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Highlights:

What are the main findings?

• Effective Reduction of Bus Travel Times: The study’s proposed transit signal priority (TSP)
control system that incorporates a priority factor (PF) significantly reduces average travel times
for buses—17% in the arterial network and 25% in the grid network.

• Mitigation of Conflicting Requests: The RL-based TSP with PF effectively resolves conflicting
priority requests when multiple buses approach an intersection from different directions.

• Minimal Impact on Passenger Cars: While the average travel time for passenger cars increased
(by up to 12% in the arterial network and 7% in the grid network), the impact is not significant
compared to the improvements in bus travel times.

• Dynamic Assignment of PF: The PF can be dynamically assigned based on the number of
passengers on each bus, enhancing the system’s adaptability to varying traffic conditions.

• Longer Cycle Length and Signal Splits: An increase in buses with higher PF leads to longer
cycle lengths and extended signal phase durations for directions with buses.

What is the implication of the main finding?

• Improved Public Transit Efficiency: The findings suggest that integrating advanced control
strategies like RL and dynamic PFs can enhance the efficiency of public transportation systems,
making them more appealing and potentially increasing ridership.

• Balanced Traffic Management: The study indicates a feasible approach for balancing the needs of
both transit and non-transit users at signalized intersections, which is crucial for urban mobility
and reducing overall congestion.

• Scalability and Adaptability: The ability to dynamically adjust the PF based on passenger load
suggests that this approach can be tailored to different traffic conditions and demands, making
it adaptable for various urban environments.

• Future Research Directions: The findings underscore the need for further exploration into
real-time PF determination and the integration of additional factors (like passenger waiting
times) to enhance the operational efficiency and reliability of transit systems.

Abstract: Public transportation has been identified as a viable solution to mitigate traffic congestion.
Transit signal priority (TSP) control, which is widely used at signalized intersections, has been
recognized as a practical strategy to improve the efficiency and reliability of bus operations. However,
traditional TSP control may fall short of efficiency and is facing several challenges of negative
externalities for non-transit users and the need to handle conflicting priority requests. Recent studies
have proposed the use of reinforcement learning (RL) methods to identify efficient traffic signal
control (TSC). Some of these studies on RL-based TSC have incorporated the concept of max-pressure
(MP), which is a maximal weight-matching algorithm to minimize queue sizes. Nevertheless, the
existing RL-based TSC methods focus on private vehicles and cannot adequately distinguish between
buses and private vehicles. In prior research, RL-based control has been implemented within the
context of bus rapid transit (BRT) systems. This study proposes a novel RL-based TSC strategy that
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leverages the MP concept and extends it to incorporate TSP control. This is the first implementation of
RL-based TSP control within the mixed-traffic road network. A significant innovation of this research
is the introduction of the priority factor (PF), which is designed to prioritize bus movements at
signalized intersections. The proposed RL-based TSP with PF control seeks to balance the competing
objectives of enhancing bus operations while mitigating adverse impacts on non-transit users. To
evaluate the performance of the proposed TSP method with the PF mechanism, simulations were
conducted on an arterial and a grid network under dynamic traffic conditions. The simulation results
demonstrated that the proposed TSP with PF not only reduces bus travel times and resolves conflicts
between priority requests but also does not make a significant negative impact on passenger car
operations. Furthermore, the PF can be dynamically assigned according to the number of passengers
on each bus, suggesting the potential for the proposed approach to be applied in various traffic
management scenarios.

Keywords: transit signal priority; reinforcement learning; traffic signal control; max-pressure control;
priority factor

1. Introduction

Public transportation has been widely accepted as one of the most effective strategies
to mitigate traffic congestion. To improve bus service levels and attract more passengers,
many strategies have been developed, such as transit signal priority (TSP) [1]. To improve
the operational regularity and punctuality of transit systems, transportation researchers and
transit agencies have devoted great efforts to the development of advanced transit systems
during the past decades. TSP control is an operational strategy that facilitates the movement
of transit vehicles through signalized intersections. TSP can be categorized into passive
priority, active priority, and adaptive priority. TSP systems encounter various challenges,
including the negative externalities imposed on non-transit users and the necessity to
manage conflicting priority requests. An effective TSP strategy minimizes interruptions
to other traffic while attempting to provide priority to transit vehicles and addresses the
problem of conflicting TSP requests [1,2].

Although optimization-based methods have been extensively studied, reinforcement
learning (RL) based control and max-pressure (MP) control have received significant
attention in recent years [3]. RL involves an agent that learns how to interact dynamically
with its environment to achieve a long-term maximum reward. Studies [4–6] used RL to
obtain efficient traffic signal control (TSC). They applied RL to an isolated intersection,
a multi-intersection network, and a large-scale network. Those studies proved that RL-
based TSC is better than conventional deterministic traffic management systems. MP, on
the other hand, is a new approach to signal timing with mathematically proven network
throughput properties [7]. Studies, such as [3,8,9], proposed MP control and worked on
incorporating more realistic assumptions and various situations. They considered phase
switching loss, oversaturated networks, and a signal cycle constraint. However, most
RL-based TSC studies designed rewards and states in a heuristic way, whereas MP control
selects phases in real time based on the most recent traffic conditions and is not seeking
long-term optimization. To avoid the heuristic design of the RL element and to address the
disadvantages of MP, recent studies propose to connect RL with MP. Wei et al. designed an
RL-based TSC well supported by the theory in MP control and proposed a well-designed
RL approach to solve the network-level TSC problem [10,11].

RL methods can bring the TSC research into a new frontier [12]. Nevertheless, few of
the existing studies that applied RL to TSC addressed transit [13]. Those studies mainly
focus on the efficient control of private vehicles without considering the difference between
transit vehicles and private vehicles in a mixed-traffic environment. Even when account-
ing for the differences between regular traffic and public transit, existing studies do not
specifically target TSP or implement solutions solely within the context of bus rapid transit



Smart Cities 2024, 7 2863

(BRT) systems, which have dedicated bus lanes that are separated from general traffic.
On the other hand, the standard MP controller is more likely to actuate phases during
high-demand approaches, which may end up ignoring the arrival of public transit [14].

Therefore, this study aims to fill this research gap in public transit. The goals of this
study are as follows:

• First, develop a TSP control method that utilizes RL-based strategies in a mixed-traffic
environment.

• Second, provide a comprehensive theoretical framework for designing the key compo-
nents of the RL-based system, including the state, action, and reward structures.

• Third, address the negative externalities experienced by non-transit users and the
necessity of effectively managing conflicting priority requests.

By integrating the principles of RL with TSP, the proposed method aims to enhance
the operational efficiency of transit systems. This approach addresses the limitations
of previous studies that utilized heuristic designs for reward and state configurations.
The theoretical design emphasizes the dynamic interaction between the RL agent and
its environment, allowing for real-time adjustments based on traffic conditions. This is
particularly significant given the recent advancements in RL and MP control, as it seeks
to optimize control strategies beyond traditional deterministic methods. The framework
presented in this paper serves as a foundation for developing more adaptive and responsive
traffic management systems that can effectively balance the needs of both transit and
private vehicles.

To mitigate the negative externalities of TSP, this study introduces the PF as a mech-
anism to prioritize bus movements over other vehicles at signalized intersections in a
mixed-traffic environment. The PF is designed to enhance the effectiveness of the TSP
control method by assigning a higher priority to buses, thereby facilitating their movement
through intersections while minimizing disruptions to general traffic flow. This innovative
approach addresses the challenges identified in the existing literature, where traditional
TSP methods often fail to adequately differentiate between transit vehicles and private
vehicles in mixed-traffic environments. By dynamically adjusting the PF based on real-time
conditions, such as the number of passengers on each bus or current traffic demand, the
proposed mechanism not only improves the reliability of bus services but also mitigates
the negative externalities associated with TSP for non-transit users. Furthermore, this
prioritization mechanism aligns with contemporary transportation goals of increasing
public transit ridership and enhancing overall transit system performance, making it a
significant contribution to the field of traffic signal control.

The experimental environment for this research utilized VISSIM, a state-of-the-art
microscopic multi-modal traffic flow simulation platform, to obtain compelling empirical
results. The proposed RL-based TSP method was evaluated within both an arterial network
and a grid network. The results of this study clearly demonstrate several key contributions
of the proposed TSP control approach:

1. Reduction in Bus Travel Times: The method significantly decreases bus travel times
while maintaining minimal negative impacts on passenger car operations, thereby
enhancing overall traffic efficiency.

2. Conflict Resolution: The approach effectively addresses and resolves conflicting
priority requests between buses through the implementation of the PF, ensuring
smoother transit operations at signalized intersections.

3. Dynamic Assignment of Priority Factor: The research reveals that the PF can be
dynamically assigned to individual buses based on their passenger loads. This adapt-
ability indicates the potential for the proposed method to be tailored to various traffic
management scenarios, accommodating the specific needs of different transit agencies.

4. Examines signal timing: the paper examines signal timing within the framework of
the proposed RL-based TSP control method. The analysis reveals that an increase
in the number of buses assigned a higher PF is associated with longer cycle lengths.
Furthermore, with respect to signal splits, the duration of the traffic signal phases is
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extended when servicing directions that include buses with PF. This outcome aligns
with expectations because the RL agent prioritizes the swift passage of buses through
intersections. Examining signal timing provides insights into the control behavior of
RL agents.

2. Literature Review
2.1. Transit Signal Priority (TSP)

TSP is an operational strategy that facilitates the movement of in-service transit vehi-
cles through traffic-signal-controlled intersections. The objectives of TSP include improving
schedule adherence and improved transit travel time efficiency while minimizing impacts
on normal traffic operations. Particularly, TSP control, developed in the late 1960s, has
been recognized as one of the most promising ways to reduce transit travel time at local
arterials [15]. By reducing transit vehicles’ delay time at intersection queues, TSP can
reduce transit delay and travel time and improve transit service reliability, thereby en-
hancing transit quality of service. It has the potential for reducing overall delay at the
intersection on a per-person basis. At the same time, TSP attempts to provide these benefits
with a minimum impact on other facility users, including cross-traffic and pedestrians [16].
Therefore, a proper TSP strategy can effectively reduce transit travel time at local arterials
without significantly bringing negative impacts to the network [17].

TSP strategies are mostly categorized into the following three categories: passive prior-
ity, active priority, and traffic-adaptive priority [18]. Passive priority operates continuously,
regardless, based on knowledge of transit route and ridership patterns, and does not require
a transit detection/priority request generation system. Active priority strategies provide
priority treatment to a specific transit vehicle following detection and subsequent priority
request activation. Traffic-adaptive or real-time priority is a strategy that considers the
trade-offs between transit and traffic delay and allows graceful adjustments of signal timing
by adapting the movement of the transit vehicle and the prevailing traffic condition [17].
Lin et al. [15] divided active priority into rule-based and model-based approaches. The
rule-based priority approach grants the signal priority based on the actual presence of
transit at the signalized junctions without considering transit conditions or with specific
criteria of transit vehicles. Model-based priority approach grants priority to specific transit
in terms of transit conditions and traffic conditions; it aims to reduce bus passenger delay
or total person delay. This method needs to detect transit locations, transit operations
conditions, and traffic volume/queue length of cars.

In general, passive-priority strategies can be an efficient form of TSP when transit
operations are predictable with a good understanding of routes, passenger loads, schedule,
and/or dwell times. It is used to implement TSP by predetermining signal timings without
explicitly recognizing actual bus presence. However, it cannot handle a dynamic traffic
environment. Active-priority strategies take advantage of bus detection sensors located
upstream of intersections. When a transit vehicle approaches the sensors, the signal
controller would provide the designated TSP strategies, such as green extension and red
truncation. Nevertheless, active priority may fall short of efficiency and bring negative
impacts to non-priority approaches due to overusing priority grants in high transit demand.
Adaptive-priority strategies use real-time data to adjust traffic signal timings in response to
changing traffic conditions. Adaptive priority is a very sophisticated and complex system
and, therefore, not yet common. Table 1 summarizes the TSP types and key characteristics.

TSP systems face several challenges, such as negative externalities for non-transit
users and the need to handle conflicting priority requests [19]. Negative externalities refer
to the negative impacts that TSP has on non-transit users of the road network. The negative
externalities of TSP result in increased waiting times for non-transit users at signalized
intersections, especially on the cross streets. It also leads to increased queue lengths
and spillbacks for non-transit users, which can block upstream intersections or reduce
green time for other phases. Conflicting priority requests between buses can occur when
multiple buses request priority simultaneously [20]. It is necessary to measure the priority
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level of transit to maximize intersection efficiency. Ma et al. [21] formulated a dynamic
programming model to optimize the serving sequence for multiple priority requests as well
as the corresponding signal timing plans under various levels of bus occupancy, schedule
deviation, and traffic demand. The results showed that the dynamic programming model
outperforms the first-come-first-serve policy in terms of reducing bus delays, improving
schedule adherence, and minimizing the impacts on other vehicular traffic. Xu et al. [22]
proposed a bi-level optimization model to resolve the problem of conflicting TSP requests
at arterial corridors. The upper level of the model is progression control and the lower level
is intersection control. At the progression-control level, the characteristics of bus operation
are considered. At the intersection-control level, a linear programming model is developed
to resolve conflicting TSP requests.

Table 1. Summary of TSP key characteristics.

TSP Types Advantages Disadvantages Control Strategy

Passive
Does not require a transit
detection system and is easy
to implement

Not suitable for high fluctuation
traffic situation Predetermining signal timings

Active Considers transit conditions
or specific criteria

May fall short of efficiency under
high transit volumes situation

Adjustments of signal timing;
common strategies are green
extension and red truncation

Adaptive Considers trade-offs between
transit and traffic conditions

Sophisticated and complex
systems

Signal control algorithm that
provides priority while explicitly
considering the impacts on the
rest of the traffic

In the existing literature on transit signal priority (TSP) methods, recent studies have
proposed novel approaches to enhance the efficiency and reliability of bus operations. In
previous studies, max-pressure control only considered the private vehicle network. Xu
et al. [14] combined MP control with TSP for the first time. That study proposed a modified
MP control policy considering the TSP of the bus rapid transit system to improve the scope
of the application of the MP control policy. With the development of technology, connected
vehicle technology can be used to improve transit signal priority by providing real-time data
on the location and speed of transit vehicles. This data can be used to adjust traffic signal
timings in real time, allowing transit vehicles to move through intersections more quickly
and efficiently. Zeng et al. [23] proposed a TSP system with connected-vehicle technology
named Route-based TSP. That system uses enriched bus data enabled by connected-vehicle
technologies to optimize signal timing and improve bus service reliability via transit signal
priorities. The Route-based TSP model is formulated based on route-level transit signal
priority, which is more beneficial than providing bus priority on a signal-by-signal basis.

2.2. Reinforcement Learning (RL)-Based Traffic Signal Control

RL is learning what to do—how to map situations to actions—so as to maximize a
numerical reward signal. The essence of RL is learning through interaction [24]. An agent
interacts with its environment and, upon observing the consequences of its actions, can
learn to alter its behavior in response to rewards received. This paradigm of trial-and-error
learning has its roots in behaviorist psychology and is one of the main foundations of RL.
One of the early breakthroughs in RL was the development of an algorithm known as
Q-learning. The Q-learning algorithm estimates the expected reward for each action in
each state. The agent uses these estimates to choose the best action to take in each state.
While RL has enjoyed some successes in the past, earlier approaches were often limited by a
lack of scalability and were inherently constrained to relatively low-dimensional problems.
However, the recent rise of deep learning has provided researchers with powerful tools
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to overcome these limitations. Deep learning enables RL to scale to problems that were
previously intractable, such as learning to play video games directly from pixels [25].

The existing literature on TSC has explored the application of RL as a promising
approach to search for more efficient control policies. The fundamental premise of RL is
the trial-and-error learning process, where agents iteratively modify signal plans and learn
from the observed outcomes. For instance, [4] proposed a Q-learning-based RL method for
adaptive traffic control at isolated intersections. Meanwhile, [5] introduced a multi-agent
RL framework, where a central agent and outbound agents collaborate to control a network
of five intersections. The outbound agents provide relative traffic flow values as local
traffic statistics to the central agent, which incorporates this information into its decision-
making process. Furthermore, [6] presented a fully scalable and decentralized multi-agent
RL algorithm with deep learning for adaptive TSC, evaluating the proposed approach in
both a large synthetic traffic grid and a real-world traffic network in Monaco. The results
demonstrated the optimality, robustness, and efficiency of the proposed method.

To address the potential limitations of the heuristic design of RL elements, recent
studies have explored the integration of RL with the max-pressure (MP) control theory.
MP has been an active research topic in TSC, with proven properties of maximizing the
throughput of the traffic network. PressLight [10] connected RL with MP, where the reward
function is well-supported by the theoretical foundations of MP, which can be proved to be
maximizing the throughput of the traffic network. Through comprehensive experiments,
that study demonstrated that the proposed method outperforms both conventional trans-
portation approaches and existing learning-based methods. Furthermore, CoLight [11]
introduced a graph-attentional network-based model to facilitate communication and co-
operation between traffic signals. This approach not only incorporates the temporal and
spatial influences of neighboring intersections but also enables index-free modeling of
the neighboring intersections. These advancements in the integration of RL with MP and
the development of decentralized, scalable multi-agent RL frameworks demonstrate the
potential of RL-based approaches to address the complexities and challenges in traffic
signal control optimization.

2.3. TSP with RL

Noaeen et al. [13] conducted a systematic literature review to dissect all the existing
research that applied RL in the network-level TSC covering 160 articles. Among 160 articles,
only 2 of them addressed public transit. Chanloha et al. proposed a CTM–BRT framework
applied to a road network and compared the obtained data from the real scenarios and the
Q-learning [26]. The result outperformed preemptive priority (giving priority to the bus
whenever approaching an intersection together with constraints) and differential priority
(giving priority to the late bus only) control methods because of the improved awareness
of the signal switching cost. Shabestray et al. [27] proposed a multimodal deep RL-based
traffic signal controller that combines both regular traffic and public transit and minimizes
the overall travelers’ delay through the intersection. Cheng et al. apply deep RL and adopt
the pressure concept for TSP control [28].

2.4. Summary

This comprehensive literature review has meticulously examined the current state of
knowledge at the intersection of TSP and RL-based TSC optimization. The main objectives
of TSP are to improve schedule adherence and transit travel-time efficiency while minimiz-
ing impacts on normal traffic operations. However, TSP faces challenges such as negative
externalities for non-transit users and the need to manage conflicting priority requests
among buses.



Smart Cities 2024, 7 2867

Recent advancements in RL have become a promising approach for TSC optimization.
To address potential limitations of heuristic RL design, recent studies have integrated RL
with the MP control theory. This integration, along with the development of decentralized,
scalable multi-agent RL frameworks, demonstrates the potential of RL-based approaches
to address the complexities of TSC optimization.

However, the existing body of research has predominantly focused on the efficient
control of private vehicles, while underexploring the distinct considerations and challenges
presented by the integration of transit vehicles. A systematic literature review conducted
by Noaeen et al. [13] showed that among 160 articles, only 2 of them applied RL with public
transit. Furthermore, these two articles did not advance the application of TSP within
mixed-traffic road networks. This gap in the scholarly discourse represents a compelling
opportunity for further research and investigation.

To address the identified gap, this study seeks to develop a TSP control method that
employs RL-based strategies within a mixed-traffic environment. In order to mitigate the
negative externalities experienced by non-transit users and effectively manage conflicting
priorities, this research also aims to introduce an innovative mechanism within the RL-based
TSP control framework. By addressing these challenges, this study endeavors to contribute
to the advancement of knowledge in this critical area of transit signal management.

3. Methodology

This research introduces the PF as an innovative mechanism within an RL-based
control framework to prioritize bus movements at signalized intersections in the context of
TSP in mixed traffic. The PF facilitates dynamic adjustments based on real-time conditions,
such as passenger loads, enabling a more responsive and effective management of bus
traffic. This novel contribution enhances the traditional TSP framework by ensuring that
buses receive the necessary priority while minimizing disruptions to general traffic flow.
Furthermore, it addresses the challenges of conflicting priority requests and improves
overall transit efficiency, showcasing the potential of integrating RL-based control with
advanced priority mechanisms.

3.1. State, Action and Reward Design

TSC and TSP are two concepts that are related to the management of traffic flow. TSC
refers to the use of traffic signals to regulate the flow of traffic at intersections. TSP, on the
other hand, is a strategy that gives priority to transit vehicles at signalized intersections. An
RL problem involves the interaction between a learning agent and its environment in terms
of states, actions, and rewards. TSC and TSP can be regarded as an RL problem because
they involve detecting traffic (states) and relying on this information to seek an efficient
schedule for traffic signal settings (actions) at intersections, with the goal of maximizing
traffic flow while considering various factors (rewards).

RL is the process of creating an agent that learns to make decisions based on feedback
from its environment. The agent is a learner and decision-maker, whereas the environment
is everything outside the agent, which includes state, action, and reward design. The state
is a representation of the environment at a particular time. It includes all the information
that is relevant to the agent’s decision-making process. The action is a decision made by
the agent in response to a state. The agent’s goal is to learn a policy that maps states to
actions in a way that maximizes the expected return. The reward is a scalar feedback signal
that indicates how well the agent is doing at a particular time step. The goal of the agent is
to learn a policy that maximizes the expected cumulative reward over time.
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3.1.1. State Design

In this study, the state includes three key elements: the number of vehicles on each
lane, the current phase, and the elapsed time of the current phase. Let’s explore these
elements in more detail.

The network operates in a slotted time t ∈ {0, 1, 2, . . .}. Let xl(t) be the number of
vehicles of lane l at time t. The number of vehicles on lane l from the current time t to the
next time t + 1 satisfies the following:

xl(t + 1) = xl(t)− min[xl(t), sl(t)cl(t)] + min

 ∑
k∈ln(l)

min
[
sk(t)ck(t)r(k,l)(t), xk(t)r(k,l)(t)

]
+ dl(t), xmax,l − xl(t)

 (1)

The control signal of lane l at time t is denoted by sl(t) ∈ {0, 1}. sl(t) = 1 indicates
that lane l at time t receives a green light, while sl(t) = 0 implies that lane l at time t
gets a red light. The variable cl(t) represents the discharge rate of lane l at time t, which
determines the rate at which vehicles can depart the lane when the signal is green. The
variable r(k,l)(t) denotes the turning ratio from lane k to lane l at time t. This parameter
captures the proportion of vehicles from lane k that are turning into lane l. The variable
dl(t) corresponds to the exogenous flow of vehicles entering lane l at time t. It is stated
that the variables cl(t), r(k,l)(t), and dl(t) are non-negative bounded i.i.d. (independent
and identically distributed) random variables over time, suggesting that these parameters
are stochastic in nature and follow a bounded probability distribution that may change
over time. For each lane and each discrete time slot, the xl(t + 1) captured by Equation (1)
represents the combined effect of leaving vehicles and arriving vehicles. The number of
leaving vehicles should not exceed the number of vehicles currently on lane l. Regarding
the third term in Equation (1), all arriving vehicles are constrained by the physical space
available on lane l. The arriving vehicles originate from a set of input lanes, denoted as
In(l), and the exogenous flow dl(t) entering lane l.

Equation (1) provides a comprehensive representation of vehicle evolution, capturing
the key elements of the system including signal states, departure rates, turning ratios, and
exogenous traffic inputs. This information is crucial for developing and analyzing RL-based
signal control strategies.

The evolution Equation (1) presented in this work exhibits similarities to the traffic
models reported in prior studies [10,29]. However, the key distinction explored in the
current paper is the adoption of a lane-based evolution approach in contrast to a movement-
based formulation. Employing a lane-based perspective offers practical advantages. A
single lane can accommodate both straight-through and turning movements, and traffic
lights are typically implemented at the lane group level, regulating whether a set of lanes
should be granted the right-of-way or be required to stop.

In the context of traffic control, the turning ratios and exogenous flow rates are
typically considered as known or given inputs to the system. For a signalized intersection,
the discharge rate of vehicles across the stop-line is not constant during the green phase
but rather exhibits temporal variations.

Consequently, the state representation employed in the RL-based control framework
proposed in this study encompasses the number of vehicles present in each lane, the current
signal phase, and the elapsed time within the ongoing phase. This comprehensive state
definition aims to capture the dynamic nature of traffic conditions at the intersection, which
is crucial for the effective optimization of signal control policies.
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3.1.2. Action Design

In certain studies on RL-based TSC, such as [6,7], the selection of signal phases by the
agent is stochastic and does not adhere to a predetermined cycle structure. This lack of
structure may lead to two significant implementation challenges in practice [7].

First, drivers accustomed to observing established traffic signal cycles may experience
confusion when they notice that their phase is skipped due to the agent’s alternating
selection of other phases. Second, individual turning movements may face excessively
long wait times before receiving a green light, resulting in prolonged delays for specific
vehicles. Both scenarios could lead to increased driver complaints and, in extreme cases,
may cause drivers to perceive the signal controller as malfunctioning, potentially resulting
in the dangerous behavior of running a red light.

Common strategies for TSP operating in mixed flow conditions include green extension
and red truncation [4]. In this approach, the green-light duration is extended to provide
additional time for buses to pass through the intersection, while the red-light duration is
truncated to minimize delays for these vehicles.

As previously mentioned, this study employs a framework in which each agent has
two permissible actions: either to maintain the current signal indication or to transition
to the next phase in a cyclic manner. This structured approach aims to mitigate the
potential issues associated with the stochastic phase selection, thereby enhancing the
overall effectiveness of the traffic signal control system.

3.1.3. Reward Design

One significant challenge associated with current RL-based TSC approaches is that
their configurations are often heuristic and lack robust theoretical justification derived
from the transportation literature [10]. A well-structured reward function enhances the
learning efficiency of the agent; however, there are no absolute guidelines for constructing
such a function. The primary objective of TSC is to minimize travel time, a goal that is
inherently complex and difficult to achieve directly [30]. Consequently, a crucial question
when applying RL to TSC is how to effectively define the reward function.

This study proposes a reward function grounded in the principles of MP control. The
fundamental concept of MP is to minimize the “pressure” at an intersection, which can
be broadly defined as the difference between the number of vehicles on incoming lanes
and the number on outgoing lanes [10]. Incoming lanes refer to those from which traffic
enters the intersection, while outgoing lanes are those from which traffic exits. Over the
past decade, MP control has evolved from a novel mathematical concept within a simple
store-and-forward queuing model to encompass practical applications [7]. The appealing
characteristics of MP control include (i) mathematical proofs of maximum throughput,
(ii) real-time phase selection based on actual traffic conditions, and (iii) a decentralized
control policy.

The following sections will outline the theoretical framework for designing the reward
function, emphasizing its alignment with the objectives of MP control.

• Land-based MP control derivation

MP control is a method for directing traffic around a queueing network that achieves
maximum network throughput, which is established using concepts of a backpressure
routing algorithm. MP control in the previous studies, which is based on traffic movements,
has two problems. The first problem is that the movement-based MP control aggregates the
characteristics of lane groups, ignoring individual differences. The second problem is that
the movement-based MP control assumes that different movements are separate and do
not block each other. To address these issues, this study proposes a lane-based MP control.

Since the first term and second term of Equation (1) can be rewritten as follows:

xl(t)− min[xl(t), sl(t)cl(t)] = max[xl(t)− sl(t)cl(t), 0] (2)
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min

 ∑
k∈ln(l)

min
[
sk(t)ck(t)r(k,l)(t), xk(t)r(k,l)(t)

]
+ dl(t), xmax,l − xl(t)

 ≤ ∑
k∈ln(l)

sk(t)ck(t)r(k,l)(t) + dl(t) (3)

Using Equations (2) and (3), Equation (1) can be rewritten:

xl(t + 1) ≤ max[xl(t)− sl(t)cl(t), 0] + ∑
k∈ln(l)

sk(t)ck(t)r(k,l)(t) + dl(t) (4)

For each slotted time t defines the non-negative Lyapunov function:

L(t) ≜
1
2∑

l
(ql xl(t))

2 (5)

The Lyapunov function is a scalar measure of the total number of vehicles in the
network. The positive value q2

l in Equation (5) represents the coefficient of vehicles on lane
l. x(t) and q represent the vector of number of vehicles (xl(t)) and positive value

(
q2

l
)
,

respectively. Plugging Equation (4) into (5) yields the following:

L(t + 1) =
1
2 ∑

l
(ql xl(t + 1))2

≤ 1
2 ∑

l
q2

l

(
max[xl(t)− sl(t)cl(t), 0] + ∑

k∈ln(l)
sk(t)ck(t)r(k,l)(t) + dl(t)

)2 (6)

The conditional Lyapunov drift is defined as the change in a Lyapunov function from
one time step to the next:

∆(t) ≜ E[L(t + 1)− L(t)|qx(t)] (7)

It is defined as the change in a Lyapunov function from one time step to the next. In
the derivation of the MP control, the key is to minimize this Lyapunov drift E[∆(t)]. The
goal is to take actions that make the Lyapunov drift in the negative direction toward zero.

Set α = xl(t), β = sl(t)cl(t), and γ = ∑
k∈ln(l)

sk(t)ck(t)r(k,l)(t) + dl(t). It follows that

(max(α − β, 0) + γ)2 = (max(α − β, 0))2 + γ2 + 2max(α − β, 0)γ
≤ (α − β)2 + γ2 + 2αγ
= α2 + β2 + γ2 + 2α(γ − β)

(8)

To simplify the formula in order to make it easier to understand, write ∆ = ∆(t),
xl = xl(t), cl = cl(t), sl = sl(t), r(k,l) = r(k,l)(t), dl = dl(t), x = x(t). Next plugging
Equations (5) and (6) into Equation (7) and using Equation (8) yields the following:

∆ ≤ 1
2
E

∑
l

q2
l

x2
l + (slcl)

2 +

(
∑

k∈ln(l)
skckr(k,l) + dl

)2

+ 2xl

(
∑

k∈ln(l)
skckr(k,l) + dl − slcl

)− ∑
l

q2
l x2

l

∣∣∣∣∣∣qx


=

1
2
E

∑
l

q2
l

(slcl)
2 +

(
∑

k∈ln(l)
skckr(k,l) + dl

)2
+ 2∑

l
q2

l xl

(
∑

k∈ln(l)
skckr(k,l) + dl − slcl

)∣∣∣∣∣∣qx


= E

 1
2 ∑

l
q2

l

(slcl)
2 +

(
∑

k∈ln(l)
skckr(k,l) + dl

)2
+ ∑

l
q2

l xl

(
∑

k∈ln(l)
skckr(k,l) + dl − slcl

)∣∣∣∣∣∣qx


(9)
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Suppose the second moments of leaving vehicles and the second moments of arriving
vehicles in each queue are bounded so that there is a finite constant B > 0 and B < ∞ such
that for all time t the following property holds:

E

 (slcl)
2 +

 ∑
k∈ln(l)

skckr(k,l) + dl

2
∣∣∣∣∣∣∣qx

 ≤ B (10)

Plugging Equation (10) into Equation (9) yields the following:

∆ ≤ B
2 ∑

l
q2

l +E

∑
l

q2
l xl

 ∑
k∈ln(l)

skckr(k,l) + dl − slcl

∣∣∣∣∣∣qx

 (11)

Switching the sums of the second term in Equation (11) obtains the following:

∆ ≤ B
2 ∑

l
q2

l + ∑
l

q2
l xldl +E

∑
l

slcl

 ∑
m∈Out(l)

q2
mxmr(l,m) − q2

l xl

∣∣∣∣∣∣qx

 (12)

where Out(l) is the set of lanes output from lane l.
Define the weight wl(t) of each lane l as follows:

wl(t) = q2
l xl − ∑

m∈Out(l)
q2

mxmr(l,m) (13)

Let s = (sl) be the network signal control vector and Γ = {s} be a set of all network
signal control vectors. Define the pressure of s as follows:

p(s ∈ Γ) = ∑
l

slclwl (14)

MP control policy is to minimize the right-hand side of Equation (12). This amounts
to selecting the MP control u∗ at time t as follows:

u∗ = argmax
s∈Γ

{p(s)} (15)

• Determination of positive coefficient values

The following work needs to determine the positive coefficient values q2
l and q2

m in wl(t).
When addressing traffic control at intersections, it is essential to consider not only

the maximization of throughput but also the issues of spillover and gridlock. Spillover
occurs when vehicles making turning movements occupy the available storage length of
turning bays, thereby obstructing through movements. Gridlock occurs when vehicles
enter an intersection on a green light but do not have enough room on the other side of
the intersection to make it all the way through. To mitigate these challenges, this study
proposes a reward function for intersections that incorporates key factors such as phase,
lane length, and the equilibrium between incoming and outgoing lanes.

To prevent spillover, it is crucial to take lane length into account, as longer lanes pro-
vide additional capacity for vehicles waiting to proceed. Specifically, the model considers
the maximum permissible number of vehicles on a lane, employing a normalized count
rather than an absolute figure in the reward function. In addition, by observing Equation
(13), the agent is more likely to activate a phase that allows for more lane goings because
this leads to a higher reward, but this can result in short green times for certain phases.

To avoid gridlock, when wl(t) < 0 (indicating negative equilibrium), the agent should
be discouraged from activating the corresponding phase to prevent overflow from down-
stream traffic.
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As previously discussed, this study defined the weight of phase ϕ:

wφ(t) = max

 ∑
l∈ln(φ)

xl(t)

∑
l∈ln(φ)

xmax,l
−

∑
m∈Out(φ)

xm(t)

∑
m∈Out(φ)

xmax,m
, 0

 (16)

where In(ϕ) and Out(ϕ) indicate a set of incoming lanes and outgoing lanes of phase ϕ,
respectively. The weight of phase wφ(t) represents the difference in the weighted number
of vehicles between the incoming lanes and the outgoing lanes of the phase ϕ at time t.

Equation (16) can be expressed as follows:

wφ(t) = max

 ∑
l∈ln(φ)

q2
l xl(t)− ∑

m∈Out(φ)

q2
mxm(t), 0

 (17)

where q2
l = 1

∑
l∈ln(φ)

xmax,l
and q2

m = 1
∑

m∈Out(φ)
xmax,m

• Reward function

Finally, the reward function in this study is defined as follows:

Ri(t) = − ∑
φ∈Φi

wφ(t) (18)

where Φi is a set of phases of intersection i.

3.2. Justification for Reward Function

There are two primary reasons supporting the efficacy of the proposed reward function.
First, RL serves as a computational framework for understanding and automating goal-

directed learning and decision-making. This notable characteristic facilitates the agent’s
ability to learn optimal behaviors within an environment, prioritizing long-term maximum
rewards rather than acting greedily at each time step. The agent’s objective, denoted as
G(t) in Equation (19), where γ is the discount rate between 0 and 1, is to maximize the
total cumulative reward it receives over time. This approach emphasizes the importance of
maximizing not only immediate rewards but also cumulative rewards in the long run. It
effectively addresses the limitations associated with MP control.

G(t + 1) =
∞

∑
k=0

γkR(t + k + 1) (19)

Second, selecting the appropriate action requires consideration of the discharge rate
under MP control. Traffic engineers have indicated that the discharge rate of vehicles
crossing the stop line at signalized intersections is not constant and fluctuates throughout
the green phase. In the context of RL, the agent is not explicitly informed about which
actions will yield the highest rewards. Instead, it must identify optimal actions through ex-
perimentation. This intrinsic property of RL negates the need to inform the agent about the
specific discharge flow rates in a variable environment prior to learning how to effectively
control traffic signals. Such a characteristic enhances the potential for improved outcomes.

3.3. Learning Process

The learning process involves updating the policy, which serves as a mapping from
the perceived states of the environment to the corresponding actions to be executed in those
states. This update is informed by feedback received in the form of rewards from the envi-
ronment. Q-learning is the most widely utilized method for RL-based TSC [13]. In recent
years, some studies have employed Deep Q-Networks (DQNs) as function approximators,
utilizing a class of artificial neural networks (ANNs) to estimate the Q-value function.
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Both Q-learning and DQNs are RL algorithms aimed at identifying the optimal policy
for an agent operating within a specific environment. Q-learning is a simpler, traditional
algorithm that performs effectively in smaller, less complex environments. In contrast, the
DQN is a more sophisticated algorithm that excels in larger and more complex environ-
ments. This study adopts a DQN as it overcomes several limitations inherent in Q-learning,
enabling the handling of high-dimensional state spaces, reducing the variance of Q-value
estimates, and enhancing the overall stability of the learning process. Figure 1 illustrates
the general process of a DQN.

Each iteration of the learning process lasts for 4000 s. Each iteration always starts
with an empty network and, therefore, must be pre-loaded for training. This initial warm-
up period allows the system to stabilize and ensures that the simulation results are not
influenced by transient conditions. The initial 400 s serve as a warm-up period for the road
network, while the subsequent 3600 s (equivalent to one hour) are allocated for training. To
facilitate the agents’ adaptation to varying environments, the volume and turning ratios at
each intersection approach are randomly reset at the beginning of each iteration.
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3.4. TSP Control with Priority Factor (PF)

In scenarios involving multiple vehicles in an incoming lane, the weight of phase
wφ(t) increases. To mitigate this effect, the agent prioritizes phases with a higher volume
of vehicles. Consequently, this study introduces a factor termed the priority factor (PF),
which enables agents at intersections to give precedence to buses over other vehicles. The
agent should prioritize the lane with buses by increasing the count of vehicles in that lane.
The number of vehicles on lane l is represented as follows:

xl = xcar,l + PF × xbus,l , where PF ≥ 1 (20)

In the context of TSP, two primary challenges arise: conflicting priority requests
and negative externalities. Conflicting priority requests may occur when multiple buses
simultaneously seek priority. Negative externalities refer to the adverse impacts that TSP
can impose on non-transit users of the roadway. The proposed TSP control framework
adopts an RL approach with the inclusion of PF, offering a potential solution to address
both conflicting priority requests and the negative externalities associated with TSP.
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The coordination of conflicting priority requests can be managed by assigning varying
PF values to buses. For instance, arterial buses may receive a higher PF to facilitate efficient
passage through intersections compared to side-street buses. Furthermore, PF can be
dynamically adjusted based on the status of the bus, such as its passenger load. Under this
relative PF framework, buses with higher passenger loads are accorded greater priority.
Consequently, while the optimal control objective for all users remains a priority for the
agent, the performance of other vehicles is also taken into account. This approach ensures
that prioritizing buses does not significantly disrupt overall traffic flow.

For each intersection and in each time slot, the procedure in Figure 2 implements PF
to do TSP control in real time.
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4. Experimental Setting
4.1. Simulator

The experiments were conducted using VISSIM [31], a widely recognized microscopic
traffic simulation software that facilitates external control of traffic signals through its COM
interface. This interface allows users to dynamically access and manipulate VISSIM objects
during the simulation process, thereby enabling the integration of custom algorithms.

Figure 3 illustrates the simulation procedure when employing the COM interface
in the control study. Upon activation, VISSIM transmits the network state to the COM
interface at each time interval. The agents process these states, select appropriate control
signals, and communicate their decisions back to the COM interface. Subsequently, the
COM interface relays the updated signal status to VISSIM for the subsequent simulation
period. This seamless interaction underscores the flexibility and adaptability of VISSIM in
accommodating advanced traffic-control strategies.
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4.2. Road Networks

Two common types of road networks are arterial networks and grid networks, each
with unique characteristics and functions. Arterial networks are designed to facilitate the
efficient movement of large volumes of traffic across longer distances. They consist of
major roads that connect different areas. Grid networks consist of a series of intersecting
streets that form a grid-like pattern. This type of network is common in urban planning
and is designed to provide multiple routes for travel. Urban planners often consider a
combination of both types to create a comprehensive transportation system that meets the
needs of the community.

Based on the above, this study evaluated two distinct types of road networks: Arterial1×3,
which is a three-intersection arterial network, and Grid2×2, which consists of a grid layout
featuring four intersections. Figure 4 presents the configurations of both Arterial1×3 and
Grid2×2. Each intersection within these networks includes four approaches, with each ap-
proach comprising one lane designated for straight-through or left-turn movements, one lane
for straight-through traffic, and one exclusive lane for right turns.
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Figure 4. This study evaluated two distinct types of road networks: (a) Arterial1×3 network and
(b) Grid2×2 network.

4.3. Traffic Light Signal Plan

The traffic signal plan consists of four phases organized in a cyclic manner. The
sequence of these phases is depicted in Figure 5. This configuration represents a standard
traffic signal plan for intersections with four approaches.
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4.4. Traffic Volume and Turning Ratio

In real-world scenarios, traffic environments are characterized by constant variability.
To effectively simulate these dynamic conditions, both traffic volume and turning ratios are
treated as non-static parameters. There are two classifications of traffic volume inputs for
the networks: light-to-medium volume (LM), defined as ranging from 500 to 750 passenger
cars per hour, and medium-to-heavy volume (MH), which spans from 750 to 1000 passenger
cars per hour.

Regarding turning ratios, each approach accommodates three possible driving directions:
straight, right, and left. The ratio for straight movements is typically between 0.5 and 0.7.

4.5. Bus Routes

Different streets, neighborhoods, and cities exhibit distinct transportation needs, neces-
sitating a diverse array of service types to address them. Bus routes are typically designed
in accordance with the characteristics of the road network, which may consist of arterial
roads or grid configurations.

Bus routes that align with arterial roads are intended to facilitate efficient transporta-
tion along major thoroughfares. These routes often connect key destinations, including
commercial areas, residential neighborhoods, and transportation hubs. Conversely, bus
routes that operate within a grid network are structured to provide comprehensive cover-
age across a city or neighborhood, thereby ensuring easy access to various locations within
the grid and enhancing convenience for residents and commuters.

In this study, four specific bus route types—B310, B320, B330, and B340—are des-
ignated within the Arterial1×3 and Grid2×2 configurations. These designations serve to
identify and differentiate the various bus routes operating within these networks. Figure 6
illustrates the routing of these bus routes in both Arterial1×3 and Grid2×2.
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5. Results
5.1. No Priority Control

Before assessing the efficacy of the proposed TSP model with the PF, it is essential to
determine whether the control method can effectively manage typical traffic conditions
without the PF. Table 2 reports experimental results of average travel times (ATTs) of buses
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compared with MP and fixed time control on Arterial1×3 and Grid2×2 under no priority
control. A shorter ATT signifies a reduction in the overall delay experienced by travelers at
the intersection. The ATT is calculated as follows:

ATT =
1
n

n

∑
i=1

(
Texit

i − Tenter
i

)
(21)

where Tenter
i and Texit

i represent the times at which a vehicle i enters and exits the network,
respectively.

The findings are as follows:

1. Light-to-Medium (LM) Volume

• In the Arterial1×3 network, the proposed model consistently exhibits the shortest
ATT. Specifically, for routes B310 and B320, the ATT ranges from 133 to 134 s,
while for routes B330 and B340, the ATT ranges from 45 to 46 s.

• In the Grid2×2 network, the proposed model outperforms both MP and fixed-time
control strategies, with the ATT ranging from 154 to 162 s.

• Both in Arterial1×3 and Grid2×2 networks, MP control shows moderate perfor-
mance, and fixed-time control results in the highest travel times highlighting its
inadequacy in dynamic traffic situations.

2. Medium-to-Heavy (MH) Volume

• In the Arterial1×3 network, the proposed model with an ATT between 160 and
52 s maintains its superior performance, which is significantly lower than the
other methods.

• In the Grid2×2 network, the proposed model continues to lead in performance
with an ATT ranging from 195 to 220 s.

• MP control shows a decline in efficiency under heavier traffic conditions. Fixed-
time control exhibits the highest travel times which further underscores its limi-
tations in handling medium-to-heavy traffic volumes.

3. Summary

• The proposed model demonstrates superior performance relative to both fixed-
time control and MP control. As traffic volume increases, the advantages of the
proposed model become more pronounced.

• MP control, which is a greedy algorithm, achieves optimal solutions at each
time step. However, it frequently switches signal phases, leading to increased
lost time.

• Fixed-time control, which is predicated on overly simplistic assumptions or prior
knowledge of traffic patterns, is prone to failure in dynamic traffic scenarios.

Table 2. ATTs (seconds) without priority control.

Arterial1×3 Grid2×2

Bus Route B310 B320 B330 B340 B310 B320 B330 B340

LM volume

Proposed 134 133 46 45 158 154 163 162
MP 175 176 46 46 175 176 174 171

Fixed time 184 181 50 53 167 165 209 184

MH volume

Proposed 160 156 53 52 199 195 212 220
MP 216 219 56 56 259 260 239 227

Fixed time 318 367 132 145 347 358 410 451
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5.2. Priority Control
5.2.1. Cases

This paper presents three distinct scenarios for each road network: the Base case,
Case 1, and Case 2. The Base case operates without priority control, which corresponds to
a PF value of 1. Case 1 involves specific bus routes that are granted priority control, while
Case 2 applies priority control to all bus routes within the network. The PF settings for each
scenario are summarized in Table 3, where “NP” denotes the absence of priority control
and “PF” indicates the application of the priority factor.

Table 3. Test cases for this study.

Arterial1×3 Grid2×2

Bus Route B310 B320 B330 B340 B310 B320 B330 B340

Base case NP NP NP NP NP NP NP NP
Case 1 PF PF NP NP PF NP NP NP
Case 2 PF PF PF PF PF PF PF PF

In the scenarios featuring PF, there are three defined priority levels: low, medium, and
high. As the priority level increases, so does the corresponding PF value. The setting of the
PF is determined through a trial-and-error approach. In the following experiments, the PF
is assigned values of 2, 5, and 8, which effectively categorize the priority control levels into
low, medium, and high. It is crucial to emphasize that an excessively high PF may result in
unpredictable control behavior from the RL agent because the PF is determined following
the training of the RL agent.

The Base case serves as a benchmark for evaluating the differences in performance
before and after the implementation of priority control. Case 1 assumes the presence of
a TSP arterial on the Arterial1×3 network or a designated TSP bus route on the Grid2×2
network. Case 2 is designed to simulate situations of conflicting priority requests. In a long
arterial or large metropolitan region, multiple TSP requests often occur, especially for those
intersections with multiple bus routes passing through.

5.2.2. ATT Analysis

This section presents the analysis of the ATT of buses and cars.

1. Bus ATTs

The reduction in the ATT for buses is a key indicator for evaluating the performance of
TSP control systems [15]. Tables 4 and 5 present a comparative analysis of the ATT in Case
1 and Case 2 against the Base case for both the Arterial1×3 and Grid2×2 networks across
various scenarios. The results are summarized as follows:

• Bus routes with a PF greater than 1 exhibit a lower ATT compared to the Base case
with a PF of 1 under identical traffic conditions. The reduction in the ATT is notable,
with the highest decrease observed at 17% in the Arterial1×3 network and 25% in the
Grid2×2 network.

• In Case 1 of both the Arterial1×3 and Grid2×2 networks, agents are inclined to grant
right-of-way to priority bus routes at intersections. Consequently, non-priority bus
routes experience longer crossing times at these intersections. This represents a trade-
off for allowing priority buses to traverse intersections more rapidly.

• In Case 2 for both Arterial1×3 and Grid2×2, all bus routes demonstrate reduced ATTs
compared to the Base case due to the application of PF across the board. However, the
ATT for routes B310 and B320 in Arterial1×3, as well as B310 in Grid2×2 in Case 2, is
longer than in Case 1. This outcome indicates that agents do not prioritize a specific
direction for bus routes at intersections uniformly; rather, all bus routes compete for
the right-of-way. In the Arterial1×3 network, arterial buses compete with side-street
buses for priority, while in the Grid2×2 network, bus routes from different directions
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vie for precedence. These findings illustrate that the proposed TSP control with PF
effectively addresses conflicting priority requests.

2. Passenger car ATTs

This section examines the travel patterns of passenger cars traveling from north to
south on side streets within the Arterial1×3 network, as well as all passenger cars within
the Grid2×2 network.

In the Arterial1×3 network, passenger cars traveling along the arterial (east-west
direction) reduce ATTs due to the benefits of priority control. Consequently, this focus
is especially pertinent considering the influence that priority buses have on passenger
cars originating from side streets that intersect with the arterial roads. In contrast, the
indistinguishable nature of main and minor roads in the Grid2×2 network necessitates
equal consideration for priority buses and traffic flows in all directions.

Table 6 presents the results and findings, which are summarized as follows:

• Agents prioritize buses over passenger cars to enhance the efficiency of bus travel
times. Consequently, the ATT for passenger cars can increase by as much as 12% in
Arterial1×3 and 7% in Grid2×2, while the ATT for buses may be reduced by up to
17% and 25%, respectively. This increase in passenger car travel time is considered
acceptable due to its relatively minor impact.

• Generally, it is observed that the ATT for passenger cars tends to lengthen as the PF
increases.

• Across both Arterial1×3 and Grid2×2 networks, passenger cars in Case 2 experience
shorter ATTs compared to Case 1. This improvement can be attributed to the facilitation
provided by all buses with a PF greater than 1, which enables passenger cars traveling
in multiple directions to cross intersections more efficiently.

Table 4. Comparison of ATTs with Base case of Arterial1×3.

Base Case Case 1 Case 2

Priority
Level NP Low

PF = 2
Medium

PF = 5
High
PF = 8

Low
PF = 2

Medium
PF = 5

High
PF = 8

LM volume

B310 134 127
(−5%)

118
(−12%)

110
(−17%)

131
(−2%)

120
(−10%)

115
(−14%)

B320 133 127
(−5%)

118
(−12%)

111
(−17%)

127
(−4%)

120
(−9%)

115
(−13%)

B330 46 44
(−3%)

49
(+7%)

50
(+9%)

45
(−2%)

44
(−3%)

41
(−10%)

B340 45 46
(+3%)

47
(+5%)

50
(+13%)

44
(−2%)

42
(−6%)

41
(−7%)

MH volume

B310 160 153
(−4%)

141
(−12%)

135
(−16%)

145
(−10%)

146
(−9%)

133
(−17%)

B320 156 151
(−3%)

135
(−14%)

134
(−14%)

149
(−4%)

137
(−12%)

140
(−11%)

B330 53 52
(−1%)

54
(+3%)

56
(+6%)

49
(−7%)

49
(−7%)

45
(−15%)

B340 52 54%)
(+5%)

58
(+12%)

57
(+11%)

49
(−6%)

49
(−5%)

48
(−8%)
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Table 5. Comparison of ATTs with Base case of Grid2×2.

Base Case Case 1 Case 2

Priority
Level

Non
PF = 1

Low
PF = 2

Medium
PF = 5

High
PF = 8

Low
PF = 2

Medium
PF = 5

High
PF = 8

LM volume

B310 158 148
(−6%)

129
(−18%)

118
(−25%)

153
(−3%)

133
(−16%)

134
(−15%)

B320 154 155
(0%)

160
(+3%)

158
(+2%)

151
(−3%)

135
(−13%)

133
(−14%)

B330 163 163
(0%)

176
(+8%)

172
(+5%)

162
(−1%)

153
(−6%)

147
(−10%)

B340 162 159
(−2%)

172
(+6%)

173
(+7%)

161
(−1%)

145
(−11%)

148
(−9%)

MH volume

B310 199 196
(−2%)

178
(−10%)

167
(−16%)

185
(−7%)

177
(−11%)

164
(−17%)

B320 195 215
(+10%)

202
(+3%)

210
(+8%)

192
(−2%)

167
(−15%)

164
(−16%)

B330 212 230
(+8%)

235
(+11%)

229
(+8%)

207
(−2%)

181
(−15%)

188
(−11%)

B340 220 254
(+16%)

255
(+16%)

266
(+21%)

205
(−7%)

205
(−7%)

185
(−16%)

Table 6. Comparison of ATTs of passenger cars with Base case.

Base Case Case 1 Case 2

Priority
Level

Non
PF = 1

Low
PF = 2

Medium
PF = 5

High
PF = 8

Low
PF = 2

Medium
PF = 5

High
PF = 8

Side-street passenger cars in Arterial1×3

LM 45 45
(+1%)

47
(+6%)

50
(+12%)

45
(0%)

46
(+4%)

48
(+7%)

MH 51 52
(+2%)

54
(+5%)

57
(+11%)

50
(−3%)

52
(+2%)

54
(+6%)

All passenger cars in Grid2×2

LM 123 123
(0%)

126
(+3%)

126
(+3%)

124
(+1%)

128
(+4%)

129
(+5%)

MH 156 167
(+7%)

162
(+4%)

167
(+7%)

159
(+2%)

157
(0%)

158
(+1%)

5.2.3. Signal Timing Analysis

The traffic light at each intersection is managed by a single RL agent, referred to as a
“controller” followed by a Latin letter. Arterial1×3 has three controllers, while Grid2×2 has
four controllers. Figure 7 illustrates the positioning of each controller within the Arterial1×3
and Grid2×2 networks.

1. Average cycle length

Cycle length defines the time required for a complete sequence of indications.
Tables 7 and 8 present the experimental results regarding the average cycle length for
the Arterial1×3 and Grid1×3 networks, respectively.
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Table 7. Cycle length (seconds) in Arterial1×3.

Base Case Case 1 Case 2

PF = 1 PF = 2 PF = 5 PF = 8 PF = 2 PF = 5 PF = 8

LM volume

Controller A 49 47 51 54 48 50 55
Controller B 48 48 51 54 50 55 56
Controller C 48 47 50 54 49 51 54

MH volume

Controller A 59 60 61 64 59 61 67
Controller B 60 61 64 66 60 65 71
Controller C 59 62 65 68 61 63 64

Table 8. Cycle length (seconds) in Grid2×2.

Base Case Case 1 Case 2

PF = 1 PF = 2 PF = 5 PF = 8 PF = 2 PF = 5 PF = 8

LM volume

Controller A 47 48 50 52 48 56 60
Controller B 47 48 50 52 50 55 57
Controller C 48 48 48 48 50 57 59
Controller D 47 47 49 49 48 55 60

MH volume

Controller A 63 68 73 68 66 71 73
Controller B 63 66 68 69 61 67 65
Controller C 62 66 64 68 64 70 78
Controller D 59 69 66 70 60 68 74

The cycle length increases with higher traffic volumes, which is consistent with es-
tablished principles of traffic signal design. Additionally, because the system allocates
more time to prioritize buses approaching intersections with larger PF values, the cycle
length tends to increase as the PF increases. This results in a reduced frequency of stops
at those intersections. A comparison between Case 1 and Case 2 in both the Arterial1×3
and Grid1×3 networks shows that cycle lengths in Case 2 are generally longer than those in
Case 1, indicating that cycle lengths are extended when a greater number of priority buses
traverse the intersections.

2. Split

Within a traffic signal cycle, splits refer to the proportion of time allocated to each
phase at an intersection. Tables 9 and 10 present the splits for controller B on the Arterial1×3
network and controller A on the Grid2×2 network, respectively. Controller B was selected
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for analysis due to its central position on the Arterial1×3. Meanwhile, all controllers in
Grid2×2 are similar, making Controller A representative of the other controllers within the
Grid2×2 network.

Table 9. Split of controller B in Arterial1×3. Percentages marked in bold indicate the phase that serves
the priority buses.

Base Case Case 1 Case 2

PF = 1 PF = 2 PF = 5 PF = 8 PF = 2 PF = 5 PF = 8

LM volume
Phase 1 22% 22% 21% 19% 21% 19% 19%
Phase 2 29% 29% 33% 34% 29% 32% 32%
Phase 3 21% 22% 20% 19% 21% 19% 19%
Phase 4 28% 27% 27% 27% 30% 30% 31%

MH volume
Phase 1 21% 20% 22% 19% 21% 20% 20%
Phase 2 30% 31% 31% 32% 31% 31% 31%
Phase 3 19% 19% 19% 21% 19% 18% 18%
Phase 4 30% 30% 28% 29% 29% 32% 31%

Table 10. Split of controller A in Grid2×2. Percentages marked in bold indicate the phase that serves
the priority buses.

Base Case Case 1 Case 2

PF = 1 PF = 2 PF = 5 PF = 8 PF = 2 PF = 5 PF = 8

LM volume
Phase 1 22% 21% 20% 20% 21% 19% 18%
Phase 2 28% 29% 30% 33% 28% 28% 30%
Phase 3 24% 24% 23% 22% 24% 27% 27%
Phase 4 27% 26% 26% 25% 27% 26% 25%

MH volume
Phase 1 20% 18% 19% 17% 19% 17% 17%
Phase 2 30% 29% 31% 32% 29% 29% 30%
Phase 3 24% 24% 22% 24% 23% 27% 25%
Phase 4 27% 29% 29% 27% 28% 28% 28%

The split allocated to movements on priority bus routes is greater than that for move-
ments without priority bus routes, and this split increases as the PF rises. Moreover, there
is no significant difference in the split between varying traffic volumes. Additionally, splits
remain consistent for corresponding phases serving priority bus routes, even when different
PF values are applied.

5.3. Dynamic PF

In the previous scenario analysis, the PF was maintained at a constant value, indicating
that the priority control was fixed. However, it is essential to assign varying levels of
priority control to individual buses based on specific circumstances, such as fluctuations in
passenger numbers. The subsequent PF analysis employs the following formula:

PF = 1 +
number o f passengers

maximum number o f passengers
× 7 (22)

whereby the PF is determined according to varying passenger loads, resulting in differ-
ent levels of priority control. As indicated by Equation (22), the PF is equal to 1 when
there are no passengers on the bus, and it increases to 8 when the bus is at full capacity
with passengers.
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Assuming the maximum number of passengers is 80, Figure 8 displays the ATT for
arterial bus routes (B310 and B320) in the Arterial1×3 network, as well as for all bus routes
in the Grid2×2 network. The findings indicate that a dynamic PF can effectively reduce bus
ATT as the number of passengers increases. In the Arterial1×3 network, the ATT ranges
from 113 s to 126 s under LM volume and from 137 s to 150 s under MH volume. In the
Grid2×2 network, the ATT ranges from 139 s to 161 s under LM volume and from 186 s to
214 s under MH volume. These results demonstrate that PF has broader applicability in
dynamic situations such as aiming to enhance the operational regularity and punctuality of
transit systems.
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6. Conclusions

This study introduces, for the first time, an innovative transit signal priority (TSP)
control system that enhances reinforcement learning (RL)-based traffic signal control (TSC)
by integrating a priority factor (PF) specifically designed for mixed-traffic road networks.
This contribution not only improves the effectiveness of signal management for public
transit but also promotes a more efficient flow of all traffic, representing a significant
advancement in traffic signal control methodologies. Within the context of RL control
construction, the paper thoroughly explains the rationale behind the design of states and
actions, and it theoretically formulates the reward function using the principles of max-
pressure (MP) control. To further prioritize buses over passenger cars, the study introduces
the PF. The PF is designed to prioritize bus movements seeking to balance the competing
objectives of enhancing bus operations while mitigating adverse impacts on non-transit
users at signalized intersections.

To evaluate the effectiveness of the proposed RL-based TSP control method, exper-
iments were conducted using VISSIM on two common types of road networks which
are the arterial network identified as Arterial1×3 and the grid network designated as
Grid2×2 within a dynamic traffic environment. The results indicated that the average travel
time (ATT) for buses dropped 17% in Arterial1×3 and 25% in Grid2×2. This represents
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a significant reduction. Furthermore, the proposed TSP with PF effectively addresses
conflicting priority requests and mitigates negative externalities. When multiple buses with
PF approach an intersection from different directions, the agent successfully resolves these
conflicting requests.

An analysis of passenger car ATTs revealed an increase of up to 12% in Arterial1×3
and 7% in Grid2×2, while the ATTs for buses decreased by as much as 17% and 25%,
respectively. This outcome demonstrates that the agent optimizes overall intersection
performance without significantly impacting passenger cars.

In addition to ATT, the paper analyzes signal timing under the proposed RL-based
TSP control method. Examining signal timing enhances the understanding of the control
behavior of RL agents. This analysis provides valuable insights into how RL agents manage
traffic signals effectively. Regarding cycle length, it was observed that an increase in the
number of buses with higher PF correlates with longer cycle lengths. In terms of signal
splits, the phase duration is extended when servicing directions with buses that possess PF,
as anticipated, since the agent prioritizes the rapid passage of buses through intersections.

The final section of the paper discusses the implementation of a dynamic PF based
on passenger load rather than a constant PF. The results indicate that as passenger num-
bers increase, buses experience reduced travel times through intersections. This finding
underscores the broader applicability of a PF under various dynamic conditions.

7. Future Research

Future research should concentrate on determining the PF in real-time control scenar-
ios. Further studies are warranted to explore various factors, such as passenger waiting
times at downstream bus stops and bus headways, to inform the PF calculations for op-
erational regularity and punctuality of transit systems. Additionally, examining how to
integrate these factors into future models is recommended. It is also essential to investigate
how to establish the PF within a reasonable range.

To apply the proposed TSP approach in real-time control, one of the primary chal-
lenges is the need for extensive and accurate data such as traffic patterns, bus movements,
passenger loads, and surrounding vehicles. Implementing a robust data collection frame-
work, including the use of sensors, cameras, and GPS technology, can be resource-intensive
and may require collaboration with local transit agencies and municipalities. Additionally,
concerns related to data privacy and security must be addressed to ensure compliance with
regulations.
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