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Highlights:

What are the main findings?

• The bagging prediction model demonstrated approximately 20% higher accuracy compared to
the single ANN model.

• Accurate prediction of bearing layer depth is critical for improving urban resilience and infras-
tructure planning in smart cities.

What are the implications of the main finding?

• The improved accuracy of the bagging model supports more reliable geotechnical investigations,
which can lead to safer urban development in earthquake-prone areas.

• Improved prediction models for bearing layer depth can reduce the need for extensive in situ
testing, lowering costs and increasing the efficiency of construction projects.

Abstract: This paper examines how smart cities can address land subsidence and liquefaction in the
context of rapid urbanization in Japan. Since the 1960s, liquefaction has been an important topic
in geotechnical engineering, and extensive efforts have been made to evaluate soil resistance to
liquefaction. Currently, there is a lack of machine learning applications in smart cities that specifically
target geological hazards. This study aims to develop a high-performance prediction model for
estimating the depth of the bearing layer, thereby improving the accuracy of geotechnical investiga-
tions. The model was developed using actual survey data from 433 points in Setagaya-ku, Tokyo,
by applying two machine learning techniques: artificial neural networks (ANNs) and bagging. The
results indicate that machine learning offers significant advantages in predicting the depth of the
bearing layer. Furthermore, the prediction performance of ensemble learning improved by about
20% compared to ANNs. Both interdisciplinary approaches contribute to risk prediction and mitiga-
tion, thereby promoting sustainable urban development and underscoring the potential of future
smart cities.

Keywords: artificial neural networks; ensemble learning; geotechnical information; prediction;
smart cities

1. Introduction

Japan’s urban landscape, characterized by rapid urbanization and cutting-edge tech-
nological advances, is at the forefront of addressing complex challenges in the construction
and infrastructure sectors. However, in Japan, significant structural damage is often caused
by settlement or overturning of structures due to liquefaction of saturated sandy soils
during large earthquakes [1].

The primary cause of liquefaction is the loss of shear strength due to increased pore
water pressure and a reduction in effective soil stress, which ultimately causes sandy soils to
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exhibit a fluid-like behavior [2–4]. As shown in Figure 1, liquefaction is a phenomenon that
occurs when an earthquake causes a strong shock to the ground, causing soil particles that
were previously in contact and supporting each other to separate, transforming the entire
soil into a viscous, liquid-like state. When liquefaction occurs, water can gush out of the
ground, causing previously stable soil to suddenly become soft. This can cause buildings
to sink or tilt, manholes and buried pipes to rise to the surface, and the entire soil to flow
downward. As shown in Table 1, liquefaction is more likely to occur when the following
three conditions combine: loose soil, high water table, and an earthquake. Liquefaction
has been an important topic in geotechnical engineering since the 1960s, and considerable
effort has been devoted to evaluating the liquefaction resistance of in situ soils. The current
methodology for this assessment typically relies on in situ measurements, such as the
SPT-N value (the number of blows required to penetrate 30 cm in the standard penetration
test [5,6]). Historical records indicate that most severe liquefaction disasters have occurred
in geologically young, sandy deposits, such as those found on artificial islands and in
former river channels, filled lakes, swamps, and pipeline backfill areas [7–9]. The sudden
ground instability during such events can cause catastrophic damage to buildings and
infrastructure, resulting in significant economic losses and tragic loss of life. This critical
issue has been further highlighted in [1,10,11].

Smart Cities 2024, 7, FOR PEER REVIEW  2 
 

that occurs when an earthquake causes a strong shock to the ground, causing soil particles 

that were previously in contact and supporting each other to separate, transforming the 

entire soil into a viscous, liquid-like state. When liquefaction occurs, water can gush out 

of the ground, causing previously stable soil to suddenly become soft. This can cause 

buildings to sink or tilt, manholes and buried pipes to rise to the surface, and the entire 

soil to flow downward. As shown in Table 1, liquefaction is more likely to occur when the 

following three conditions combine: loose soil, high water table, and an earthquake. Liq-

uefaction has been an important topic in geotechnical engineering since the 1960s, and 

considerable effort has been devoted to evaluating the liquefaction resistance of in situ 

soils. The current methodology for this assessment typically relies on in situ measure-

ments, such as the SPT-N value (the number of blows required to penetrate 30 cm in the 

standard penetration test [5,6]). Historical records indicate that most severe liquefaction 

disasters have occurred in geologically young, sandy deposits, such as those found on 

artificial islands and in former river channels, filled lakes, swamps, and pipeline backfill 

areas [7–9]. The sudden ground instability during such events can cause catastrophic dam-

age to buildings and infrastructure, resulting in significant economic losses and tragic loss 

of life. This critical issue has been further highlighted in [1,10,11]. 

 

Figure 1. Specific manifestations of the liquefaction phenomenon. 

Table 1. Three factors contributing to liquefaction and their detailed explanations. 

Causes of Liquefaction Details 

Loose ground 
Sandy soils with an N value of 20 or less, indicating soil hardness, 

and particle sizes between 0.03 mm and 0.5 mm. 

High groundwater Groundwater level within 10 m of the ground surface. 

Earthquake 

Commonly observed along coastlines, near river mouths, on 

reclaimed land, and in river alluvial fans. 

Earthquake intensity of 5 or higher. 

The longer the shaking lasts, the greater the damage. 

The government should take effective measures to prevent and control liquefaction 

in residential areas in order to promote research, publish relevant findings, and deepen 

public understanding of liquefaction hazards. 

The importance of smart cities is obvious. Smart cities use various information tech-

nologies or innovative concepts to integrate the systems and services that make up the 

city, with the aim of improving the efficiency of resource utilization, optimizing urban 

management and services, and improving the quality of life for citizens. Specifically, the 

concept of “intelligence” allows people to manage production and daily life in a more 

sophisticated and dynamic way through the application of next-generation information 

technologies. The emergence of the Internet of Things (IoT) enables access to remote sen-

sor data and remote control of the physical world, allowing cities to effectively monitor 

and manage essential elements such as water supply, building operations, and 

Before earthquake occurred Liquefaction during earthquake After liquefaction occurred

Sewer Sewer

Damaged sewer

))

))

))

Figure 1. Specific manifestations of the liquefaction phenomenon.

Table 1. Three factors contributing to liquefaction and their detailed explanations.

Causes of Liquefaction Details

Loose ground Sandy soils with an N value of 20 or less, indicating soil hardness,
and particle sizes between 0.03 mm and 0.5 mm.

High groundwater Groundwater level within 10 m of the ground surface.

Earthquake

Commonly observed along coastlines, near river mouths, on
reclaimed land, and in river alluvial fans.
Earthquake intensity of 5 or higher.
The longer the shaking lasts, the greater the damage.

The government should take effective measures to prevent and control liquefaction in
residential areas in order to promote research, publish relevant findings, and deepen public
understanding of liquefaction hazards.

The importance of smart cities is obvious. Smart cities use various information tech-
nologies or innovative concepts to integrate the systems and services that make up the
city, with the aim of improving the efficiency of resource utilization, optimizing urban
management and services, and improving the quality of life for citizens. Specifically, the
concept of “intelligence” allows people to manage production and daily life in a more
sophisticated and dynamic way through the application of next-generation information
technologies. The emergence of the Internet of Things (IoT) enables access to remote sensor
data and remote control of the physical world, allowing cities to effectively monitor and
manage essential elements such as water supply, building operations, and transportation



Smart Cities 2024, 7 2912

networks [12]. Data vitalization introduces a new paradigm for analyzing large datasets
and provides ubiquitous data support for top-level smart city applications [13,14].

In this study, as shown in Figure 2, an AI-driven predictive model integrates data
from various databases, including geotechnical and geographic information, to enhance
urban resilience and promote the development of a safer and more sustainable society. This
approach contributes to the sustainable growth of smart cities and ensures the safety of
their inhabitants [15].
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Figure 2. Visualization of smart cities and their relevance to this study.

Although monitoring technology for geologic hazards and liquefaction has contin-
uously improved, significant limitations remain. The main problem is that traditional
empirical methods lack reliability and universality. Therefore, the field of machine learning
is expected to play a key role in improving prediction accuracy. Techniques such as artificial
neural networks (ANNs) [16] and ensemble learning [17–20], which improve prediction
through algorithmic diversity, are at the forefront of spatial and temporal data analysis.
Currently, machine learning is widely used in many countries for applications such as
address prediction and other purposes [21,22]. Similarly, ANNs can be used to predict
potential geological risks [23]. Machine learning can build a fine-grained 3D geological
model that provides an integrated representation of stratigraphic and lithologic informa-
tion, demonstrating its effectiveness [24]. By using machine learning to analyze geological
data and make predictions, it can significantly aid urban planning. This also reflects the
widespread use and impact of machine learning worldwide.

The main objective of this study is to use AI technology that surpasses traditional
methods to predict geological information, analyze reliable data sets, and develop a new
prediction model. Since this is an emerging field, this study is divided into two parts:
creating a single model using ANNs and developing an integrated model by combining
multiple models using bagging for analysis and comparison. By comparing the results,
the model with the superior predictive performance will be identified to address Japan’s
liquefaction problem, with the ultimate goal of achieving smart infrastructure and data-
driven smart cities. This work also marks the beginning of a new era in urban development.
By integrating ever-evolving technologies with traditional studies, we can better address
urban development challenges and ensure a sustainable future for all.
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2. Data and Methods

The purpose of this study is to predict the depth of the bearing layer. The bearing
layer is defined as “a layer that is strong enough to support a given structure”. In other
words, it is “a layer that is strong and does not easily undergo detrimental deformation
when loaded”. A 63.5 ± 0.5 kg hammer is used to strike the drill rod at a free fall height
of 76 ± 1 cm, driving the sampler 30 cm into the ground in the standard penetration test.
The number of impacts required is referred to as the N value. The N value reflects the
relationship between soil moisture, clay, and organic matter content and is used to estimate
soil bearing capacity and the degree of settlement after drainage. An N value of 20 or less
often indicates instability as a foundation layer for civil engineering structures. In general,
soil with an N value of 20 or more or rock is desirable as a foundation layer. If the N value
is between 30 and 50, the layer is considered suitable as a foundation for civil engineering
structures. If the N value is 50 or more, it is considered to be very solid and suitable as a
bearing layer for large structures such as high-rise buildings [25]. Therefore, in this study,
an N value greater than 50 over a continuous depth of more than 3 m is defined as a bearing
layer [26].

Machine learning tools aim to solve two classical statistical tasks: classification (pattern
recognition) and regression (function approximation) [27]. The goal of regression is to
predict real-valued labels for data, while the goal of classification is to predict discrete
labels [28]. First, it is necessary to determine whether the problem is a regression or a
classification problem. Clearly, predicting the depth of the bearing layer is a continuous
value, so it is a regression problem.

This study used geological survey data from Setagaya-ku, Tokyo. The location in-
formation (latitude and longitude) of the survey sites and the depth of the bearing layer
were obtained from the results of ground surveys in the Kanto region based on standard
penetration tests and mini-ram sounding tests. The specific source of the data on the depth
of the bearing layer was the actual experimental investigations conducted in recent years,
which were provided by the cooperating company involved in the study. Elevation data
were obtained from the Tokyo Geographical Research Institute, which provides a real-time
elevation query service. By providing the latitude and longitude of the desired location,
the corresponding elevation can be obtained in real time. A specific example of the data
is shown in Table 2. A total of 433 data points were used in this study, and the analysis
of these 433 data points is shown in Table 3. In addition, the distribution of the 433 data
points on the map is shown in Figure 3, with the four locations listed in Table 2 also marked
in Figure 3.

Table 2. Specific data examples from Setagaya-ku, Tokyo.

Latitude Longitude Bearing Layer Depth (m) Elevation (m)

35.6290 139.674 13.38 38.8

35.6114 139.632 11.00 11.0

35.6582 139.649 12.80 37.3

35.6679 139.669 13.53 36.5

Table 3. General analysis of 433 data points used for training.

Area (km2) Data Density (pcs/km2) Standard Deviation of the Data

58.1 7.46 9.53
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Since the term “machine learning” was coined by Arthur Samuel in 1959 [29], a wide
variety of models have been developed in the field. In many cases, these models provide
better results [30] due to their ability to handle complex data more effectively than classical
statistical methods [31,32]. Recent advances in computing technologies have led to the
development of several machine learning algorithms, in particular ANNs, which can
operate in a nonlinear fashion [33]. Ensemble learning combines multiple machine learning
algorithms to produce weakly predictive results based on features extracted from different
data projections and fuses these results using different voting mechanisms to achieve better
performance than any single algorithm alone [34].

The purpose of this study is to use ANNs and bagging techniques to learn from a
dataset of 433 records, develop a prediction model for bearing layer depth, and compare
the prediction performance.

3. Building Artificial Neural Networks (ANNs)

ANNs are mathematical or computational models that mimic the structure and func-
tion of biological neural networks and are used to estimate or approximate functions. ANNs
have become popular and useful models for classification, clustering, pattern recognition,
and prediction in various disciplines. ANNs are a type of model for machine learning (ML)
and have become relatively competitive with traditional regression and statistical models in
terms of effectiveness [35]. The great potential of ANNs lies in their high-speed processing
capabilities, especially in massively parallel implementations, which has increased the
interest in studying this field [36,37].

To build a PyTorch-based ANN model for output prediction, the process is divided
into the following seven steps: defining the problem, preparing the dataset, defining the
model, defining the loss function and optimizer, training the model, evaluating the model,
and tuning the model.

3.1. Preparing the Dataset

After obtaining the data, duplicate entries were removed using the drop_duplicates
function. Data types and missing information were then checked. Of the three variables,
only the bearing layer depth variable had missing values. There were no variables with
a high enough percentage of missing values to warrant deletion, and all variables were
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retained for modeling. Lines with missing values were simply removed. Because all vari-
ables in this study are numerical, they are easy to process and improve model performance.
After confirming the relevance and importance of the features, the dataset was finalized.
A total of 433 datasets were used in this study, and the data were divided into training,
validation, and test sets at a ratio of 7:2:1.

3.2. Creating the Model

This study uses a model with three input neurons and one output neuron. The purpose
of this model is to determine the weights on the connections between the input and output
units in order to fit the results to the given data. By adding a hidden layer, the model
is capable of handling nonlinear relationships. As shown in Figure 4, an ANN model is
implemented using PyTorch 2.0.

Figure 4. Prototype of ANN model for Case 1.

The activation function chosen is ReLU, which is commonly used in deep ANNs, and
is defined as follows in Equation (1):

ReLU (x) = max (0, x) (1)

when x is less than 0, the output is 0, and when x is greater than 0, the output is x. Since
ReLU is used as the activation function, the initial value specific to ReLU, recommended by
He et al. [38] and known as the “He initialization”, is applied. For the number of nodes
(n) in the previous layer, the He initialization uses a Gaussian distribution with a standard

deviation of
√

2
n [38].

For a model with three inputs and one output, it is first defined as a simple fully
connected network. In an ANN, fully connected means that every neuron in the current
layer is directly connected to all neurons in the previous layer. This connection implies that
the output from each neuron in the previous layer is passed to every neuron in the current
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layer, where a weighted summation of these inputs is performed, followed by applying an
activation function to produce the output.

ANNs train the network through two processes: forward propagation and backprop-
agation. During forward propagation, input data is processed by applying weights and
activation functions, passing the output from layer to layer until the final output is pro-
duced. During backpropagation, errors are propagated from the output layer to the input
layer based on the difference between the predicted output and the true labels. During this
process, gradients for each layer are calculated. Using these gradients, the gradient descent
method is applied to update the weights and biases in order to minimize the error function
and improve network performance. These steps are repeated until the maximum number
of iterations is reached.

It is important to note the parameters that are set during the model creation. One key
parameter is ‘hidden_layer_sizes’, which defines the number of hidden layers and the
number of neurons in each layer. Initially, the array [2,5] was set, meaning the network had
two hidden layers, with 5 neurons in the first layer and 2 neurons in the second layer. However,
this configuration resulted in an accuracy of only 40%. To improve the predictive performance,
the hidden layer configuration was modified to three hidden layers, each containing 10 neurons.
This adjustment led to an improved accuracy of approximately 90%.

For regression problems, the mean square error (MSE) was used as the loss function,
and stochastic gradient descent (SGD) was selected as the optimizer. Hyperparameter
tuning was performed manually.

4. Building Bagging

Ensemble learning methods, which involve building and combining multiple learners,
have been shown to produce better results and achieve improved generalization compared
to any individual classifier alone [39–41]. Many methods for constructing ensembles
have been developed, but bagging, boosting, and stacking are the most commonly used
techniques [42]. In short, bagging (also known as bootstrap aggregation; [43]) improves
the stability and accuracy of machine learning algorithms by training the same algorithm
multiple times using different subsets sampled from the training data [44].

The aggregation of multiple learners results in lower variance for the model, although
its bias may remain unchanged, based on the bias-variance decomposition of error for
machine learning models. Given multiple models of the same machine learning algorithm
trained on different training datasets, the bias represents the similarity between the models’
average prediction and the ground truth, while the variance reflects the variability between
the predictions [44]. Random Forest [45], as illustrated in Figure 5, is a well-known
implementation of bagging that uses decision trees and introduces additional randomness
in the feature selection process during training [46].

After creating the model, hyper-parameter tuning is still required. Manual parameter
tuning was used for optimization. It was found that when the number of decision trees
(n_estimators) was set to 91, the model achieved optimal performance. The specific hyper-
parameter values are listed in Table 4. ‘n_estimators’ represents the number of decision
trees generated by sampling the original dataset with replacement. ‘max_depth’ specifies
the maximum depth of each decision tree; a value of ‘None’ indicates that the depth of
the sub-tree is not limited when building the optimal model. ‘max_features’ defines the
maximum number of features considered when splitting a node; ‘auto’ means that the
maximum number of features is set to the square root of the number of features (N).
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Table 4. Hyper-parameter values of bagging in Case 2.

Hyperparameters Value

N_esimators 91
Max features Auto
Max_depth None

The steps to creating the model are as follows: First, bootstrap sampling is used
to extract samples from the original dataset, forming multiple sub-datasets. Second, a
decision tree is constructed for each sub-dataset. At each node, a random subset of features
is selected for splitting. These steps are repeated until 91 decision trees are generated.
Finally, the predictions of these 91 decision trees are averaged to obtain the final prediction.
This averaging process is represented by Equation (2):

Y =
1
N

N

∑
n=1

Xn (2)

where, Y is the predicted value of the ensemble, Xn is the prediction from an individual
decision tree, and N is the total number of decision trees.

A diagram of a decision tree is shown in Figure 6, where X [0], X [1], and X [2] represent
latitude, longitude, and elevation, respectively.
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5. Results and Discussion

In the context of smart city development, the integration of AI technology can signifi-
cantly improve urban management. This study focuses on two case studies in Setagaya,
Tokyo. The accuracy and effectiveness of these methods are crucial for smart city applica-
tions, including urban planning and environmental monitoring. In Case 1, ANNs were
used to create a predictive model, while in Case 2, bagging was used to develop a predictive
model. The explanatory variables for both cases were latitude, longitude, elevation, and
bearing layer depth, with the target variable being bearing layer depth.

5.1. Results on Predicting Bearing Layer Depth

In Case 1, the model created using ANNs was used to predict the bearing layer depth
at 10 locations in Setagaya-ku, Tokyo. The actual measurements at these locations were
used to evaluate the accuracy of the predictions, and the error values between the predicted
and actual measurements were calculated. Table 5 and Figure 7 show the specific prediction
results and errors for the 10 points in both cases. Figure 8 shows the prediction results for
all points in Case 1, demonstrating the accuracy of the spatial prediction method. Similarly,
in Case 2, the same data were used to make predictions using the model created with
bagging. Figure 9 shows the prediction results for all points in Case 2.

Table 5. Average prediction error of bearing layer depth in both cases.

Predicted Location Error of Case 1 (m) Error of Case 2 (m)

1 1.40 0.75
2 0.80 0.53
3 5.30 3.41
4 0.70 1.95
5 0.89 0.09
6 1.40 0.22
7 0.56 0.02
8 0.70 0.10
9 0.26 0.26
10 0.78 1.26

Average error (m) 1.27 0.86

CI 10.16 ± 0.77 10.56 ± 1.05
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5.2. Comparison of Prediction Results between ANNs and Bagging

Table 6 provides a detailed comparison of the prediction results using ANNs and
bagging methods, showing that the prediction model based on the bagging method is more
accurate than that of ANNs. Table 6 uses four metrics—MAE, MSE, RMSE, and confidence
interval—to evaluate the prediction accuracy of the models in Case 1 and Case 2.

Table 6. Results of bearing layer depth prediction using ANNs and bagging.

MAE MSE RMSE

ANNs 1.07 2.89 1.70

Bagging 0.86 1.79 1.34

Mean absolute error (MAE) represents the average of the absolute differences between
the actual and predicted values in the data set, measuring the average residuals. Mean
squared error (MSE) is the average of the squared differences between the actual and
predicted values in the data set. Root mean squared error (RMSE) is the square root of the
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MSE and measures the standard deviation of the residuals. The lower the values of MAE,
MSE, and RMSE, the more accurate the regression model is, indicating a better fit to the
data set.

Based on these metrics, it can be concluded that the predictive model developed
using the bagging method is superior. The Confidence Interval (CI) is an estimated range
that provides an interval that is likely to contain an unknown population parameter at a
given confidence level. In other words, it provides an estimate of the possible value of the
population parameter based on the sample data. In this study, a 95% confidence level with
a normal distribution was chosen and the confidence interval was calculated accordingly.
The equation for the CI is shown in Equation (3):

CI = Sample mean ± (Critical value × standard error) (3)

where, the Critical value is 1.96.
The difference in performance between the models motivates a deeper analysis of the

strengths and weaknesses of each method, particularly in the context of their application in
smart city planning and development.

It can be observed that, compared to a single model, the prediction performance of the
ensemble model is improved by about 20%.

A single model refers to a method that uses only one base model for prediction or
classification, such as the ANNs used in this study. The advantages of a single model are
its simplicity, ease of understanding, and ease of implementation. However, there are also
some disadvantages, primarily in the following aspects:

(1) Limited Generalization Ability: A single model is easily affected by data noise, outliers,
and overfitting, resulting in poor performance on new data.

(2) Low Stability: A single model is highly sensitive to data distribution and feature
selection, meaning slight changes in the data or features can significantly alter the
prediction results.

(3) Limited Expressive Power: A single model can often only capture certain aspects of the
data, making it difficult to represent the complexity and diversity inherent in the data.

To address the limitations of a single model, an ensemble model can be used to
combine multiple base models, thereby improving the prediction performance and general-
ization ability. In this study, bagging was employed for this purpose. The diversity and
complementarity of different models can be leveraged to obtain more robust and accurate
predictions. Ensemble learning allows for the integration of the “wisdom” of multiple
models by combining their results through voting, weighting, or other techniques, which
enhances the model’s resistance to noise and its generalization ability, as concluded by
numerous studies [47,48].

Furthermore, individual learners often have different decision boundaries, which may
result in errors. By combining multiple learners, a more reasonable decision boundary can
be established, reducing the overall error rate and yielding better results. When the dataset
is small, partitioning and resampling techniques can be used to generate different data
subsets, which are then used to train different learners, ultimately merging them into a
stronger model. Additionally, when the data partition boundary is too complex for a single
linear model to adequately describe, training multiple models and then fusing them can
result in better overall model performance.

The performance of the bagging model has been improved. This improvement is due
to factors such as the increased depth of support for observation points, the addition of
the bagging process, and the overall improvement of the system. As shown in Figure 10,
Figure 3 is divided into four central points, each with a radius of 1 km, to create a contour
map of the depth of support within the specified area.
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In the context of smart cities, bagging can provide support in the following areas:

(1) Geological data analysis and forecasting: Smart cities rely on rich data for decision
making. Bagging can improve the analysis of geological and other related data by
reducing model variance and improving prediction performance.

(2) Hazard detection: Timely detection of anomalies is critical for smart cities. The
predictive model of bearing layer depth created by bagging can be used as the basis
for creating disaster maps, which in turn helps to detect and respond to abnormal
situations more effectively.

(3) Resource optimization: Based on the model developed in this study, Bagging can
help optimize resource allocation, such as establishing a trusted bearing layer depth,
predicting unknown points before construction, and omitting geological survey steps
when a trusted value is exceeded, thereby reducing costs.

These aspects demonstrate the potential of bagging in smart cities, helping city managers
make more informed decisions by improving data analysis and forecasting performance.

6. Conclusions

At the core of smart city development lies the critical role of predictive analytics,
which uses data to anticipate future scenarios and support decision-making processes.
This study establishes a high-precision prediction method for unknown points and areas,
demonstrating the significant potential of machine learning in geotechnical engineering.
The goal of smart cities is to promote the optimal use of scarce resources and improve the
quality of life for residents. Data collection technology is central to advancing smart city
planning and achieving these objectives. Data-driven insights enable local governments to
improve urban planning and service deployment, thereby enhancing residents’ quality of
life. This study demonstrates the potential of smart cities to use data for urban improvement.
The key findings are as follows:

(1) By using “latitude”, “longitude”, “altitude”, and “bearing layer depth” as input
features, high-precision prediction of bearing layer depth was achieved. This accuracy
is critical for smart cities, as understanding the geotechnical properties of the ground
can significantly impact infrastructure development, from building construction to
transportation network design.
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(2) Compared to single models such as ANNs, ensemble learning using bagging demon-
strated superior prediction performance, with an increase in accuracy of
approximately 20%. Bagging enables better data analysis, promoting more effective
urban planning.

(3) When employing the ensemble learning method bagging to predict geotechnical
engineering survey results, it was found that even small changes in the depth of the
training data could significantly affect model performance. This finding underscores
the importance of ensuring data accuracy.

However, the current study still has significant limitations. First, the reliability of the
prediction results cannot be fully determined. In this study, the prediction performance was
evaluated by comparing predictions at measured locations with actual values. However,
ensuring the credibility of predictions at completely unknown points remains an important
issue for future research. Second, the number of features used in the machine learning
model is limited. The three features used in this study are not comprehensive enough to
fully represent the depth of the bearing layer. Additional relevant ground conditions will
be introduced in future studies. Including more features and ensuring their relevance will
help further improve model performance. Since groundwater presence significantly affects
liquefaction, future predictions will be divided into two specific scenarios. For coastal areas,
a variable representing the distance to the coast will be added, while for non-coastal areas,
two variables such as groundwater level depth and distance to the nearest water source
will be included. Finally, there are many methods for ensemble learning, and determining
the optimal approach remains an important question for future consideration.

This study not only confirms the effectiveness of ensemble learning in geological
prediction but also demonstrates its potential in smart city applications.
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