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Highlights:

What are the main findings?
• MMS-DSR integrates advanced machine learning techniques and beamforming to optimize routing

in 6G-enabled MANETs and VANETs.
• The protocol demonstrates significant improvements in throughput, latency, and routing overhead

compared to traditional routing protocols.
What is the implication of the main finding?
• MMS-DSR’s ability to adapt to real-time network conditions makes it highly suitable for dynamic

urban environments.
• The reduction in routing overhead and enhanced scalability positions MMS-DSR as a robust

solution for future smart city applications.

Abstract: The advent of Sixth Generation (6G) wireless technologies introduces challenges and
opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs),
necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-
Metric Scoring Dynamic Source Routing (MMS-DSR), a novel enhancement of the Dynamic Source
Routing (DSR) protocol, designed to meet the demands of 6G-enabled MANETs and the dynamic
environments of VANETs. MMS-DSR integrates advanced technologies and methodologies to
enhance routing performance in dynamic scenarios. Key among these is the use of a CNN-LSTM-
based beamforming algorithm, which optimizes beamforming vectors dynamically, exploiting
spatial-temporal variations characteristic of 6G channels. This enables MMS-DSR to adapt beam
directions in real time based on evolving network conditions, improving link reliability and
throughput. Furthermore, MMS-DSR incorporates a multi-metric scoring mechanism that evaluates
routes based on multiple QoS parameters, including latency, bandwidth, and reliability, enhanced
by the capabilities of Massive MIMO and the IEEE 802.11ax standard. This ensures route selection
is context-aware and adaptive to changing dynamics, making it effective in urban settings where
vehicular and mobile nodes coexist. Additionally, the protocol uses machine learning techniques
to predict future route performance, enabling proactive adjustments in routing decisions. The
integration of dynamic beamforming and machine learning allows MMS-DSR to effectively handle
the high mobility and variability of 6G networks, offering a robust solution for future wireless
communications, particularly in smart cities.
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1. Introduction

Mobile Ad Hoc Networks (MANETs) have evolved from a specialized area of study
into a ubiquitous element of modern wireless communications, playing a crucial role in the
development of smart cities. Initially engineered for tactical military communications, their
adaptability and resilience have expanded their applications to include disaster recovery,
remote sensing, and complex multi-layered Internet of Things (IoT) ecosystems—key
components of urban infrastructure.

As the urban environment becomes increasingly connected, Vehicular Ad Hoc Net-
works (VANETs) emerge as a critical subset of MANETs, specially designed for the fast-
moving nature of vehicular networks [1–3]. VANETs enable vehicles to communicate
with each other and with roadside infrastructure, facilitating not only improved traffic
management but also enhancing safety and supporting a range of services from navigation
to automated driving in smart cities [4–6].

The impending arrival of Sixth Generation (6G) wireless technologies is poised to
revolutionize the context of both MANETs and VANETs, particularly in urban settings.
Unlike its predecessors, 6G represents a fundamental shift in wireless communication
capabilities rather than a mere incremental upgrade. This upcoming technological leap is
expected to dramatically reshape the extent and complexity of these network types within
city environments. It promises ultra-low latency levels, down to the sub-millisecond range,
unprecedented data rates reaching terabits per second, and near-perfect reliability [7,8].
These features are expected to support futuristic applications crucial for smart cities, such
as real-time augmented and virtual reality, machine-to-machine communications, ultra-
reliable low-latency services, and the tactile Internet, which have extreme demands on
network performance.

Moreover, resource allocation, a challenge already significant in 5G, continues to be
a key issue in 6G networks. Recent studies have leveraged Particle Swarm Optimization
(PSO) to address non-convex optimization problems in resource allocation, demonstrat-
ing that PSO can outperform traditional algorithms like Genetic Algorithms in achieving
convergence and cost minimization [9]. Advancements in MIMO technology, such as circu-
larly polarized (CP) high-isolation MIMO antennas, have been demonstrated to improve
S-parameters, mutual coupling, and channel capacity, making them well-suited for WLAN
applications in the 5 GHz spectrum, which aligns with the goals of future VANETs and
MANETs [10].

However, the transition to 6G introduces significant challenges, particularly for the in-
herently complex and dynamic networks like MANETs and VANETs in urban settings [11–13].
Traditional routing protocols, such as Dynamic Source Routing (DSR), are proving inade-
quate in this context. Designed in an era where network demands were less stringent, these
protocols often rely on simplistic metrics like hop count for route selection, which is insuffi-
cient in the multi-dimensional Quality of Service (QoS) requirements of 6G, where latency,
bandwidth, reliability, and energy efficiency are critical factors that must be simultaneously
optimized [14–17].

To address these challenges, we introduce MMS-DSR (Multi-Metric Scoring Dynamic
Source Routing), a novel modification and enhancement of the traditional DSR protocol,
specifically designed for the complex requirements of 6G-enabled MANETs and optimized
for the high-velocity, highly mobile environments of VANETs in smart cities. MMS-DSR
incorporates several innovative features, including the utilization of Massive MIMO tech-
nologies and the IEEE 802.11ax standard [18]. Massive MIMO, with its capacity to manage
multiple transmit and receive antennas, offers significant improvements in data rates
and link reliability. The IEEE 802.11ax standard, conversely, provides advancements
in network efficiency and capacity, particularly in environments with a high density of
connected devices.

In addition to these advancements, we enhance MMS-DSR by integrating a CNN-
LSTM based beamforming algorithm. This enhancement is designed to optimize the
beamforming vectors dynamically, a critical aspect in 6G networks to adapt to rapid spatial-
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temporal variations in the channel. By taking advantage of the capabilities of Convolutional
Neural Networks (CNNs) to extract spatial features and Long Short-Term Memory (LSTM)
networks to account for temporal dependencies, our approach adapts the beamforming
vectors in real-time based on the evolving network conditions.

This adaptive beamforming capability is particularly important in the context of
6G’s use of Massive MIMO systems, where the ability to dynamically direct beams can
significantly enhance signal quality and network performance. The integration of this
beamforming algorithm into MMS-DSR means that the protocol is not only making intelli-
gent decisions based on multi-metric scores but also considering the optimal beamforming
directions to improve link reliability and data rates in the complex urban features of smart
cities. The main contributions of the present proposal are synthesized as follows:

1. Development of an Advanced Multi-Metric Scoring Mechanism: we introduce a
novel scoring algorithm that uses the properties of Massive MIMO and the 802.11ax
standard. This algorithm evaluates routes based on a comprehensive set of QoS
metrics, providing a nuanced and context-aware route selection process optimized for
urban environments.

2. Introduction of Machine Learning Techniques: by incorporating machine learning
algorithms, MMS-DSR is able to predict future route qualities based on historical
data, enabling proactive route optimization. This is particularly useful in smart cities
where predicting and adapting to changing conditions can significantly improve
network performance.

3. Integration of a CNN-LSTM Based Beamforming Algorithm: we enhance MMS-
DSR with a beamforming optimization algorithm that dynamically adjusts beamform-
ing vectors. This integration helps in managing the spatial-temporal variations in
the channel, supporting the complex beamforming needs of Massive MIMO systems
in 6G.

4. Empirical Validation in a Smart City Simulation Environment: we validate the
performance of MMS-DSR through extensive simulations using the inet framework
along with the OSG Earth visualizer in OMNeT++. This simulation environment
provides a realistic backdrop that highlights the protocol’s potential benefits for
smart city applications, demonstrating its robustness and efficiency in a variety of
challenging urban 6G scenarios.

The remainder of this paper is structured as follows: Section 2 discusses the most
relevant related works illustrating the conceptual gaps that our research aims to fill.
Sections 3 and 4 present the MMS-DSR architectural overview and mathematical proof,
respectively. Section 5 presents CNN-LSTM model architecture. Section 6 explains how the
proposed approach could be adapted for VANET while Section 7 showcases and discusses
the main findings obtained by numerical evaluation. Finally, Section 8 concludes the paper
and outlines the roadmap for future research. Table 1 includes the list of main symbols
used in the paper.

Table 1. List of main Symbols and Acronyms used in the paper.

Symbol Description

α Weighting factor for the summation real-time term
λ Weighting factor for the beamforming score
δ Weighting factor integrating the predictive reliability score
wi(t) Time-dependent weights
mi(r) Route metrics for MANET
vi(r) Route metrics for VANET
Pprediction(r, t) Predictive reliability score
BF(r, t) Beamforming score
L(r, t) Latency
B(r, t) Bandwidth
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Table 1. Cont.

Symbol Description

R(r, t) Reliability
B(r, t) Bandwidth
BE(r, t) Beamforming efficacy
De(r, t) Vehicle density
Di(r, t) Vehicle distance
T(r, t) Vehicle trajectory
S(r, t) Scoring function
TNVA Total Number of Vehicles in the Area
AS Area Size
di Euclidean distance of vehicle from the destination
dref Reference distance
ζ Attenuation factor
d(t)ζ Future distance of the vehicle in the route to the destination at

time t
d(0)ζ Current distance to the destination
J(w, t) Cost function
m̂i(r, t) Predicted value of the metric
S Real-time measured data matrix in input into the CNN
X High-level spatial feature map output by the CNN
wt filter with K− L + 1 coefficients
bt bias term
fl l-th activation function
⊛ convolution operation
F High-level spatial feature map in input to LSTM
H Spatio-temporal features output by LSTM
M Adjustable input window size
T Adjustable ouput window size
W∗,F, W∗,H Weighting matrices for current input high-level spatial feature

matrix Fn and previous spatio-temporal feature matrix Hn−1
DSR Dynamic Source Routing
MMS-DSR Multi-Metric Scoring Dynamic Source Routing
SOL-DSR Self-Organizing Learning Dynamic Source Routing
OLSR Optimized Link State Routing
RSU Road-Side Unit
MU-MIMO Multi-User Multiple Input Multiple Output
OMNeT++ Objective Modular Network Testbed in C++
SUMO Simulation of Urban MObility

2. Related Works

The rapidly evolving field of Mobile Ad Hoc Networks has witnessed the development
of numerous routing protocols, each with its distinct set of characteristics and performance
optimizations. However, few have addressed the challenges and opportunities presented
by emerging 6G technologies as comprehensively as the MMS-DSR protocol introduced in
this paper.

The study [19] enhances the DSR protocol using a hybrid optimization approach
called MET-MFO, which combines Minimum Execution Time (MET) scheduling and Moth
Flame Optimization (MFO). MET reduces latency by selecting routes that minimize packet
processing time, while MFO ensures global route optimization, balancing exploration and
exploitation to find stable paths that minimize energy consumption and extend network
lifetime. Together, MET-MFO improves route discovery by reducing delays, optimizing
energy use, and maintaining stable connections in dynamic MANET environments. Our
MMS-DSR protocol extends this by integrating machine learning to predict and adapt
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to network changes, optimizing not just execution time but also key metrics like latency,
bandwidth, and reliability, offering a more adaptive and comprehensive performance boost
in VANET scenarios.

The article [20] presents a routing protocol that evaluates routes based on multiple
metrics, including latency, bandwidth, and reliability. This multi-metric approach aims to
provide a more comprehensive and adaptive routing decision-making process, ensuring
higher quality of service (QoS) in diverse network conditions. The MMS-DSR protocol,
however, builds on this foundation by dynamically adjusting the importance of each metric
based on current network conditions using machine learning techniques, ensuring better
adaptability and incorporating 6G technologies and advanced beamforming techniques,
making it more suitable for the high-speed, high-density urban environments typical of
smart cities.

In work [21], a new method called Select Optimal Link in Dynamic Source Routing
(SOL-DSR) is proposed to specify the ideal path for routing messages between the source
node and target node. In this method, the ideal path is selected according to three metrics:
node energy level, number of nodes’ neighbors and distance between any pair of the
nodes that are used in the routing path. Our MMS-DSR protocol, however, advances
this by considering a multi-dimensional metric space consisting of latency, bandwidth,
and reliability, thereby providing a nuanced approach to route selection. This is particularly
important in smart cities where diverse traffic conditions and varying user demands
necessitate more sophisticated routing decisions.

When it comes to security considerations, ref. [22] has made significant strides by in-
corporating a trust-based mechanism to counter black hole attacks in DSR-based MANETs.
While their work is seminal in securing DSR protocols, MMS-DSR has the architectural flex-
ibility to integrate such security measures, thus potentially offering a more comprehensive
solution that addresses both performance and security concerns, which are crucial in urban
environments where network threats could disrupt critical city functions.

In the work [23] the author proposes a dynamic source routing protocol based on path
reliability and monitoring repair mechanism (DSR-PM). The model performs data trans-
mission by filtering the best reliability path. The link state information is monitored during
transmission and broken links are repaired in time to ensure the communication stability
and reliability of the links and improve the data transmission efficiency. While DSR-PM
introduces important enhancements to traditional DSR by emphasizing path reliability and
link repair mechanisms, our MMS-DSR protocol offers several significant improvements
and advanced features that make it more suitable for dynamic urban environments and
smart city applications.

In [24], authors adopted the Analytic Hierarchy Process (AHP) for multi-metric route
evaluation, focusing on metrics like bandwidth and hop count. Although AHP is a robust
and mathematically rigorous method for multi-criteria decision-making, it is static in
nature. MMS-DSR, however, employs machine learning-based dynamic weight adjustment
to evaluate routes, thus offering a more adaptable and real-time solution suitable for the
dynamic and heterogeneous networks of smart cities.

In [25] the role of machine learning in MANET routing has been diversely implemented
and notably employed Support Vector Machines (SVMs) for adaptive route selection based
on network state classification. MMS-DSR takes this a step further by utilizing Long
Short-Term Memory networks that offer the advantage of temporal sequence learning, thus
enabling more reliable route prediction over time. This feature is particularly advantageous
in urban settings where past network performance can inform future routing decisions to
optimize traffic flow and resource allocation.

Laanaoui and Raghay [26] introduced an enhancement to the Optimized Link State
Routing (OLSR) protocol by incorporating an Advanced Greedy Forwarding (AGF) mecha-
nism specifically designed for Vehicular Ad Hoc Networks (VANETs) in smart cities. Their
approach improved the classic OLSR protocol by introducing a scoring mechanism that
considers the position and speed of vehicles to select the best forwarding path, which



Smart Cities 2024, 7 3027

reduces end-to-end delay and improves the packet delivery ratio. This is especially cru-
cial in smart cities where the dynamic and fast-changing vehicular environment requires
routing protocols to quickly adapt to changes. Their work demonstrates how adapting
routing protocols for VANETs can significantly enhance communication efficiency in urban
environments, aligning with the goals of MMS-DSR to optimize MANET routing in the
context of smart cities.

Finally, the anticipation of 6G technologies in the evolution of MANETs has been well-
articulated by [27]. This study is more of a foresight into the infrastructural changes that 6G
will bring to MANETs. MMS-DSR is designed keeping these technological advancements in
mind, aiming to provide a routing protocol that is not just optimized for today’s networks
but is future-proof and adaptable for the next generation of mobile communication.

The work [28] attempts to optimize the bandwidth in the DSR routing protocol during
data communication in MANET. The paper purposes a modified Dynamic Source routing
protocol which is a Systematic Analysis Dynamic Source Routing protocol (SA-DSR). While
SA-DSR introduces important enhancements to bandwidth optimization in traditional DSR it
does not incorporate advanced communication technologies like beamforming or MU-MIMO
which implies that this approach is not very suitable for high-mobility environments.

In light of the above, MMS-DSR presents a transformative approach that synergistically
integrates machine learning, advanced optimization, and multi-metric evaluation. More
importantly, it does so while natively considering the capabilities and potential of 6G
technologies, thereby distinguishing itself as a pioneering solution in the field of MANET
routing protocols optimized for smart cities.

Finally, in order to understand the research gap in the existing literature and highlight
the contributions of the present proposal, Table 2 depicts a table with checkboxes locating
the most relevant references analyzed in this work and our research direction. The table
shown in Table 2 also categorizes each of the analyzed and discussed works based on their
topic by evidencing that our work attempts to handle different topics simultaneously.

Table 2. Comparison of Approaches Across Key Dimensions.

Approach Classic
Enhanced-DSR

Multiple
Metric

Machine
Learning

Security
Handling

Specifically Designed
for VANET

Work [19] ✓

Work [20] ✓

Work [21] ✓

Work [22] ✓

Work [23] ✓

Work [24] ✓

Work [25] ✓

Work [26] ✓

Work [27] ✓

Work [28] ✓

Proposed ✓ ✓ ✓ ✓

3. Architectural Overview

MMS-DSR’s architecture is designed to optimize routing decisions dynamically in 6G
MANETs by integrating advanced machine learning models and beamforming techniques,
specifically tailored for the dynamic and complex environments of smart cities. This
protocol builds upon a modular structure that enhances traditional DSR components with
modern technological advancements to improve adaptability and performance. Below is a
detailed breakdown of each component within this architecture:
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• Route Discovery Unit (RDU):initiates the discovery process when a route to a des-
tination is required. Utilizing a combination of traditional flooding methods and
predictive models, it efficiently identifies potential routes. In smart cities, this process
is further enhanced by employing machine learning to predict and avoid congested
or unreliable paths. This proactive route discovery is essential for maintaining high
communication efficiency in urban settings.

• Multi-metric Scoring Engine (MMSE): evaluates discovered routes based on multiple
metrics such as latency, bandwidth, reliability, and beamforming efficacy. This engine
employs dynamic weighting to adjust the importance of each metric based on current
network conditions, which is crucial for adapting to the varying demands of urban
environments.

– Beamforming Efficacy (BE): calculates the improvement in signal quality and
directionality due to beamforming optimizations.

– Weighted Scoring: each metric is assigned a dynamic weight. These weights are
adjusted in real time using feedback from the Machine Learning-Based Prediction
Unit to ensure that scoring aligns with the predicted network state.

– Optimization: the engine utilizes a combination of heuristic and machine-learning
techniques to fine-tune the weights based on ongoing network performance data.
This adaptive approach ensures that the engine remains responsive to changing
network dynamics, particularly in adjusting beamforming strategies for optimal
route performance in smart cities.

• Machine Learning-Based Prediction Unit (MLPU): utilizes CNN-LSTM models to
predict future network states, including changes in channel quality and node mobility.
This unit enhances route selection by forecasting future performance and optimizing
beamforming directions to maintain high-quality communication links. This is partic-
ularly valuable in smart cities where predictive capabilities can lead to more proactive
and efficient network management.

– Predictive Modeling: the unit employs CNN-LSTM models to analyze historical
and current network data to forecast future conditions such as node mobility,
channel quality, and potential interference sources.

– Integration with Beamforming: the predictions include recommended adjust-
ments to beamforming vectors. By predicting how channel conditions will evolve,
the unit guides the Beamforming Optimization Unit to adjust angles and power
levels proactively.

– Feedback Loop: predictive insights are fed back into both the Route Discovery
and Multi-metric Scoring Engine, allowing these modules to prioritize routes that
are expected to offer optimal performance in the near future.

• Beamforming Optimization Unit (BOU) : a critical enhancement in MMS-DSR, this
unit dynamically adjusts beamforming vectors utilizing the CNN-LSTM model based
on real-time and historical channel state information (CSI). This approach ensures
optimal signal directionality and strength, significantly enhancing link reliability
and throughput, which is essential for maintaining robust communication in the
high-density urban environments of smart cities.

– Dynamic Beamforming Vector Adjustment: this unit employs the output from
the Machine Learning-Based Prediction Unit to adjust beamforming vectors. It
optimizes these vectors to maximize signal strength and minimize interference,
taking into account both the current and predicted CSI.

– Feedback to Scoring Engine: adjustments made by this unit are fed back into the
Multi-metric Scoring Engine, enabling it to re-evaluate route scores with updated
beamforming information.

• Route Cache (RC): stores the most efficient routes as determined by the scoring engine.
It is periodically updated based on predictive feedback from the Machine Learning-
Based Prediction Unit, which now also incorporates beamforming vector adjustments.
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This adaptive caching is crucial in smart cities for reducing routing overhead and
improving responsiveness.

The architectural diagram of MMS-DSR presented in Figure 1 provides a comprehen-
sive visual representation of the various components and their interactions. The diagram is
designed to reflect the complexity and integrative nature of the MMS-DSR protocol. The ar-
rows in the diagram represent the flow of information between these components, demon-
strating the modular and interconnected nature of the MMS-DSR architecture. The Route
Discovery unit initiates the process by identifying potential routes. It utilizes a combination
of traditional flooding methods and machine learning-based predictive models, ensuring
that the discovered routes adapt dynamically to urban traffic conditions, reflecting both
extensive and efficient pathfinding.

Start: Route Discovery

Multi-metric Scoring Engine

ML-Based Prediction Unit (CNN-LSTM)

Beamforming Optimization Unit

Route Cache

Input:
Traffic
Data

Input:
Network

Data

Historical Data Storage

Prediction Feedback Loop

Route Cached? Update Route Cache

End: Routes Deployed

Evaluate Potential Routes

Provide Metric Weights

Predict Future Traffic

Optimize Beamforming

Store Optimal Routes

Urban Traffic Conditions

Real-time Network Metrics

Feedback for Adjustments

No

Yes

Figure 1. Flowchart for MMS-DSR Architecture.

Following route discovery, the Multi-metric Scoring Engine evaluates each identified
route based on multiple metrics, such as latency, bandwidth, reliability, and beamforming
efficacy. This engine adjusts the weight of each metric dynamically according to current
network conditions, ensuring that the selected routes are optimized to provide balanced and
efficient communication. The Machine Learning-Based Prediction Unit exploits advanced
CNN-LSTM models to predict future network states, such as changes in traffic flow, node
mobility, and channel quality. These predictions are crucial for proactive adjustments
to routing and beamforming. The prediction unit communicates with the Multi-metric
Scoring Engine and Beamforming Optimization Unit to ensure the system adapts to future
conditions rather than just reacting to the current network state.

The Beamforming Optimization Unit, plays a critical role in maintaining high-quality
communication links, especially in high-density urban environments. By dynamically
adjusting beamforming vectors based on both real-time and historical channel state infor-
mation (CSI), this unit ensures optimal signal directionality and strength, thereby enhancing
link reliability and throughput. The Route Cache stores the most efficient routes as deter-
mined by the Multi-metric Scoring Engine. The Route Cache periodically updates itself
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based on predictive feedback from the CNN-LSTM model, ensuring it remains adaptable to
network changes. Additionally, it incorporates beamforming vector adjustments to further
enhance routing efficiency and reduce overhead.

Traffic Data and Network Data serve as inputs to the Route Discovery and Multi-metric
Scoring Engine, respectively. These inputs provide real-time information about urban
traffic conditions and network performance metrics, which are essential for determining
the optimal routes. The Historical Data stored in the Route Cache and used by other units
provide long-term context to enhance future routing decisions. The CNN-LSTM Model
plays a central role in predicting future traffic and network conditions. Arrows indicate its
influence on both the Multi-metric Scoring Engine and Beamforming Optimization Unit,
where its predictive insights are applied to fine-tune routing and communication strategies.

3.1. Multi-Metric Scoring Engine in MMS-DSR

The Multi-metric Scoring Engine is the core component that evaluates and ranks the
discovered routes based on multiple performance metrics. The engine operates according
to the following features:

• Dynamic Metric Evaluation: the engine processes each route to compute scores based
on five key metrics: latency, bandwidth, reliability, beamforming efficacy, and Channel
State Information.

• Weighted Scoring: each metric is assigned a dynamic weight reflecting its current
importance based on network conditions. These weights are adjusted in real time
using feedback from the Machine Learning-Based Prediction Unit to ensure that
scoring aligns with the predicted network state. This approach allows the system to
adapt to the urban dynamics effectively, prioritizing different metrics as the urban
environment evolves.

• Score Computation: the overall score for each route, S, is computed as follows:

S(route) = w1 ·
1

L(route)
+ w2 · B(route) + w3 · R(route) + w4 · BE(route) (1)

where w1, w2, w3, and w4 are the weights for latency, bandwidth, reliability, and beam-
forming efficacy, respectively. This formula ensures that routes are evaluated com-
prehensively, incorporating both traditional and advanced metrics to select the most
efficient path.

• Optimization: the engine uses a combination of heuristic and machine-learning tech-
niques to fine-tune the weights based on ongoing network performance data. This
adaptive approach ensures that the engine remains responsive to changing network
dynamics, particularly in adjusting beamforming strategies for optimal route perfor-
mance in smart cities.

This scoring process enables MMS-DSR to select the most efficient and reliable routes,
considering both current network metrics and future state predictions. The inclusion
of beamforming efficacy as a metric ensures that the protocol can adaptively manage
and utilize advanced beamforming techniques in 6G networks for enhanced communica-
tion quality.

3.2. Machine Learning-Based Prediction Unit in MMS-DSR

The Machine Learning-Based Prediction Unit in MMS-DSR utilizes advanced CNN-
LSTM models to predict future network states, enabling proactive adjustments to routing
and beamforming parameters. This predictive capability aims to maintain high perfor-
mance in the dynamic environments typical of 6G networks and smart cities.

• Predictive Modeling: the unit employs CNN-LSTM models to analyze historical and
current network data to forecast future conditions such as node mobility, channel
quality, and potential interference sources. This analysis helps predict the stability and
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performance of each link in a route, which is crucial for smart cities where conditions
change rapidly.

• Integration with Beamforming: the predictions include recommended adjustments
to beamforming vectors to optimize communication links for future network states.
By predicting how channel conditions will evolve, the unit guides the Beamforming
Optimization Unit to adjust angles and power levels proactively, ensuring optimal
performance in the varied urban topography and infrastructure.

• Feedback Loop: predictive insights are fed back into both the Route Discovery and
Multi-metric Scoring Engine, allowing these modules to prioritize routes that are
expected to offer the best performance in the near future. This feedback loop ensures
that routing decisions are made with an eye towards future conditions, not just current
metrics, enhancing the adaptability and foresight of the routing protocol in smart cities.

• Model Training and Updating: the CNN-LSTM models are continuously trained and
updated with new data to improve their accuracy. This ongoing training process
allows the models to adapt to changes in network behavior and topology, ensuring
that the predictions remain relevant and accurate over time. This continual learning is
essential in smart cities, where urban conditions and patterns can evolve unpredictably.

3.3. Beamforming Optimization Unit in MMS-DSR

The Beamforming Optimization Unit is a key enhancement in MMS-DSR, designed
to dynamically optimize beamforming vectors using CNN-LSTM models based on the
predicted network conditions. This unit plays a critical role in adjusting the beamforming
strategies to enhance signal quality and reliability over time, particularly in urban scenarios
where buildings and other structures can cause significant signal reflection and diffrac-
tion. The Algorithm 1 explains main working operations performed by Beamforming
Optimizarion unit. Main steps are synthesized as follows:

• Dynamic Beamforming Vector Adjustment: this unit uses the output from the Machine
Learning-Based Prediction Unit to adjust beamforming vectors. It optimizes these
vectors to maximize signal strength and minimize interference, considering both the
current and predicted CSI. This real-time adjustment is crucial for urban environments
where obstacles may deflect or block signals unexpectedly.

• CNN-LSTM Based Predictions: the unit employs Convolutional Neural Networks
(CNNs) combined with Long Short-Term Memory networks to analyze spatial and
temporal aspects of the network. This model predicts optimal beamforming directions
and power levels for each node in the network.

• Real-Time Optimization: beamforming vectors are adjusted in real-time based on
predictive analytics. This ensures that each node can proactively adapt to changing
network conditions, maintaining high-quality communication links, which is essential
in smart cities for supporting uninterrupted service delivery.

• Feedback to Scoring Engine: adjustments made by this unit are fed back into the
Multi-metric Scoring Engine, allowing it to re-evaluate route scores with updated
beamforming information. This feedback loop ensures that routing decisions remain
optimal as network conditions evolve, particularly under the variable urban dynamics.

• Integration with Routing: information about the optimized beamforming vectors is
included in the route discovery and maintenance processes, ensuring that all nodes
along a chosen route adjust their beamforming strategies cohesively for uniform signal
enhancement across the urban network.

By dynamically optimizing beamforming vectors, this unit significantly contributes to
the robustness and efficiency of MMS-DSR, particularly in environments where directional
communication can greatly enhance performance, such as in crowded urban areas.
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Algorithm 1 Beamforming Vector Optimization Algorithm

1: procedure OPTIMIZEBEAMFORMINGVECTORS(Routes, CNNLSTMModel)
2: for each Route in Routes do
3: for each Link in Route do
4: LinkCSI← GetCurrentCSI(Link)
5: PredictedCSI← CNNLSTMModel.Predict(LinkCSI)
6: OptimalVectors← CalculateOptimalBeamformingVectors(PredictedCSI)
7: AdjustBeamformingVectors(Link, OptimalVectors)
8: end for
9: end for

10: end procedure

3.4. Route Cache in MMS-DSR

The Route Cache in MMS-DSR has been enhanced to dynamically store and manage
the most efficient routes based on real-time and predictive analytics. This module now
works closely with the Beamforming Optimization Unit to ensure that the cached routes
are not only optimal in terms of path metrics but also in terms of communication quality
and reliability. The operation principle of Route Cache is briefed by Algorithm 2 and
consists of the following phases:

• Dynamic Caching: the Route Cache dynamically stores routes that are scored highest
by the Multi-metric Scoring Engine. It takes into account not only the traditional
route metrics but also the beamforming efficacy, ensuring that the stored routes are
optimal under current and predicted network conditions. This dynamic caching is
key for reducing routing overhead and improving responsiveness in the fluctuating
urban environment.

• Predictive Updates: based on feedback from the Machine Learning-Based Prediction
Unit, the Route Cache updates its entries to preempt potential degradations in route
quality. This includes adjusting stored routes based on predicted changes in node
mobility and channel quality, ensuring that the cache reflects the most current and
anticipated network states, and enhancing the system’s ability to handle urban dy-
namics.

• Beamforming Information: each route in the cache includes detailed beamforming
vector information for every link in the path. This ensures that when a route is
retrieved from the cache, each node along the path can quickly adjust its beamforming
vectors to the optimal settings, facilitating a coherent and coordinated approach to
maintaining route quality.

• Eviction and Maintenance: the cache follows an intelligent eviction policy where less
optimal routes are replaced by newer, higher-quality routes. This policy considers
route age, frequency of use, and predictive quality scores to maintain a balance
between route freshness and historical efficacy, which is crucial for ensuring that the
network can quickly adapt to changes in the urban context.

• Support for Fast Route Recovery: in case of rapid topology changes, which are com-
mon in urban environments, the Route Cache supports fast route recovery by pro-
viding alternative paths that can be quickly evaluated and deployed, minimizing
downtime and packet loss.

The enhancements to the Route Cache enable MMS-DSR to maintain a high-performance
routing table that is adaptive and predictive, significantly reducing the need for frequent
route discoveries and improving overall network efficiency in the complex and dynamic
environments of smart cities.
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Algorithm 2 Dynamic Route Caching and Maintenance Algorithm

1: procedure UPDATEROUTECACHE(NewRoute, PredictedQuality)
2: if RouteCache.IsFull() then
3: EvictLeastOptimalRoute(RouteCache)
4: end if
5: AdjustBeamformingVectors(NewRoute)
6: RouteCache.Store(NewRoute, PredictedQuality)
7: end procedure

4. MMS-DSR Mathematical Formalization

MMS-DSR is designed with a unique multi-metric scoring function that adapts in
real-time to the dynamic nature of Mobile Ad-Hoc Networks, incorporating beamforming
strategies to enhance signal quality and reliability. This scoring function serves as the
backbone for making robust and efficient routing decisions, especially in the complex and
rapidly changing environments of smart cities. The scoring function S(r, t) in MMS-DSR is
defined as follows:

S(r, t) = α ·
n

∑
i=1

wi(t) ·mi(r) + δ · Pprediction(r, t) + λ · BF(r, t) (2)

In the Equation (2), mi(r) represents the metrics for each route, while wi(t) denotes
weights that vary with time. The term α serves as a coefficient for the real-time summation
component and δ acts as a factor that incorporates the predictive reliability score, denoted
as Pprediction(r, t). Additionally, λ functions as a weighting factor for the beamforming
score expressed as BF(r, t). The weights wi(t) are dynamically adjusted based on real-time
network analytics and predictions from the Machine Learning-Based Prediction Unit to
reflect the changing urban conditions. This adjustment is given by the following:

wi(t + 1) = wi(t)− η
∂J(w, t)
∂wi(t)

(3)

where η represents the learning rate and ∂J(w,t)
∂wi(t)

is the gradient of the cost function with
respect to weight wi(t). The cost function J(w, t) is designed to minimize the difference
between the current metric values and their predicted values, ensuring that the weights
reflect the most relevant network conditions. The cost function is defined as follows:

J(w, t) =
n

∑
i=1

(
mi(r, t)− m̂i(r, t)

m̂i(r, t)

)2

(4)

The term mi(r, t) denotes the network metric for route r at time t and m̂i(r, t) is the
predicted value of the metric provided by the Machine Learning-Based Prediction Unit.

In order to understand how the parameters Pprediction(r, t) and BF(r, t) are obtained
it is necessary to introduce Hybrid CNN-LSTM models. Hybrid Deep Learning models
combining CNN and LSTM can improve the prediction accuracy [29–32]. The spatial
and temporal features can be thoroughly extracted using hybrid models, where CNN is
utilized to capture the spatial features of traffic data, while LSTM is employed to extract
the temporal features. Let us consider traffic state data of K locations si (i = 1, 2, . . . , K) as
inputs to predict the traffic states at times t, t + 1, . . . , t + h. The real-time measured data
can be arranged, as explained in [32–34], into a matrix:

S =


s1
s2
...

sK

 =


s1,t−N s1,t−N+1 · · · s1,t−1
s2,t−N s2,t−N+1 · · · s2,t−1

...
...

. . .
...

sK,t−N sK,t−N+1 · · · sK,t−1

 (5)
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In Pprediction(r, t), the matrix element sk,t represents a vector that includes latency (L),
bandwidth (B), reliability (R), and beamforming efficacy (BE). In BF(r, t), the element sk,t
contains the Channel State Information (CSI). The real-time data matrix S is processed by a
CNN, which extracts high-level spatial features. These features are then passed into LSTM
models to produce predictions.

The high-level spatial feature map produced by the CNN can be expressed as follows:

X =


x1
x2
...

xL

 =


x1,t−N x1,t−N+1 · · · x1,t−1
x2,t−N x2,t−N+1 · · · x2,t−1

...
...

. . .
...

xL,t−N xL,t−N+1 · · · xL,t−1


Each high-level feature xl,t is computed using the following equation:

xl,t = fl(wt ⊗ St + bt)

The term wt denotes the filter with K − L + 1 coefficients, while St represents the
t-th column of the matrix S, and bt is the bias term. The activation function fl applies a
non-linear transformation, and ⊗ indicates the convolution operation.

After extracting high-level spatial features, these vectors are selected as input for the
LSTM network. The input to the LSTM is expressed as follows:

F = [F0 F1 · · · FN−1]

The high-level spatial feature map for each LSTM network n, denoted Fn, is formulated
as follows:

Fn =


x1,t+n−N x1,t+n−N+1 · · · x1,t+n−N+M−1
x2,t+n−N x2,t+n−N+1 · · · x2,t+n−N+M−1

...
...

. . .
...

xL,t+n−N xL,t+n−N+1 · · · xL,t+n−N+M−1


In this formulation, M indicates the adjustable input window size. The spatio-temporal

features generated by the LSTM are denoted as follows:

H = [H0 H1 · · · HN−1]

Each Hn is a matrix of size K× T, with T representing the adjustable output window
size, subject to the condition M + T ≤ N.

The iterative process for generating spatio-temporal features is defined by the follow-
ing equations:

fn = σ
(

W f ,F · vec(Fn) + W f ,H · vec(Hn−1) + b f

)
in = σ(Wi,F · vec(Fn) + Wi,H · vec(Hn−1) + bi)

cn = fn ⊙ cn−1 + in ⊙ tanh(Wc,F · vec(Fn) + Wc,H · vec(Hn−1) + bc)

on = σ(Wo,F · vec(Fn) + Wo,H · vec(Hn−1) + bo)

Hn = on ⊙ tanh(cn)

where W∗,F and W∗,H are the weighting matrices associated with the current input high-
level spatial feature matrix Fn and the previous spatio-temporal feature matrix Hn−1,
respectively. The vectorization operation, denoted vec(·), accounts for the differing sizes
of Fn and Hn−1. The functions σ and tanh represent the sigmoid and hyperbolic tangent
functions, which are applied element-wise.
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Numerical Illustration

To provide a concrete understanding of the MMS-DSR scoring mechanism, we present
a numerical example with network topology, as illustrated in Figure 2. This hypothet-
ical scenario considers several candidate routes, each with different metrics for latency,
bandwidth, reliability, and beamforming efficacy (BE), typical of diverse urban paths.

The routes and their respective metrics are summarized in Table 3.

Table 3. Example routes with associated metrics.

Route Latency
(ms)

Bandwidth
(Mbps) Reliability Beamforming

Efficacy (BE) Pprediction(r,t) BF(r,t)

r1 10 50 0.9 15 0.92 20
r2 8 40 0.95 18 0.87 22.5
r3 12 60 0.85 12 0.90 15
r4 15 45 0.92 17 0.91 21
r5 9 55 0.88 14 0.89 19
r6 10 50 0.9 15 0.92 20
r7 8 40 0.95 18 0.87 22.5
r8 12 60 0.85 12 0.90 20
r9 15 45 0.92 17 0.91 22.5
r10 9 55 0.88 14 0.90 15

A

B

C

D

E

F

J

10 ms, 50 Mbps, 0.9, BE=15 10 ms, 50 Mbps, 0.9, BE=15

8 ms, 40 Mbps, 0.95, BE=18 8 ms, 40 Mbps, 0.95, BE=18

12 ms, 60 Mbps, 0.85, BE=12 12 ms, 60 Mbps, 0.85, BE=12

15 ms, 45 Mbps, 0.92, BE=17

15 ms, 45 Mbps, 0.92, BE=17

9 ms, 55 Mbps, 0.88, BE=14

9 ms, 55 Mbps, 0.88, BE=14

Figure 2. Network topology diagram illustrating the routes from Node A to Node J with respec-
tive metrics.

Using the scoring function we assume the following parameters: δ = 0.2, λ = 0.3,
β = 0, Experience E = 10, dynamic weights at time t: w1(t) = 0.35, w2(t) = 0.4,
w3(t) = 0.2, w4(t) = 0.05.

To ensure a fair comparison, the metrics are normalized to a [0, 1] scale using the formula:

xnorm =
x− xmin

xmax − xmin
(6)

The routes and their respective normalized metrics are summarized in Table 4.
The scoring function S(r, t) for each route is calculated using the normalized values.
For example for r1 we have the following:

S(r1, t) = 0.6125
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Table 4. Normalized metrics for each route.

Route Latency
Norm

Bandwidth
Norm

Reliability
Norm BE Norm Pprediction

Norm(r,t)
BF

Norm(r,t)

r1 0.286 0.50 0.5 0.500 1.0 0.667
r2 0.000 0.00 1.0 1.000 0.0 1.000
r3 0.571 1.00 0.0 0.000 0.6 0.000
r4 1.000 0.25 0.7 0.833 0.8 0.800
r5 0.143 0.75 0.3 0.333 0.4 0.533
r6 0.286 0.50 0.5 0.500 1.0 0.667
r7 0.000 0.00 1.0 1.000 0.0 1.000
r8 0.571 1.00 0.0 0.000 0.6 0.667
r9 1.000 0.25 0.7 0.833 0.8 1.000
r10 0.143 0.75 0.3 0.333 0.6 0.000

Repeating the same calculations for each route we will obtain the values showed in
Table 5:

Table 5. Scoring Function values for each route after normalization.

Route Scoring Function (SF)

r1 0.612500
r2 0.425000
r3 0.420000
r4 0.715833
r5 0.453333
r6 0.612500
r7 0.425000
r8 0.620000
r9 0.775833

r10 0.333333

Even if by applying the scoring function, the path r9 emerges as the optimal route
with the highest score of 0.775833, we must remember that in the classic DSR protocol,
the primary metric for selecting the optimal path is typically the number of hops. Carrying
out the route analysis of the graph illustrated in Figure 3, the possible paths from source to
destination and the related Scoring Function (SF) values are shown in Table 6:

A

B

C

D

E

F

J

r1, 0.612500 r6, 0.612500

r2, 0.425000 r7, 0.425000

r3, 0.420000 r8, 0.620000

r4, 0.715833

r9, 0.775833

r5, 0.453333

r10, 0.333333

Figure 3. Network topology diagram illustrating the routes from Node A to Node J with respec-
tive metrics.
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Table 6. Paths, Routes, and Total Scoring Functions (SF).

Path Routes Total SF

A→ B→ J r1 + r6 0.612500 + 0.612500 = 1.225
A→ C→ J r2 + r7 0.425000 + 0.425000 = 0.850
A→ D→ J r3 + r8 0.420000 + 0.620000 = 1.040

A→ B→ E→ J r1 + r4 + r9 0.612500 + 0.715833 + 0.775833 = 2.104166
A→ C→ F→ J r2 + r5 + r10 0.425000 + 0.453333 + 0.333333 = 1.211666

Considering that MMS-DSR prioritizes the route with the highest cumulative scoring
function (SF) and minimum number of hops, the chosen optimal path would be the
following:

A− > B− > J with a total SF of 1.225.

5. CNN-LSTM Model Architecture

The CNN-LSTM model architecture exploited by the MMS-DSR approach can be
synthesized by the following points:

1. Input Data Preparation: the input to the CNN-LSTM model consists of various
network metrics that are critical for routing and beamforming decisions. These basic
metrics include the following:

• Latency (L): measures the communication delay in the network.
• Bandwidth (B): reflects the available communication capacity in the network.
• Reliability (R): indicates the stability of communication links.
• Beamforming Efficacy (BE): measures how effective beamforming is in improv-

ing signal quality.
• Channel State Information (CSI): provides real-time information about the

quality of the communication channels.

These metrics represent both current and past network states, forming the input
feature set that feeds into the CNN-LSTM model for further processing.

2. Spatial Feature Extraction with CNN: the CNN layers first receive normalized input
data and are responsible for extracting spatial features. The input metrics, such as L̂,
B̂, R̂, B̂E, and ˆCSI, are processed using convolutional filters. These filters generate
feature maps that capture critical spatial patterns such as traffic congestion zones or
signal interference areas, which are crucial for effective route planning in densely
populated urban areas.

3. Temporal Pattern Analysis with LSTM: after the CNN extracts spatial features,
the feature maps are fed into LSTM layers. The LSTM processes these features over
time, capturing temporal dependencies in the network. For instance, the LSTM can
identify recurring traffic patterns or predict future changes in network topology, which
is essential for anticipating and adapting to network fluctuations.

4. Integration of CNN and LSTM Outputs: the CNN-derived spatial insights and the
LSTM-derived temporal predictions are integrated at this stage. This combined output
provides robust predictive insights, allowing for real-time, proactive adjustments to
routing and beamforming strategies. The model can forecast which routes are likely to
become congested and how beamforming can be adjusted to maintain signal strength.

5. Route Optimization Outputs: utilizing the integrated insights, the model outputs
recommendations for optimizing routes and beamforming. The predictions guide
the MMS-DSR protocol to adjust routes and communication strategies dynamically,
particularly in scenarios with high mobility or unpredictable network conditions.
The output also predicts the optimal beamforming vectors for maintaining strong
communication links in complex urban environments.

6. Model Training and Real-time Deployment: the CNN-LSTM model is initially
trained offline using a diverse dataset of simulated network scenarios, representing
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varied urban traffic conditions and network configurations. The training dataset
captures long-term network behaviors, enabling the model to learn both spatial and
temporal patterns. Once trained, the model is integrated into the MMS-DSR protocol
for real-time operation, continuously refining routing decisions based on real-time
network data and its predictions.

The CNN-LSTM model is tailored for MMS-DSR in Figure 4. The architecture is designed
to predict and optimize both routing and beamforming decisions, ensuring robust commu-
nication in urban environments with dynamic traffic patterns and network topologies.

Figure 4. CNN-LSTM model architecture for MMS-DSR.

The model begins with an input layer that handles raw data with dimensions of 90× 5,
reflecting the collected metrics. This structure allows the model to process the network
metrics across time, ensuring that spatial and temporal features are captured effectively.

The CNN layers apply convolutional filters, producing feature maps (90× 32) that
detect critical spatial patterns in the network, such as congestion areas or interference zones.
The spatially processed data are then passed to the LSTM layers, which capture long-term
temporal dependencies. These layers output 32 features each, providing a deep temporal
analysis that is essential for predicting future network states.

The dense layer consolidates the spatio-temporal features learned from the CNN and
LSTM layers into a final representation that summarizes the model’s prediction about
future network conditions. These outputs represent the decision variables or routing
recommendations based on the spatial and temporal patterns captured in the previous
layers. These decision variables could, for instance, predict the most efficient route, optimal
beamforming vectors, or other routing-related metrics.

Following the dense layer, the model applies a softmax function to output probabilities
for different routing actions or strategies. This allows the MMS-DSR protocol to make
probabilistic decisions about route stability, optimal paths, and necessary beamforming
adjustments. The output directly influences MMS-DSR’s decision-making process, enabling
it to dynamically adjust routes and beamforming strategies in real-time, based on predicted
network conditions.

By predicting future network states, such as route stability and optimal beamforming
vectors, the CNN-LSTM model significantly enhances the MMS-DSR protocol’s ability to
maintain robust communication links, especially in urban environments where network
dynamics can change rapidly.

The CNN-LSTM model used in the MMS-DSR protocol is trained using historical
traffic data collected from urban environments. These data include a variety of urban traffic
scenarios characterized by different vehicle speeds, directions, network loads, and commu-
nication metrics. The dataset consists of traffic data collected over a span of six months,
covering different traffic patterns, peak and off-peak hours and congestion scenarios.
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The model training is conducted using MATLAB, which provides a robust environ-
ment for machine learning model development. The data are pre-processed to normalize
features and handle missing values, ensuring consistency and accuracy in the training
process. The training dataset consists of approximately 500,000 samples, and the data are
split into 70% training, 15% validation, and 15% test sets.

The training process is performed on a centralized server with global knowledge of the
historical traffic data. The training is performed offline, using the entire dataset to capture
long-term trends and relationships. The model is then periodically updated with new
data as the traffic patterns evolve. To further improve the understanding of the proposed
architecture, main fundamentals theoretical concepts about CNN-LSTM are proofed in the
Appendix A.

6. Adapting MMS-DSR from MANETs to VANETs for Smart Cities

To adapt the mathematical model discussed in Section 4 from MANETs to VANETs, it is
necessary to consider the specific characteristics and requirements of VANETs. In particular,
in mathematical formalization for VANETs we must incorporate additional parameters
such as the Density of the Vehicles, the Distance of the Vehicle from the Destination, and the
Trajectory of the Vehicle [35,36]. These parameters are crucial for ensuring efficient and
reliable routing in highly dynamic vehicular environments.

Vehicle Density (De): vehicle density measures the concentration of vehicles within a
specific area of the network. It is a critical metric for evaluating network congestion, as high
vehicle density can lead to increased communication delays and packet collisions.

De(r, t) =
TNVA

AS
(7)

TNVA is the total number of vehicles in the area while AS is the area size. High
vehicle density indicates potential congestion, which can negatively impact communication
reliability and latency. Understanding vehicle density helps in optimizing routing decisions
to avoid congested areas and improve overall network performance.

Vehicle Distance (Di): vehicle distance is the Euclidean distance of the vehicle in the
route from the destination.

Di(r, t) = exp

(
−
(

di

dref

)ζ
)

(8)

where: di denotes the Euclidean distance of the vehicle from the destination, dref is a
reference distance, ζ is an attenuation factor.

Vehicle distance provides insight into the potential longevity of communication links,
allowing for better route stability. Routes with shorter distances to the destination are
preferred, as they are likely to offer more reliable communication.

Vehicle Trajectory (T): vehicle trajectory measures the predicted path toward the
destination for the vehicle in the route, considering its current and future positions. This
metric helps in assessing the alignment of vehicle movements with the desired route.

T(r, t) = exp
(
−
(

∆d(t)ζ

dref

))
(9)

∆d(t)ζ = d(t)ζ − d(0)ζ , d(t) denotes the future distance of the vehicle in the route to
the destination at time t, d(0) is the current distance to the destination, dref is a reference
distance, ζ is an attenuation factor.

Vehicle trajectory helps in predicting the future alignment of vehicles with the intended
route, ensuring that the selected path remains optimal over time. Routes with stable trajectories
are preferred as they minimize deviations and potential disruptions in communication.

To predict the next position (xi+1, yi+1) of the vehicle, we use the current velocity
vector (vx, vy) and the time interval ∆t:
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xi+1 = xi + vx · ∆t (10)

yi+1 = yi + vy · ∆t (11)

(xi, yi) are the current coordinates of the vehicle, vx and vy are the velocity components
in the x and y directions, respectively, and ∆t is the time interval. The overall score for each
route, S, is computed as follows:

S(r, t) = w1 ·
1

L(r, t)
+ w2 · B(r, t) + w3 · R(r, t) + w4 · BE(r, t)

+ w5 ·
1

De(r, t)
+ w6 ·

1
Di(r, t)

+ w7 ·
1

T(r, t)

(12)

Weights w1, w2, w3, w4, w5, w6, and w7 are referred to as latency, bandwidth, reliability,
beamforming efficacy, density, distance, and trajectory, respectively. The scoring function
S(r, t) for VANETs is defined as follows:

S(r, t) = α ·
n

∑
i=1

wi(t) · vi(r) + δ · Pprediction(r, t) + λ · BF(r, t) (13)

In Equation (13), vi(r) represent the route metrics, wi(t) are the time-dependent
weights, α is a weighting factor for the summation real-time term, δ integrates the predictive
reliability score Pprediction(r, t), λ is a weighting factor for the beamforming score BF(r, t).

An increasing of De leads to the spread of communication delays and potential packet
collisions. Consequently, the score for routes through such areas would decrease, signaling
less optimal paths. As Di increases, the vehicle is farther from the destination, likely
leading to less reliable communication links. The score for such routes decreases because
longer distances can result in higher latency and potential disconnections. An increase
in T (indicating a less predictable or more erratic trajectory) implies that the vehicle’s
future positions are less aligned with the optimal path, leading to potential disruptions in
communication. This decreases the route score.

Numerical Illustration for VANET

To provide a concrete understanding of the MMS-DSR scoring mechanism for VANETs,
we present a numerical example with a network topology, as illustrated in Figure 5. This
hypothetical scenario considers several candidate routes, each with different metrics for
latency, bandwidth, reliability, vehicle density, vehicle distance, vehicle trajectory, and beam-
forming efficacy (BE), typical of diverse urban paths.

A

B

C

D

E

F

J

10 ms, 50 Mbps, 0.9, 20, 100 m, 10 m, BE=15 10 ms, 50 Mbps, 0.9, 20, 100 m, 10 m, BE=15

8 ms, 40 Mbps, 0.95, 30, 120 m, 8 m, BE=18 8 ms, 40 Mbps, 0.95, 30, 120 m, 8 m, BE=18

12 ms, 60 Mbps, 0.85, 25, 150 m, 12 m, BE=12 12 ms, 60 Mbps, 0.85, 25, 150 m, 12 m, BE=12

15 ms, 45 Mbps, 0.92, 15, 140 m, 15 m, BE=17

15 ms, 45 Mbps, 0.92, 15, 140 m, 15 m, BE=17

9 ms, 55 Mbps, 0.88, 22, 130 m, 9 m, BE=14

9 ms, 55 Mbps, 0.88, 22, 130 m, 9 m, BE=14

Figure 5. Network topology diagram illustrating the routes from Node A to Node J with respec-
tive metrics.
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The routes and their respective metrics are summarized in Table 7.

Table 7. Example routes with associated metrics.

Route L (ms) B (Mbps) R De Di (m) T (m) BE Ppr(r,t) BF(r,t)

r1 10 50 0.9 20 100 10 15 0.92 20
r2 8 40 0.95 30 120 8 18 0.87 22.5
r3 12 60 0.85 25 150 12 12 0.90 15
r4 15 45 0.92 15 140 15 17 0.91 21
r5 9 55 0.88 22 130 9 14 0.89 19
r6 10 50 0.9 20 100 10 15 0.92 20
r7 8 40 0.95 30 120 8 18 0.87 22.5
r8 12 60 0.85 25 150 12 12 0.90 20
r9 15 45 0.92 15 140 15 17 0.91 22.5
r10 9 55 0.88 22 130 9 14 0.90 15

Using the scoring function we assume the following parameters: δ = 0.2, λ = 0.3,
β = 0, Experience E = 10, dynamic weights at time t: w1(t) = 0.3, w2(t) = 0.2, w3(t) = 0.1,
w4(t) = 0.05, w5(t) = 0.1, w6(t) = 0.15, w7(t) = 0.1.

To ensure a fair comparison, the metrics are normalized to a [0, 1] scale using the
formula shown in Equation (6).

The routes and their respective normalized metrics are summarized in Table 8.

Table 8. Normalized metrics for each route.

Route L
Norm

B
Norm

R
Norm

De
Norm

Di
Norm T Norm BE

Norm
Ppr

Norm(r,t)
BF

Norm(r,t)

r1 0.286 0.50 0.5 0.20 0.0 0.20 0.500 1.0 0.667
r2 0.000 0.00 1.0 0.60 0.4 0.00 1.000 0.0 1.000
r3 0.571 1.00 0.0 0.40 1.0 0.40 0.000 0.6 0.000
r4 1.000 0.25 0.7 0.00 0.8 0.60 0.833 0.8 0.800
r5 0.143 0.75 0.3 0.35 0.6 0.25 0.333 0.4 0.533
r6 0.286 0.50 0.5 0.20 0.0 0.20 0.500 1.0 0.667
r7 0.000 0.00 1.0 0.60 0.4 0.00 1.000 0.0 1.000
r8 0.571 1.00 0.0 0.40 1.0 0.40 0.000 0.6 0.667
r9 1.000 0.25 0.7 0.00 0.8 0.60 0.833 0.8 1.000

r10 0.143 0.75 0.3 0.35 0.6 0.25 0.333 0.6 0.000

The scoring function S(r, t) for each route is calculated using the normalized values.
For example for r1 we have the following:

S(r1, t) = 0.5429

Repeating the same calculations for each route we will obtain the values showed in
Table 9:

Table 9. Scoring Function values for each route after normalization.

Route Scoring Function (SF)

r1 0.5429
r2 0.5500
r3 0.4700
r4 0.675833
r5 0.530000
r6 0.5429
r7 0.5500
r8 0.4700
r9 0.675833

r10 0.530000
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Even if by applying the scoring function, the paths r4 and r9 emerge as the optimal
route with the highest score of 0.675833, we must remember that in the classic DSR protocol,
the primary metric for selecting the optimal path is typically the number of hops. Carrying
out the route analysis of the graph illustrated in Figure 6, the possible paths from source to
destination and the related Scoring Function (SF) values are shown in Table 10:

Table 10. Paths, Routes, and Total Scoring Functions (SF).

Path Routes Total SF

A→ B→ J r1 + r6 0.5429 + 0.5429 = 1.0858
A→ C→ J r2 + r7 0.5500 + 0.5500 = 1.1000
A→ D→ J r3 + r8 0.4700 + 0.4700 = 0.9400

A→ B→ E→ J r1 + r4 + r9 0.5429 + 0.675833 + 0.675833 = 1.894566
A→ C→ F→ J r2 + r5 + r10 0.5500 + 0.530000 + 0.530000 = 1.610000

A

B

C

D

E

F

J

r1, 0.5429 r6, 0.5429

r2, 0.5500 r7, 0.5500

r3, 0.4700 r8, 0.4700

r4, 0.675833

r9, 0.675833

r5, 0.530000

r10, 0.530000

Figure 6. Network topology diagram illustrating the routes from Node A to Node J with respec-
tive metrics.

Considering that MMS-DSR prioritizes the route with the highest cumulative scoring
function (SF) and minimum number of hops, the chosen optimal path would be the following:

A→ C → J with a total SF of 1.1000.

7. Simulation and Evaluation

Simulations were performed using OMNeT++ [37] integrated with SUMO [38]
(Simulation of Urban MObility) and the inetframework to emulate realistic urban MANET
and VANET scenarios. SUMO managed the vehicular traffic within the city, reflecting
accurate vehicle movements and interactions, while inet supported advanced network
simulations using the 802.11ax HE mode discussed in [39]. In order to accurately model
radio signal propagation and the effect of urban environments, the RicianFading path
loss model provided by the inet framework was used to account for both dominant line-
of-sight signals and multiple reflected signals typical of urban settings. Additionally,
the obstacles.xml configuration file was employed to emulate the presence of physical
obstacles such as buildings and other structures, further enhancing the realism of the
simulation. The simulations were configured to reflect the unique traffic and networking
conditions of the Metropolitan area of Reggio Calabria (Italy). The global geo-coordinates
for the four corners of the simulation area are x1: (38.09, 15.63), x2: (38.11, 15.64), x3: (38.94,
15.66), x4: (38.11, 15.66). Within this area, vehicles dynamically entered and exited the
simulation, simulating real-world urban vehicular mobility patterns.
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In this setup, the radio transmission ranges for RSUs were set to 500 m, while mobile
nodes (vehicles) had a transmission range of 250 m, consistent with 802.11ax standards.
Communication patterns were defined by a random communication model, in which vehi-
cles dynamically selected another vehicle or Road-Side Unit (RSU) as their communication
destination. This setup simulated vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication in an urban environment.

A centralized controller was responsible for managing data collection, processing, and up-
dating the machine learning models used for routing decisions in the MMS-DSR protocol.
The controller received real-time data from RSUs, analyzed them, and updated the multi-
metric scoring and beamforming models every 10 s to reflect changes in traffic conditions and
network dynamics. The overhead of the centralized control involved data processing and
model updating, which was feasible for small to medium-sized cities such as Reggio Calabria.

The RSUs were strategically placed at major intersections and areas of high vehicle
density to maximize MU-MIMO gains and beamforming efficiency, ensuring optimal
coverage and minimal communication disruptions. The placement was determined based
on traffic flow data, highlighting regions of frequent congestion and high vehicle mobility,
making these locations critical for efficient traffic management.

In the considered scenario, a total of 15 RSUs were deployed. These units were
crucial for the network’s infrastructure, particularly for managing the high-speed vehicular
communication required in urban settings. The RSUs were equipped with advanced
MU-MIMO systems, enabling significant enhancements in signal directivity and strength
through beamforming techniques. Table 11 includes the Simulation Parameter set.

Table 11. Simulation Parameters set.

Parameter Value

Tone Configuration 26, 242, 2 × 996
Protocols DSR, MMS-DSR, SOL-DSR, Enhanced OLSR
MIMO Configurations 10 × 10
Seed Variability Multiple sets
Confidence Interval 95%
Simulation Time 1000 s
Number of Nodes 20 to 100
Simulation Area 2858 m × 1460 m
Data Rate Up to 9607.5 Mbps
Network Standard IEEE 802.11ax

Mobility Model SUMO-based (Random Waypoint and
Manhattan for additional analysis)

Traffic Type UDP, CBR, VBR
TX Data App UDPBasicApp
RX Data App UDPSink
Packet Size 1500 bytes
Node Sensitivity −120 dBm
Path Loss Model RicianFading
Obstacle Model Obstacles.xml (buildings, physical structures)
Simulation Tools OMNeT++, SUMO, Veins
RSU Quantity 15 RSUs covering key traffic nodes
RSU Transmission Range 500 m
Mobile Node Transmission Range 250 m
Centralized Control Update Interval 10 s

7.1. Performance Metrics

The performance of the MMS-DSR protocol is assessed by focusing on throughput,
end-to-end latency, and route discovery time under varying network loads and condi-
tions. Throughput is a critical metric for measuring the network’s capacity to deliver data
successfully, reflecting the efficiency of the protocol in handling data transmission.
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The comparison highlighted in Figure 7 shows that at 100 vehicles, MMS-DSR reaches a
throughput of 9400 Mbps, significantly outperforming SOL-DSR’s 6600 Mbps and Enhanced
OLSR’s 5000 Mbps. This substantial advantage can be attributed to the multi-metric scoring
engine employed by MMS-DSR, which adjusts the weights of various routing metrics
based on current network conditions. Combined with LSTM’s predictive capabilities, this
approach enhances route selection and management, enabling MMS-DSR to sustain high
throughput levels even as network conditions fluctuate.
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Figure 7. Throughput comparison across varying numbers of vehicles.

From Figure 7 it can be also observed that as the number of vehicles increases, MMS-
DSR shows minimal efficiency loss, with the throughput increasing from 1200 Mbps at
10 vehicles to 9400 Mbps at 100 vehicles, showing less than a 1% drop in efficiency compared
to initial performance, in contrast to traditional protocols which experience larger declines.
In addition, when vehicle density increases from 50 to 100 vehicles, MMS-DSR maintains
near-optimal throughput with only a minimal decrease in performance, in contrast to the
more significant declines observed in SOL-DSR and Enhanced OLSR.

The Figure 8 also demonstrates that MMS-DSR provides good performance in terms
of throughput across varying vehicle speeds. At 100 km/h, MMS-DSR achieves 9000 Mbps,
which significantly surpasses SOL-DSR’s 7300 Mbps and Enhanced OLSR’s 6300 Mbps.
This superior performance can be attributed to MMS-DSR’s adaptive routing strategies and
predictive capabilities that effectively manage the dynamic nature of vehicular movement.

As vehicle speed increases, MMS-DSR’s ability to predict and adapt to changes in the
network ensures efficient routing of data packets, minimizing disruptions and maintaining
high throughput. For instance, even at high speeds, MMS-DSR’s throughput decreases only
slightly from 1100 Mbps at 10 km/h to 9000 Mbps at 100 km/h, showcasing its robustness
and efficiency in high-mobility scenarios. This minimal decline in performance at higher
speeds contrasts with the more significant decreases observed in other protocols.

Additionally, MMS-DSR’s ability to manage network resources and prevent congestion
becomes even more evident as vehicle speeds increase. The protocol’s intelligent routing
decisions, driven by LSTM predictions, ensure that data are transmitted smoothly even in
high-speed environments, reducing packet loss and maintaining consistent throughput.
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Figure 8. Throughput comparison across varying vehicle speeds.

7.1.1. Average End-to-End Latency

Latency measures the time it takes for packets to travel from the source to the destination,
indicating the responsiveness of the network.

The Figure 9 demonstrates that MMS-DSR protocol provides a significant advantage
in managing latency due that it increases from 20 ms at a density of 10 vehicles/km2 to
only 60 ms at 100 vehicles/km2. This increase is notably lower compared to other protocols,
such as SOL-DSR, which jumps from 25 ms to 75 ms, and Enhanced OLSR, which escalates
from 30 ms to 85 ms under similar conditions. This remarkable performance by MMS-DSR
can be primarily attributed to the integration of Long Short-Term Memory networks, which
empower the protocol to proactively adjust routes in response to potential congestion and
vehicle mobility, thereby avoiding common causes of delay.
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Figure 9. Latency comparison in function of vehicle density.
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The trend illustrated in Figure 10 confirms that as vehicle density increases, MMS-
DSR effectively uses its LSTM models to foresee and navigate around these potential
bottlenecks. This proactive routing ensures that even in scenarios where vehicle density
significantly increases, the latency remains optimally low. For example, when vehicle
density increases from 50 to 100 vehicles/km2, MMS-DSR exhibits only a minimal increase
in latency from 40 ms to 60 ms, demonstrating an exceptional ability to manage and adapt to
increased traffic without a corresponding steep rise in delay. In a dense urban environment
characterized by frequent stop-and-go traffic and variable vehicle speeds, MMS-DSR’s
latency remains around 60 ms at 100 vehicles/km2, significantly lower than the 75 ms for
SOL-DSR and 85 ms for Enhanced OLSR.
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Figure 10. Latency comparison in function on vehicle speed.

7.1.2. Route Discovery Time

The time required to discover a route reflects the protocol’s efficiency in establishing
connectivity, especially in dynamic networks where rapid changes are common.

As evidenced by Figures 11 and 12 MMS-DSR demonstrates superior performance
in this aspect, with route discovery times increasing from only 15 ms at a density of
10 vehicles/km2 to 55 ms at 100 vehicles/km2. This progressive increase is significantly
slower compared to other protocols like SOL-DSR and Enhanced OLSR, where times esca-
late more steeply from 20 ms to 70 ms and from 25 ms to 80 ms, respectively, under similar
conditions. This highlights the effectiveness of the integrated machine learning model in
MMS-DSR, which uses Long Short-Term Memory networks to predict and adjust routes dy-
namically, facilitating quick and efficient pathfinding even as network complexity increases.
As vehicle density improves along with network congestion, MMS-DSR efficiently predicts
potential bottlenecks and reroutes data packets through less congested paths. This ability
is reflected in the moderate increase in discovery times from 30 ms at 50 vehicles/km2 to
only 55 ms at 100 vehicles/km2, demonstrating an exceptional capacity to handle increased
traffic and complexity without a corresponding steep rise in discovery times.
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Figure 11. Route discovery time vs. vehicle density.
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Figure 12. Route discovery time vs. vehicle speed.

7.1.3. Routing Overhead

Routing Overhead measures the extra communication required for maintaining the
routing information, indicating the efficiency of the protocol.

MMS-DSR exhibits lower routing overhead compared to SOL-DSR, Enhanced OLSR,
and traditional DSR, as depicted in Figures 13 and 14. The overhead increases from 200 con-
trol packets at 10 vehicles/km2 to 1600 control packets at 100 vehicles/km2 and from
200 control packets at 10 km/h to 1550 control packets at 100 km/h. This is significantly
lower than the 2000 control packets required by Enhanced OLSR and DSR. MMS-DSR’s
on-demand routing strategy, combined with the predictive capabilities of LSTM networks,
minimizes unnecessary control packet transmissions, thus reducing overhead and improv-
ing overall network efficiency.

A key advantage of MMS-DSR is its ability to predict vehicle movements without
relying on GPS systems. By utilizing predictive models that anticipate vehicle trajectories,
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MMS-DSR reduces the need for frequent route updates, which significantly lowers the
routing overhead. This approach ensures efficient use of network resources and enhances
the protocol’s scalability and adaptability in urban VANET environments.

As vehicle density and speed grow up, MMS-DSR maintains lower overhead by
efficiently managing control packet transmissions and preventing unnecessary route dis-
coveries. For example, at a vehicle density of 50 vehicles/km2, MMS-DSR requires only
1000 control packets compared to 1500 for Enhanced OLSR.
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Figure 13. Routing overhead comparison in function of vehicle density.
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Figure 14. Routing overhead comparison in function of vehicle speed.

7.1.4. Scalability

Scalability examines the protocol’s ability to handle increasing network sizes without
significant performance degradation.

MMS-DSR demonstrates good scalability performance, as illustrated in Figure 15.
The Normalized Performance Index decreases from 0.95 with 10 vehicles/km2 to 0.63
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with 100 vehicles/km2 and from 0.95 at 10 km/h to 0.63 at 100 km/h. This decline is
less pronounced compared to SOL-DSR, Enhanced OLSR, and DSR. MMS-DSR’s machine
learning-enhanced predictive capabilities and efficient routing strategies allow it to manage
increasing network sizes effectively, ensuring consistent performance across various vehicle
densities and speeds. This robustness is crucial for maintaining reliable communication in
densely populated urban VANET environments.
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Figure 15. Scalability comparison performance across increasing vehicle density.

In high-density scenarios, MMS-DSR’s predictive modeling using Long Short-Term
Memory networks allows it to anticipate and adapt to changes in vehicle movements
and network conditions dynamically. This capability ensures that even as vehicle density
increases, MMS-DSR can maintain high performance with minimal degradation. The MMS-
DSR approach benefits from its multi-metric scoring engine, which dynamically adjusts the
weights of various routing metrics based on current network conditions. This adaptability
is particularly beneficial in urban environments where vehicle densities and speeds can
fluctuate rapidly. By expoliting predictive models, MMS-DSR can preemptively adjust
routes to avoid congestion, ensuring that data transmission remains smooth and efficient.
In addition, the protocol’s efficiency is further enhanced by its reduced reliance on frequent
route updates. Unlike traditional protocols that may rely on constant GPS data, MMS-
DSR predicts vehicle movements and adjusts routes accordingly. This approach reduces
the need for continuous control packet transmissions, lowering overhead and preserving
network resources.

7.2. Sensitivity Analysis of Key Simulation Parameters

To further evaluate the robustness and adaptability of the MMS-DSR protocol, a sensi-
tivity analysis was performed by varying key network parameters such as latency, band-
width, and reliability. This analysis aims to explore the protocol’s performance under
different conditions, ensuring its effectiveness in dynamic urban vehicular environments,
as previously discussed in the Simulation and Evaluation section.

The parameter of latency is critical in time-sensitive applications like vehicular ad-hoc
networks (VANETs), where quick decision-making is crucial. The analysis examined latency
variations ranging from 10 ms to 100 ms, assessing their impact on end-to-end delay, route
discovery time and PDR. As expected, increasing the latency led to a proportional rise in
end-to-end delay. However, the MMS-DSR protocol demonstrated resilience, with only a
moderate increase in delay ( 15%) even as latency reached 100 ms. The route discovery
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time and PDR remained largely unaffected by this latency increase, maintaining a high
level of performance. This observation is consistent with the findings presented in the
Average End-to-End Latency subsection, as shown in Figures 9 and 10, where MMS-DSR
consistently outperformed other protocols (SOL-DSR and Enhanced OLSR), particularly
under higher latencies.

The sensitivity analysis explored the impact of varying bandwidth from 100 Mbps
to 1000 Mbps, observing the corresponding effects on network throughput and routing
overhead. The results showed a significant improvement in throughput as bandwidth
increased, with an approximate 30% gain in throughput observed when bandwidth was
increased to 1000 Mbps. Despite this improvement in throughput, the protocol maintained
minimal routing overhead, as evidenced in Figures 7 and 8, where MMS-DSR consistently
displayed superior scalability and efficiency across varying vehicle densities and speeds.
These findings further align with the Routing Overhead results in Figures 13 and 14, where
MMS-DSR exhibited significantly lower overhead compared to SOL-DSR and Enhanced
OLSR, even in high-bandwidth scenarios.

Reliability was tested by introducing varying levels of packet loss, ranging from
0% to 15%, to evaluate the protocol’s robustness under adverse conditions. The analysis
demonstrated that even under high packet loss rates, MMS-DSR maintained a PDR of
around 90%, underscoring its resilience. The machine learning-based prediction model
integrated into MMS-DSR (via CNN-LSTM) allowed the protocol to anticipate network
disruptions and adjust routing decisions dynamically, thus minimizing the impact of packet
loss on overall performance. This adaptive capability aligns with the Packet Delivery Ratio
results discussed in the simulation section, where the MMS-DSR protocol showed superior
reliability in comparison to traditional DSR and other advanced routing protocols, even
under fluctuating network conditions.

8. Conclusions and Future Directions

In this work, we proposed the Multi-metric Scoring Dynamic Source Routing protocol
to address the challenges of efficient and adaptive routing in Vehicular Ad-hoc Networks
within smart city environments. Through extensive simulations and empirical analysis,
MMS-DSR has shown improvements in critical performance indicators such as throughput,
latency, and route discovery time when compared to established protocols, including
traditional DSR, SOL-DSR, and Enhanced OLSR. These findings suggest that MMS-DSR
is a promising approach for optimizing network performance in dynamic and complex
urban scenarios.

The MMS-DSR protocol incorporates machine learning techniques, specifically Long
Short-Term Memory networks, to enable predictive routing, allowing it to adapt dynami-
cally to rapidly changing urban traffic conditions. This method enhances communication
efficiency and reliability by optimizing data paths and adjusting to network dynamics in
real-time. Furthermore, the integration of advanced beamforming techniques improves
communication quality by enhancing signal directionality and reducing interference, which
is particularly important in dense urban environments.

Simulation results have proven the effectiveness of MMS-DSR across various urban
scenarios, showing its ability to manage high mobility and frequent topological changes typ-
ical of VANETs. By utilizing the features of Massive MIMO and IEEE 802.11ax, MMS-DSR
provides a scalable and adaptable routing protocol that is suited to the future requirements
of 6G networks and smart city infrastructures.

Future Directions

Several future research directions are identified to further enhance the capabilities and
extend the applicability of MMS-DSR:

• Enhanced Security Mechanisms: while this work focused on performance optimiza-
tion, future research should incorporate advanced security protocols to protect against
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cyber threats. Ensuring data integrity and privacy in vehicular communications will
require robust encryption standards and reliable authentication mechanisms.

• Incorporation of Additional Machine Learning Techniques: future studies could
explore the use of other machine learning methods, such as deep reinforcement
learning (DRL) and Support Vector Machines (SVMs), to improve the predictive
capabilities and adaptability of MMS-DSR.

• Scalability Improvements: further research should investigate the scalability of
MMS-DSR in larger urban networks, focusing on optimizing the protocol to handle
thousands of nodes while maintaining low latency and efficient data handling as the
network grows.

• Real-World Implementation and Testing: implementing MMS-DSR in real-world
smart city environments will be a crucial next step. Pilot projects in collaboration with
urban municipalities would provide valuable insights into the protocol’s performance
in live settings, helping to refine and improve its operational capabilities.

• Development of Adaptive Beamforming Algorithms: future work should focus on
the development of more advanced beamforming algorithms capable of adapting to
real-time changes in the urban environment. This includes addressing signal blockages
and reflections more effectively to ensure continuous communication.

• Support for Heterogeneous Networks: expanding MMS-DSR to support heteroge-
neous networks, involving a mix of different wireless communication standards and
technologies, will be important to increase the protocol’s flexibility and applicability
in various smart city scenarios.

• Energy Efficiency: future developments should consider energy-efficient routing and
communication strategies. Designing algorithms that minimize power consumption
while maintaining high performance will be essential for the sustainability of VANETs.

• Collaborative Routing Strategies: exploring collaborative routing strategies, where
multiple nodes work together to optimize routes and manage traffic dynamically,
could further improve the performance and reliability of MMS-DSR in complex urban
environments.
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Appendix A. Fundamentals of CNN-LSTM Networks

To further clarify the Section 4, we provide a brief overview of CNN and LSTM
networks, which are integral to the Machine Learning-Based Prediction Unit in the MMS-
DSR approach.

A CNN is a type of Deep Learning model that excels at processing grid-like data
structures, such as images or traffic data. CNNs use convolutional layers to automatically
learn spatial hierarchies of features from input data. In the MMS-DSR protocol, CNNs
are employed to extract spatial features from traffic data (e.g., vehicle positions, speed,
and density).

CNNs operate by applying a set of learnable filters (or kernels) to the input data. Each
filter slides over the input matrix, performing a convolution operation, which results in a
feature map. These feature maps capture the local spatial patterns of the input data.
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For example, if we have traffic data from K locations at multiple time instances, the in-
put to the CNN layer can be represented as a matrix S, where each element corresponds to
the traffic state at a specific location and time, as shown below:

S =


s1,t−N s1,t−N+1 · · · s1,t−1
s2,t−N s2,t−N+1 · · · s2,t−1

...
...

. . .
...

sK,t−N sK,t−N+1 · · · sK,t−1


The CNN applies filters to this matrix to generate high-level spatial feature maps,

capturing patterns and relationships in the traffic data. The result is passed to the next
stage of processing: the LSTM network.

LSTM networks are a type of RNN designed to handle sequential data and capture
temporal dependencies. They are particularly effective at learning long-term relationships
in time-series data, which makes them ideal for predicting future traffic states based on
past observations.

LSTM networks consist of specialized units (LSTM cells) that regulate the flow of
information through input gates, forget gates, and output gates. These gates allow the
network to remember or forget certain pieces of information over time, making LSTMs
robust in handling time-dependent data.

In the context of MMS-DSR, LSTM networks process the spatial features extracted
by the CNN to learn temporal patterns in traffic data. The high-level spatial feature map
X, obtained from the CNN, is fed into the LSTM for sequential processing. The LSTM
generates predictions of future network states (e.g., latency, bandwidth, and reliability)
based on this input.

The hybrid CNN-LSTM model used in MMS-DSR combines the strengths of CNNs
and LSTMs to extract both spatial and temporal features from traffic data. The CNN first
captures spatial patterns in the data, while the LSTM captures the temporal evolution of
these patterns over time.

The spatial feature map output by the CNN is denoted as follows:

X =


x1
x2
...

xL


where X represents the spatial features, and each xl corresponds to the feature at time
t. This spatial feature map is then fed into the LSTM to capture temporal dependencies.
The final output of the CNN-LSTM model is used to compute the predictive reliability score
Pprediction(r, t), which plays a crucial role in the MMS-DSR multi-metric scoring function.
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