanded catchment distance of 600 m. This adjustment was based
on survey results indicating that a doubled distance better reflects acceptable commuting
times for parents. The discrepancy between the normative and empirical catchment areas is
attributed to significant deviations from regulatory standards in the layout of kindergartens
in Saint Petersburg, leaving a substantial portion of the population outside the 300-m
catchment areas.

The target population group was children aged 3–6 years. To determine the size
of this group, we retrieved the social and demographic characteristics of the population
in each district from Russian census data [41], and then disaggregated this information
from the district level to the individual buildings. Based on the open-access housing
data [42], we identified 18,023 residential buildings. During the data disaggregation
process, the total population for each district was distributed among its buildings based
on factors correlated with population density, particularly the approximate living area of
each building. The relationship between a building’s population and its living area was
determined using city standards, which set the minimum living area per person at 15 m2.
The number of children in the target age group within each residential building was then
calculated by multiplying the estimated building population by the proportion of children
in the district’s population.

To consider the influence of distance on willingness to attend a kindergarten, we
computed a distance matrix containing information about walking distance from each
building, i, to each kindergarten, j, based on the city road network collected from OSM.
As the next step, we applied logical masking to the distance matrix and selected its elements,
which stood for a distance less than the radius of the kindergarten’s catchment area.

For the graph-based trip distribution models, we transformed the data into a directed
bipartite graph (Figure 1). The distance matrix, DM, described the weighted adjacency
matrix of the graph where nodes stood for kindergartens and residential buildings while
edges represented connections between them. The node’s features, h, contained information
about its type and quantitative property—the capacity for nodes representing kindergartens
or the number of target population for nodes representing residential buildings. Edge’s
features included walking distance, dij, and the number of interactions between nodes
yij—in other words, the number of people from the building, i, who obtain a service in the
kindergarten, j. The whole graph consisted of 19,287 nodes, 53,441 edges, and 122 connected
components constituted from nodes of disjoint sets. Each connected component in the
graph represented a closed system, which means that the distribution of the population
between the kindergartens in one connected component could not affect the same process
in another component.
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 - building
 - facility

(a) (b)

Nodes:

Edges:
- populaƟon interacƟons

Figure 1. Data. (a) Graph representation of the data. (b) Connected components of the graph and
nodes of disjoint sets.

2.3. Location–Allocation Model

Within the scope of trip distribution, the Location–Allocation Model has been widely
used in transportation planning [43,44], modeling facilities’ utilization [45,46], and devel-
oping emergency strategies [47] to find the most suitable location for a new supply point
(i.e., the location part) or efficiently allocate available resources between demand points
(i.e., the allocation part). The core principle of the Allocation Model is based on optimizing
the objective function subject to certain constraints. Applying the Allocation Model to
estimating facilities’ utilization suggests formulating the objective function that maximizes
the overall satisfaction of the population’s needs, which, in turn, implies maximizing the
total number of interactions yij while minimizing their distance, dij, (Equation (2)).

maximize
m

∑
i=1

∑
1≤j≤n
dij<ra

ŷi,j

dij
,

∑
1≤j≤n
dij≤ra

ŷi,j ≤ Oi, i = 1 . . . m,

∑
1≤i≤m
dij≤ra

ŷi,j ≤ Dj, j = 1 . . . n,

(2)

where m and n denote the numbers of residential buildings and facilities, respectively;
ŷi,j represents the estimated number of interactions between a residential building, i, and
the facility, j, as separated by distance, dij, up to ra. Oi stands for the demand in building i
and Dj stands for the capacity of facility j.

By maximizing the objective function, the model allocates as much population as
possible across facilities while adhering to natural constraints. These constraints ensure
that the total interactions originating from each building, i, do not exceed its demand,
Oi (with the assumption that a resident can engage with only one facility), and that the
total interactions with each facility, j, do not surpass its capacity, Dj (preventing facility
overloading). The non-strict inequalities accommodate potential capacity shortages or
surpluses: in the former scenario, a portion of the population remains non-allocated in
buildings; in the latter, some facility capacity goes underutilized.
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This mathematical formulation constitutes an integer linear programming where all
variables ŷi,j are constrained to be non-negative integers. To solve this, we employ the
COIN Branch and Cut solver implemented in the open-source Python library PuLP for
linear optimization [48].

2.4. Doubly Constrained Gravity Models

Diverging from the optimization-focused approach of the Linear Allocation Model,
the Gravity Model offers a probabilistic perspective on spatial interactions rooted in the
analogy to Newton’s law of gravity [25]. The Gravity Model (Equation (3)) posits that the
interaction between two places, ŷij, is proportional to their respective “masses”, M (e.g.,
area, population count, number of points of interest, and others), and inversely propor-
tional to some power of the distance, dij, separating them. In the distance decay function,
f (dij), the parameter β refines the influence of distance on the number of interactions
between locations.

ŷij ∝
Mi Mj

f (dij)
, where f (dij) = dβ

ij or f (dij) = exp(βdij), (3)

Singly and doubly constrained versions of the model have been developed to adjust
the total population outflows and inflows with respect to the fixed demand or/and supply
conditions. The Doubly Constrained Gravity Model (Equation (4)), in particular, has been
derived as a special case of the Entropy Maximizing Model, which aims to maximize the
disorder or randomness of the trips, subject to certain constraints [49].

ŷi,j = AiBjOiDjd
β
ij,

Ai =
1

∑
j=1

BjDjd
β
ij

; Bj =
1

∑
i=1

AiOid
β
ij

, (4)

where Oi and Dj represent the cumulative population flows originating in the residential
building, i, and arriving to the facility, j, respectively; Ai and Bj indicate the origin and
destination balancing factors.

In Equation (4), the balancing factors Ai and Bj ensure that the estimated interactions
align with the demand and capacity constraints. These factors are typically calculated
using the Iterative Proportional Fitting (IPF) procedure, which adjusts the elements of
the origin–destination matrix to match specific row and column totals. However, when
dealing with large and dense spatial interaction matrices, IPF often encounters significant
numerical stability and convergence issues [50]. In particular, the balancing factors can
become extremely small, causing most matrix elements to turn to zero. During our study,
when modeling the population flows between residential buildings and facilities in a large
city, IPF failed to converge. To address this issue, we implemented a custom algorithm for
balancing the origin–destination matrix, as detailed in Appendix A.

2.5. Log–Linear Regression

Log–Linear Regression, when employed to predict the number of interactions between
two locations, emerges as another form of the unconstrained Gravity Model [51]. In essence,
Log–Linear Regression linearizes the multiplicative relationship between flow and its
determinants by taking the natural logarithm of both sides of Equation (3) and turning the
product of variables into a sum of their logs (Equation (5)). This transformation helps easily
estimate the coefficients that describe the influence of locations’ masses and the distance on
the population flows.

ln ŷi,j = a1 ln Oi + a2 ln Dj − β ln dij + b, (5)
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where the coefficients a1, a2 represent the origin and destination effects; β denotes the
calibration parameter of the distance decay function; b is the intercept.

2.6. Deep Gravity Model

2.6.1. Original Deep Gravity Model

In their original paper [33], F. Simini et al. described the derivation of the Deep Gravity
Model, adding nonlinearity and hidden layers to the traditional Gravity Model. We adopted
the architecture of the model for estimating population–facilities interactions the following
way: for each building–facility pairing, we define an input vector, xij, by concatenating the
population demand, Oi, the facility’s capacity, Dj, and the distance, dij. These input vectors
are fed in parallel to a feed-forward neural network (FNN) (Equation (6)).

xij =
(
Oi, Dj, dij

)
,

ŷi,j = σ(xijWT + b).
(6)

where W represents a linear transformation weight matrix; b stands for a bias; σ denotes
the nonlinear activation function.

The original Deep Gravity Model includes four hidden layers of 32 dimensions with a
dropout parameter equal to 0.20, the LeakyReLU activation function, and layer normaliza-
tion. We used fewer hidden layers with lower dimensions compared to the original model’s
architecture [33] to avoid overfitting, considering a smaller number of location features.
The last layer maps the hidden state into a one-dimensional vector with the predicted
number of interactions limited by the ReLU activation function with the interval [0, ∞).

2.6.2. GNN-Based Deep Gravity Model

The integration of Graph Neural Networks (GNNs) marked the next step in the
evolution of trip distribution models, owing to their inherent strength in handling graph-
structured data. Studies such as [34,35] proposed incorporating Graph Attention Net-
works (GATs) [52] to learn node embeddings that encapsulate latent geographic context
information. GAT embeddings enhanced the original Deep Gravity Model by capturing not
only nonlinear relationships but also structural dependencies within the data, which was
achieved through the recursive aggregation of features from each node’s neighborhood.
This capability of GAT is particularly advantageous for predicting population–facility inter-
actions, where an individual’s choice of a facility is influenced not only by its proximity and
inherent characteristics but also by the availability and attractiveness of alternative options.

To encode geospatial dependencies into node embeddings, we include in the model
two layers of multi-head GAT operating on a directed bipartite graph representing con-
nections between residential buildings and facilities. Each GAT layer performs two con-
volutions but with different message-passing directions (from origin to destination and
from destination to origin) to learn representations of nodes of each type. The multi-
head attention mechanism executes five independent transformations. As recommended
in [52], the first layer of GAT concatenates new node embeddings, while the second layer
averages them (Equation (7)). Each GAT layer contains 128 neurons, 5 attention heads,
the LeakyReLU activation function, a dropout parameter of 0.2, and layer normalization.

h′i =
k=5∥∥∥
k=1

σ

 ∑
j∈N (i)

α′
k
ijW
′khj

,

h′′i = σ

 1
K

K=5

∑
k=1

∑
j∈N (i)

α′′
k
ijW
′′kh′j

,

(7)

where hj is the input features of node j located in the neighborhood of node i; W ′k and

W ′′k stand for the linear transformation weight matrices; α′kij and α′′kij represent attention
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coefficients computed by the k-th attention head for nodes i and j; h′i and h′′i denote node
embeddings on the first and the second layers, respectively.

The learned node embeddings h′′i and h′′j and the averaged attention coefficients α′′ij, α′′ji
are included in the input vector xij fed in parallel to the FNN (Equation (8)).

xij =
(

dij, Oi, Dj, h′′i , h′′j , α′′ij, α′′ji

)
,

ŷi,j = σ(xijWT + b),
(8)

The FNN block includes four hidden layers of 64 dimensions with a dropout parameter
equal to 0.2, the LeakyReLU activation function, and layer normalization. The output layer
returns a one-dimensional vector with the predicted number of interactions limited by the
ReLU activation function.

2.6.3. Constrained GNN-Based Deep Gravity Model (Our Modification)

Preserving the core architecture of the GNN-based Deep Gravity Model, we addition-
ally incorporate the balancing mechanism inspired by the traditional Doubly Constrained
Gravity Model (Figure 2). The idea of a balancing mechanism lies in the iterative adjustment
of predicted flows to fixed totals on both sides: origin node’s population and destination
node’s capacity. This is performed by incorporating a simple recurrent block that, at each
step, t, processes the predicted flow ŷij between nodes i and j, the sum of outflows from
node i, the sum of inflows to node j, and the natural constraints on the total outflows Oi
and inflows Dj.

dij

GAT (o-​d)

GAT (d-​o)

hi

aij

hi

aij

+ + σ

σ

x

update  .

output

+ agg

Figure 2. Model architecture. A directed bipartite graph is treated as an input to the multi-head
GAT that learns attention coefficients and nodes’ embeddings. For every edge, an input vector is
obtained by concatenating the travel distance between nodes dij, their input features Oi, Dj, learned
embeddings h′′i , h′′j , and the averages of attention coefficients α′′ij, α′′ji. Edges’ input vectors are fed
to the FNN to predict population flows, which are subsequently balanced in the recurrent block
(the yellow frame in the figure). On each step of the recurrent block, first, the predicted flows are
aggregated over the origin and destination nodes. Next, for each edge, the total predicted inflows
and outflows are concatenated with other edge-related features: distance dij, origin’s population Oi,
and destination’s capacity Dj. The resulting vectors are passed to the shallow FNN, computing the
flows’ balancing factors. Finally, the updated population flows are obtained by the multiplication of
their previous values and corresponding balancing factors.

In the recurrent block, we first concatenate the flow-related variables into an input
vector vij and then pass it through a shallow FNN with a nonlinear activation function.
By analogy with the Doubly Constrained Gravity Model, FNN computes the balancing
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factor zij for each flow. The adjusted flow is obtained by the multiplication of its previous
value, and the balancing factor computed on the current step t (Equation (9)).

v t
ij =

ŷ t
ij, ∑

j∈N (i)
ŷ t

ij, ∑
i∈N (j)

ŷ t
ij, Oi, Dj

,

z t
ij = σ(v t

ijW
t + b t),

ŷ t+1
ij = z t

ijŷ
t

ij.

(9)

The FNN in the recurrent block includes one hidden layer of 64 dimensions, ReLU
activation function, and a dropout parameter equal to 0.2. The number of steps in the
recurrent block may vary depending on the data. In the experiments, we tested the model
with 1 to 10 steps. Besides the recurrent block, the rest of the model’s architecture and
parameters setting are the same as for the unconstrained GNN-based Deep Gravity Model.

3. Results

In the following, we evaluate the effectiveness of the previously described trip dis-
tribution models in accurately estimating urban accessibility and the provision of social
facilities. This evaluation is crucial for ensuring that these models can reliably guide ur-
ban planning decisions, particularly in situations where direct data on facility utilization
are incomplete or unavailable. In Section 3.1, we begin by examining the outcomes of
the Linear Allocation Model and Doubly Constrained Gravity Model in estimating the
provision of kindergartens in Saint Petersburg, Russia. Section 3.2 then delves into the
performance of the Log–Linear Regression and Deep Gravity models, with a focus on their
ability to uncover mobility patterns within synthetic datasets. For each model, we assess
the accuracy of facility utilization estimates and analyze how these estimates impact the
overall assessment of facility provision.

3.1. Modeling Facilities’ Trip Distribution

In situations when data on the actual utilization of urban facilities is absent, the Alloca-
tion Model and Doubly Constrained Gravity Model emerge as crucial tools for estimating
population–facilities interactions. We compared both models and uncovered how each of
them interprets the engagement between populations and urban infrastructure, highlight-
ing their unique perspectives on urban dynamics.

Figure 3a depicts an example territory of six adjacent blocks in Saint Petersburg, Russia.
Within this territory, 41 kindergartens with capacities from 12 to 300 places are aimed to sup-
ply 11,260 people. The population-to-provider ratio, calculated as the ratio between overall
facilities’ capacities and the population demand inside the overlapping catchment area,
reveals the capacity shortage in these territories. According to the calculation, 10 percent
of the target population are not provided with kindergartens. In order to identify where
precisely unprovided people stay, we applied the Linear Allocation Model and the Doubly
Constrained Gravity Model to distribute the target population of residential buildings
between available kindergartens with catchment areas equal to 600 m. Figure 3b,c presents
the results of the performed trip distribution along with the assessments calculated by
Equation (1). In the example, the provision assessments obtained with both trip distribution
models indicated the problem areas primarily in the central, southeast, and northeast parts
of the territory (Figure 3d).

Although both trip distribution models revealed the same problem areas, they yielded
different provision assessments for most of the population across the city. As can be seen
from Figure 3e, provision assessments based on trip distribution performed by the Linear
Allocation Model split the urban population roughly into two groups—those provided
(pi = 1) and unprovided (pi = 0) with the service. The reason for this is the model’s
optimization function (Equation (2)), while maximizing the overall satisfaction of popu-
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lation needs, the function seeks to assign the nearest facility to the maximum number of
people from each residential building. As a result, according to the model, the population
living closer to facilities reserves all available capacities, not leaving such an opportunity
for people from more remote areas. In contrast, provision assessments obtained by the
Doubly Constrained Gravity Model with parameter β = 0, as shown in Figure 3f, look
more uniformly distributed on the whole interval [0, 1]. This is explained by the model’s
parameter β, which, in this case, eliminates the influence of distance within the catchment
area on willingness to travel to a facility. Thus, this model aims to allocate capacity from
each facility equally between buildings within their catchment area.

The difference in provision assessments comes from the difference in distance dis-
tributions of trips generated by each model. The Linear Allocation Model, aiming to
minimize the overall travel distance across the population, implies that people tend to
make shorter trips, as evidenced by the similarity between the graphs representing the
distance distributions of trips to the nearest facility and the trips to the facility assigned by
the model in Figure 3g,h. A strong inverse dependence of trip probability on the distance
practically assumes the priority of servicing people living closer to facilities and, thus,
reflects the extreme view of the potential inequity in a city. On the other hand, the Doubly
Constrained Gravity Model provides a more adjustable way for trip distribution. By vary-
ing the parameter β in the distance decay function, the people can be distributed between
facilities either equally with β = 0 (Figure 3i) or in proportion to the distance to them if
β > 0 (see Figure A1). Reducing the distance factor to zero increases the gyration radius
of population trips from each building and skews distance distribution to the left. Such
population reallocation relieves the load on the facilities from the nearest buildings and
allows people from more remote areas to apply for the service within the catchment area.

The distinct outcomes of the Linear Allocation Model and the Doubly Constrained
Gravity Model highlight how different assumptions about population behavior may in-
fluence urban planning decisions, such as the strategic placement of new facilities. When
applying these models to assess facility provision, it is crucial to consider the specific
interaction patterns between the population and the type of facility in question. The Linear
Allocation Model, which prioritizes minimizing travel distance, is particularly effective
in scenarios where individuals strongly prefer or are mandated to utilize the nearest facil-
ity, such as in the absence of personal transportation or due to regulatory requirements.
Conversely, the Doubly Constrained Gravity Model is advantageous in contexts where
individuals are less constrained by distance, allowing them to opt for less crowded or more
desirable facilities, even if they are farther away. According to the experiments, the above-
described difference in outcomes of these trip distribution models is most noticeable within
the area of capacities’ mild deficiency. In case of capacities’ extreme shortage or, on the
contrary, its abundance, the difference diminishes, which seems logical as in these states,
most people will be either severely unprovided or fully satisfied regardless of how they
were distributed between facilities (see Figure A2).

Along with the selected model, the predefined catchment area also significantly influ-
ences the perception of facility provision within a city by setting strict limits on acceptable
commuting time or distances. Smaller catchment areas tend to lower provision estimates by
excluding a substantial segment of facilities located beyond accessible zones. Conversely,
larger catchment areas can potentially increase provision estimates by assuming that people
are willing to travel greater distances to access services in less populated or better-equipped
areas, while the latter approach might present more positive outcomes, it can, however,
foster unrealistic expectations about the population’s commute patterns. It is thus crucial to
carefully assess and justify the size of the catchment area to balance the need for accessibility
with realistic travel behaviors in order to ensure equitable and practical urban planning.

In summary, applying traditional trip distribution models, such as the Allocation
Model and the Doubly Constrained Gravity Model, offers a straightforward yet flexible
approach to replicating population–facility interactions based solely on proximity to facili-
ties. However, these models, while effective in capturing basic spatial relationships, require
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careful calibration of the distance decay function and the size of a catchment area, reflecting
population mobility patterns, to ensure accurate provision assessments. Additionally, their
ability to predict facility utilization is limited by the exclusion of other critical factors,
such as the type, quality, cost, and reputation of the services offered by the facilities. This
limitation suggests that, while traditional models can provide useful insights—particularly
in data-sparse environments—they may not fully capture the complexity of real-world
population–facility interactions.

 - building
 - facility

Figure 3. Comparison of trip distribution models. (a) Overlapping catchment areas of kindergartens
located in six adjacent blocks (highlighted by blue area). The population-to-provider ratio indicates
that based on available capacities, 10 percent of the target population living within this territory lacks
access to kindergartens. (b,c) Provision assessments for each building in the territory using the Linear
Allocation Model (LAM) and the Doubly Constrained Gravity Model (DCGM), respectively. On the
map, each point represents a residential building, and each square marker depicts a kindergarten.
The color of the points indicates the level of facility provision. The sizes of the points and square
markers denote the unprovided population and kindergarten capacity, respectively. Lines connecting
markers represent population–facility interactions. (d) Revealed problem areas where residents lack
sufficient kindergarten capacities (highlighted by red areas). (e,f) Distribution of provision assess-
ments across the entire target population of the city obtained with LAM and DCGM, respectively.
(g) Distance distribution from each building to the nearest kindergarten within the catchment area.
(h,i) Distance distributions of trips to kindergartens obtained with LAM and DCGM, respectively.
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3.2. Predicting Facilities’ Trip Distribution

Altering parameters of the traditional trip distribution models enables us to analyze
the level of facilities provision across a city from multiple perspectives, considering various
assumptions about residents’ behavior. However, to obtain simulation results that accu-
rately reflect real-world facility provision, it is crucial to understand the dominant patterns
of interaction between the population and different types of facilities. When dealing with
partially observed data on population–facilities interactions, leveraging machine learning
technologies can help uncover these patterns and provide more accurate insights.

We analyzed the effectiveness of four machine-learning models in identifying pop-
ulation mobility patterns when interacting with urban facilities. Among these models,
the Log–Linear Regression (LLR) and Deep Gravity Model (DGM) represent classic solu-
tions for the regression task of predicting the number of travelers between two locations.
On the other hand, increasingly popular Graph Neural Networks appear to be a new
state-of-the-art model for representation learning in many domains, where data can be
described in the form of graphs. Thus, we additionally considered the Deep Gravity Model
enhanced with GAT embedding (GNN-DGM). Lastly, we tailored the GNN-based model
for a doubly constrained task by integrating a balancing mechanism and evaluated this
adaptation as our fourth model (C-GNN-DGM). For a better understanding of the effect
that the balancing mechanism exerts on the model’s performance, we tested the model
with a different number of balancing steps.

Due to the absence of actual information on urban facilities utilization, for the experi-
ments, we employed the data on population distribution between kindergartens generated
by the Linear Allocation Model and Doubly Constrained Gravity Model. When employing
the Gravity Model, the datasets were built upon the distance decay function with the
varying parameter, β, which enabled us to examine and compare how well the models can
distinguish different mobility patterns. To train and test the models, we performed the
repeated k-fold cross-validation technique with random splits. Each dataset was shuffled
and split into five folds that contained an equal number of connected components of the
graph representing population–facilities interactions. Four folds were used to train the
models, and the fifth one to test them. The overall process of cross-validation was repeated
10 times to capture the inherent variability in the performance due to different initializations
and data sampling.

We assumed that the number of interactions between locations i and j follows a Poisson
process [53]. Thus, all of the machine-learning models were optimized by the Negative
Log–Likelihood function (Equation (10)). Additionally, we reported the evaluation metric
of the Common Part of Commuters (Equation (11)), which is widely used in network
analysis to compute the similarity between the observed flows yij and predicted flows
ŷi,j [33]. The CPC value ranges from 0 to 1 within a closed interval. A CPC of 1 indicates
a perfect match between the observed and predicted flows, while a CPC of 0 emphasizes
poor model performance, indicating no alignment.

NLL =
n

∑
i=1

m

∑
j=1

(
ŷij − yij log ŷij

)
(10)

CPC =
2 ∑i,j min(ŷij, yij)

∑i,j ŷij + ∑i,j yij
(11)

Table 1 contains the average values and 95% confidence intervals of evaluation metrics
values over 10 independent models’ runs for two datasets generated by the Allocation
Model and Doubly Constrained Gravity Model with β = 0. The evaluation metrics for
datasets with β > 0 are presented in Table A1. The values in bold indicate the best
performance among the models.
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Table 1. Models’ in-sample and out-of-sample performance.

Model In-Sample Performance Out-of-Sample Performance

NLL CPC NLL CPC

Integer Linear Programming

LLR −5.935 ± 0.360 0.396 ± 0.002 −6.955 ± 0.96 0.398 ± 0.003

DGM −6.932 ± 0.389 0.557 ± 0.003 −8.002 ± 1.067 0.554 ± 0.005

GNN-DGM −7.88 ± 0.402 0.666 ± 0.013 −8.926 ± 1.125 0.657 ± 0.014

C-GNN-DGM (t = 1) −8.246 ± 0.411 0.687 ± 0.011 −9.383 ± 1.176 0.679 ± 0.013

C-GNN-DGM (t = 7) −9.08 ± 0.457 0.769 ± 0.01 −10.289 ± 1.272 0.761 ± 0.012

Doubly Constrained Gravity Model (b = 0)

LLR −4.585 ± 0.267 0.743 ± 0.002 −5.438 ± 0.738 0.740 ± 0.007

DGM −4.629 ± 0.251 0.745 ± 0.003 −5.482 ± 0.737 0.743 ± 0.008

GNN-DGM −5.002 ± 0.268 0.798 ± 0.003 −5.832 ± 0.746 0.791 ± 0.006

C-GNN-DGM (t = 1) −5.099 ± 0.257 0.822 ± 0.006 −5.975 ± 0.78 0.816 ± 0.011

C-GNN-DGM (t = 4) −5.189 ± 0.281 0.844 ± 0.005 −6.087 ± 0.764 0.843 ± 0.008

The patterns in the models’ performances were consistent over different generated
datasets. The gradual improvement of evaluation metrics in the baseline models aligned
with the results reported in other studies. The Deep Gravity Model increased the predictive
accuracy compared to Log–Linear Regression due to the nonlinear recombinations of the
locations’ features. The incorporation of GNN embeddings into the model led to significant
performance improvement relating to the recognition of structural dependencies in data.
The further advancement of the model was achieved through the implementation of the
balancing mechanism suggested in the paper. An evident boost in predictive accuracy
was achieved with four–seven recurrent steps in the balancing mechanism. According to
the experiments, a subsequent increment in the number of steps resulted in the accuracy
stagnation or decrease (see Figure A3).

The higher accuracy of predicted population–facilities interactions eventually trans-
lated into the higher accuracy of provision assessments. In Figure 4a,b, the scatter plots
illustrate the predicted versus the observed number of people in each building provided
with kindergarten services, Pi, according to the GNN-DGM and C-GNN-DGM models.
For each dataset, the predictions made by the constrained model were more densely concen-
trated near the best-fit line and characterized by higher R-squared scores, which indicate
a closer alignment with the observed values. However, all machine learning models,
including the constrained one, allowed for some inflation in cumulative in-going and
out-going flows, as can be seen from the left side of the distributions in Figure 4c,d,i,f.
In other words, the sum of the predicted out-going or in-going flows for some locations
appeared to be higher than the corresponding demand or supply. This happened due to
the absence of strict double-constraints that could only be set in mathematical models. Yet,
the implementation of the balancing mechanism in the constrained version of the Deep
Gravity Model helped significantly decrease the mean inflation in both supply and demand
nodes. To assess the difference in mean inflation error between models, we conducted
10 independent runs of each model. For the accumulated inflation errors, we employed a
one-tailed bootstrap hypothesis test that was suitable due to the non-normal distribution of
inflation errors. Details of the test procedure are available in Table A2.

Overall, the experimental results revealed the Constrained Graph-based Deep Gravity
Model’s strong capability to reconstruct population mobility patterns and accurately predict
trip distribution. This effectiveness underscores the power of constantly evolving deep
learning models in capturing intricate dependencies inherent in population interactions
with urban facilities. These interactions are shaped not only by population mobility patterns
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but also by factors such as the type of services offered, their importance, quality, costs,
the facility’s reputation, and other factors not covered in this study due to the lack of more
comprehensive and granular datasets. With access to such information, it would be possible
to enrich the bipartite graph of population–facilities interactions with additional node and
link features, thereby allowing the proposed model to learn more nuanced dependencies
in data and gain a more detailed insight into urban facility utilization. In this context,
deep learning models prove indispensable in accounting for this broad spectrum of factors,
compared to the traditional trip distribution approaches limited by their more simplistic
assumptions and inability to incorporate such a wide array of influencing factors.

With access to more comprehensive and granular datasets, it would be possible to
enhance the bipartite graph of population–facility interactions with additional node and
link features. This would enable the model to learn more nuanced dependencies and
provide deeper insights into urban facility utilization. In this regard, deep learning models
are invaluable, offering a more robust framework for accounting for a broad range of influ-
encing factors compared to traditional trip distribution approaches, which are constrained
by simpler assumptions and a limited capacity to incorporate such diverse variables.

Provision assessment (predicted vs actual)
in DCGM-generated data

(a)

Provision assessment (predicted vs actual)
in LAM-generated data

(b)

The distribuƟon of differences between 
kindergartens’ capaciƟes and in-going flows

in DCGM-generated data

The distribuƟon of differences between 
kindergartens’ capaciƟes and in-going flows

in LAM-generated data

The distribuƟon of differences between 
demand in buildings and out-going flows

in DCGM-generated data

The distribuƟon of differences between 
demand in buildings and out-going flows

in LAM-generated data

(c) (e)

(d) (f)

Figure 4. Comparison of GNN-DGM and C-GNN-DGM predictions. (a,b) The scatter plots of the
predicted versus observed number of people in each building provided with kindergarten services.
(c,d) The distribution of differences between facilities’ capacities and in-going flows. (e,f) The
distribution of differences between demand in buildings and out-going flows.

4. Discussion and Conclusions

In pursuit of sustainable urban development, our study highlights the crucial role of
both traditional and machine-learning-based trip distribution models in enhancing our
understanding of social facility accessibility and provision, especially when dealing with
incomplete data on facility utilization. By applying the Allocation Model and the Doubly
Constrained Gravity Model to estimate population interactions with kindergartens, we
demonstrate how differing assumptions about population commute patterns within these
traditional models can yield varied assessments of facility provision within the same urban
areas. Our results show that, particularly in regions with mild shortage of facility capacities,
these models provide contrasting insights into urban dynamics, emphasizing the need
for careful selection of the appropriate analytical approach and its calibrated parameters,



Smart Cities 2024, 7 2756

which aligns with the findings presented in [26]. The models’ comparative analysis and
interpretation provided in this study aim to equip urban experts with the knowledge to
make informed decisions regarding model selection and calibration based on prevalent
population behavior patterns.

Revealing patterns in population interactions with a specific type of facility to calibrate
a mathematical model often presents an additional challenge. While some facilities, such as
kindergartens, primary schools, and other childcare services, may exhibit similar interac-
tion patterns, others—like healthcare centers or recreational areas—may require distinct
approaches due to differing usage characteristics and influencing factors. For instance,
healthcare facility utilization is often influenced by urgency and specialization, whereas
recreational facilities might depend on demographic preferences. In such cases, the ap-
plication of machine learning technologies becomes invaluable. With access to partially
observed data on facilities’ utilization in some districts of a city, one can train a deep
learning model to calibrate appropriate parameters and unveil hidden dependencies within
the data. In the study, we develop and train the novel Constrained Deep Gravity Model to
predict population interaction with kindergartens, accounting for natural limits in supply
and demand inherent to such tasks [46,54]. The experiment results show that the proposed
model outperforms the unconstrained version of the Deep Gravity Model, increasing the
accuracy of predicted flows and, thereby, provision assessments. The significant improve-
ment over baselines is achieved due to the mitigation of flow inflation errors, first discussed
in [27], through the direct learning of balancing coefficients.

While our work makes important contributions to the area of equitable urban planning
and development, it comes with certain limitations. Firstly, in this study, we concentrate
solely on kindergarten services within a single city to ensure a controlled environment
and feasible data collection. Therefore, despite the inherent adaptability of the discussed
framework, further research is needed to confirm its generalizability across different types
of social facilities and varied urban contexts. Secondly, it has to be noted that the machine-
learning experiments employ synthetic datasets generated through mathematical trip
distribution models, as real data on facility utilization were unavailable. While we ac-
knowledge that the simulated data might not perfectly mirror reality, they still provide a
valuable foundation for testing the capabilities of deep-learning models to identify different
mobility patterns in population–facilities interactions. This initial exploration not only
demonstrates the potential of these models but also lays the groundwork for future research
that could leverage more precise data across the broad range of geographical areas for
further validation and enhancement.
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Abbreviations
The following abbreviations are used in this manuscript:

OSM Open Street Map
LAM Linear Allocation Model
DCGM Doubly Constrained Gravity Model
GNN Graph Neural Network
FNN feed-forward neural network
GAT Graph Attention Network
LLR Log–Linear Regression
DGM Deep Gravity Model
GNN-DGM Graph-Neural-Network-Based Deep Gravity Model
C-GNN-DGM Constrained Graph-Neural-Network-Based Deep Gravity Model

Appendix A

Custom Implementation of Doubly Constrained Gravity Model

Since the classic IPF procedure failed to converge when calculating the balancing
factors in Equation (4), we developed a custom algorithm to balance the origin–destination
matrix for the Doubly Constrained Gravity Model.

The algorithm operates on an iterative principle. In the first step (Equation (A1)), we
calculate the probability po

ij for each building, i, of visiting facilities S = {s1, s2, .., sk, .., sn}
with capacities D = {c1, c2, .., ck, .., cn}. Simultaneously, for each facility j, we deter-
mine the probability pd

ij of serving buildings H = {h1, h2, .., hl , .., hm} with demands
O = {o1, o2, .., ol , .., om}:

po
ij = f (dij)/

n

∑
k=1

f (dik) if dij ≤ ra, otherwise po
ij = 0,

pd
ij = f (dij)/

m

∑
k=1

f (dkj) if dij ≤ ra, otherwise pd
ij = 0,

(A1)

where the distance decay function f (dij) takes the form of power law d−β
ij with free param-

eter β, which we set manually.
The number of interactions between each building and facility pair (e.g., hi=l and sj=k)

is sampled twice using the probabilities Pl j = {pl1, pl2, .., plk, .., pln} and
Pik = {p1k, p2k, .., plk, .., pmk}. The minimum of the two sampled values is taken as the
resulting number of interactions in the current step (Equation (A2)).

ylk = min

(
Ol

∑
j=k

Pl j(S),
Dk

∑
i=l

Pik(H)

)
. (A2)

Applying the minimum function ensures that the entire system of interactions remains
within the upper limits of demand and capacity, but it can lead to the under-allocation
of resources on one side. To address this flaw, we calculate the remaining resources by
subtracting the total allocated demand and capacity from their initial values (Equation (A3))
and then resample the number of interactions (Equation (A2)).

Oi := Oi −
m

∑
j=1

yij, Dj := Dj −
n

∑
i=1

yij. (A3)

The process is repeated until all demand or capacities are fully allocated. The estimated
number of interactions between each building and facility pair is calculated as the sum of
the values obtained in each iteration.



Smart Cities 2024, 7 2758

This algorithm retains the core features of the Doubly Constrained Gravity Model,
such as the probabilistic approach and adherence to constraints, while offering faster
convergence and improved numerical stability.

Appendix B
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Figure A1. Distance distributions of trips to facilities obtained with the Doubly Constrained Gravity
Model (DCGM). The free parameter β determines the influence of distance (within a catchment area)
on the likelihood of people visiting a facility. Low values of β imply a weak distance effect meaning
residents are more willing to travel longer distances and can potentially reach more facilities. Thus,
in scenarios where distance has little impact on the willingness to attend a facility, the majority of
people are distributed between facilities that are farther away from their homes. As the value of β

increases, the influence of distance becomes stronger corresponding to situations when people tend
to visit closer facilities.
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Figure A2. Relationship between provision assessments and population-to-provider ratio (PPR).
The PPR metric represents the ratio of facilities’ capacities to the total population demand within
overlapping catchment areas, providing a preliminary estimate of capacity shortages in a zone.
Red markers indicate buildings located further away from the nearest kindergarten (up to 600 m),
while blue markers represent buildings located closer to the nearest kindergarten. (a) The provision
assessments calculated using the Linear Allocation Model (LAM) tend to split most of the population
into two groups: those provided (pi = 1) and those unprovided (pi = 0), depending on the remoteness
of the nearest kindergarten. As can be seen, the provided group mostly consists of residents living in
buildings located closer to the nearest facility, whereas the unprovided group is primarily composed
of those living in more remote buildings. The connection to the PPR metric is apparent only at the
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extremes, where the markers indicate either the unprovided population in zones with severe capacity
shortages (PPR = 0) or the provided population in zones with ample capacity (PPR = 1). (b) In
contrast, provision assessments calculated with interactions estimated by the Doubly Constrained
Gravity Model (DCGM β = 0) show a more consistent relationship with the PPR metric across
the entire interval. The increase in capacity (and thus in PPR) gradually improves the provision
assessment of the population regardless of the distance to the nearest facility. (c) Overall, the absolute
difference between the provision assessments Pi obtained by LAM and DCGM is most pronounced
in the middle of the PPR interval, which corresponds to zones with mild capacity deficiencies.

(a) Out-of-sample performance with LAM data (b) Out-of-sample performance with DCGM data (β = 0)

Figure A3. The dependence of the out-of-sample performance of the Constrained Deep Gravity
Model on the number of balancing steps. The graphs display the average values and 95% confidence
intervals for the Negative Log–Likelihood (NLL) and Common Part of Commuters (CPC) metrics,
used to evaluate the model’s performance with 1 to 16 balancing steps, based on datasets generated by
the Linear Allocation Model (LAM) and the Doubly Constrained Gravity Model (DCGM), respectively.
The average values and corresponding confidence intervals at each step count were derived from ten
independent experiments. The graphs reveal a clear trend in the relationship between the number of
balancing steps and the model’s performance. Initially, as the number of balancing steps increases,
there is a noticeable improvement in the average values of both NLL and CPC, indicating better
model performance. These metrics reach their optimal levels at certain points (marked by the dashed
line), after which the trend reverses. Specifically, for DCGM-generated data, beyond the peak point,
NLL begins to rise, while CPC starts to decline, signaling a deterioration in model performance.
For LAM-generated data, both NLL and CPC metrics stagnate after passing their optimal levels.

Table A1. Models’ in-sample and out-of-sample performance (continuation of the Table 1).

Model In-Sample Performance Out-of-Sample Performance

Loss R2 Loss R2

Doubly Constrained Gravity Model (b = 0.5)

LLR −4.702 ± 0.301 0.737 ± 0.003 −5.655 ± 0.819 0.733 ± 0.007

DGM −4.797 ± 0.291 0.748 ± 0.002 −5.754 ± 0.821 0.745 ± 0.008

GNN-DGM −5.119 ± 0.303 0.793 ± 0.003 −6.054 ± 0.832 0.784 ± 0.007

Our (t = 1) −5.258 ± 0.312 0.822 ± 0.006 −6.232 ± 0.844 0.817 ± 0.008

Our (t = 4) −5.328 ± 0.304 0.841 ± 0.005 −6.336 ± 0.87 0.836 ± 0.01
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Table A1. Cont.

Model In-Sample Performance Out-of-Sample Performance

Loss R2 Loss R2

Doubly Constrained Gravity Model (b = 1)

LLR −4.852 ± 0.298 0.709 ± 0.003 −5.808 ± 0.817 0.706 ± 0.006

DGM −5.04 ± 0.297 0.739 ± 0.003 −5.992 ± 0.813 0.736 ± 0.007

GNN-DGM −5.343 ± 0.309 0.779 ± 0.006 −6.252 ± 0.825 0.768 ± 0.009

Our (t = 1) −5.559 ± 0.312 0.817 ± 0.005 −6.529 ± 0.851 0.809 ± 0.008

Our (t = 4) −5.621 ± 0.313 0.832 ± 0.007 −6.636 ± 0.862 0.829 ± 0.011

Doubly Constrained Gravity Model (b = 1.5)

LLR −4.973 ± 0.279 0.674 ± 0.002 −5.92 ± 0.806 0.672 ± 0.004

DGM −5.309 ± 0.278 0.73 ± 0.002 −6.276 ± 0.828 0.729 ± 0.007

GNN-DGM −5.656 ± 0.295 0.772 ± 0.004 −6.58 ± 0.836 0.763 ± 0.006

Our (t = 1) −5.902 ± 0.299 0.812 ± 0.005 −6.878 ± 0.86 0.805 ± 0.007

Our (t = 4) −6.048 ± 0.302 0.836 ± 0.004 −7.057 ± 0.876 0.831 ± 0.007

Doubly Constrained Gravity Model (b = 2)

LLR −5.063 ± 0.275 0.639 ± 0.002 −6.064 ± 0.831 0.637 ± 0.004

DGM −5.535 ± 0.281 0.718 ± 0.002 −6.574 ± 0.863 0.715 ± 0.007

GNN-DGM −5.932 ± 0.27 0.765 ± 0.005 −6.934 ± 0.896 0.753 ± 0.009

Our (t = 1) −6.267 ± 0.292 0.813 ± 0.005 −7.331 ± 0.918 0.806 ± 0.009

Our (t = 4) −6.406 ± 0.295 0.836 ± 0.005 −7.525 ± 0.941 0.831 ± 0.01

Doubly Constrained Gravity Model (b = 2.5)

LLR −5.078 ± 0.286 0.639 ± 0.002 −5.9 ± 0.760 0.637 ± 0.003

DGM −5.56 ± 0.292 0.718 ± 0.002 −6.398 ± 0.786 0.715 ± 0.005

GNN-DGM −5.98 ± 0.306 0.767 ± 0.004 −6.776 ± 0.805 0.756 ± 0.005

Our (t = 1) −6.205 ± 0.308 0.802 ± 0.006 −7.073 ± 0.83 0.795 ± 0.008

Our (t = 4) −6.391 ± 0.325 0.83 ± 0.008 −7.295 ± 0.842 0.828 ± 0.009

Table A2. Parameters of bootstrap hypothesis test.

Data Groups Mean Number of
Resampling

Mean
Difference

95% CI p-Value

in-going flows inflation error

DCGM
GNN-DGM −54.722

10,000 −35.741 (−35.754, −35.728) 0
C-GNN-DGM −18.984

LAM
GNN-DGM −58.052

10,000 −36.956 (−36.971, −36.941) 0
C-GNN-DGM −21.094

out-going flows inflation error

DCGM
GNN-DGM −2.939

10,000 −0.661 (−0.661, −0.660) 0
C-GNN-DGM −2.277

LAM
GNN-DGM −3.219

10,000 −0.212 (−0.213, −0.212) 0
C-GNN-DCM −3.006
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