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Highlights:
What are the main findings?
• Data fuzzification to ensure privacy and fleet mix changes in a current commercial connected

vehicle (CV) trajectory dataset resulted in a data penetration decrease of ≤0.5%, and almost 70%
of analyzed road segments experienced a reduction in the number of CV samples available for
analysis when contrasted with a comparable historic CV dataset without fuzz-ified records.

• Similarly, around 70% of 26,291 intersection movements evaluated showed a reduction in the
number of CV trajectories available for analysis.

What are the implications of the main finding?

• Even though there is a general reduction in the number of samples available for analysis with the
current dataset, the authors believe that it provides enough information to derive most relevant
trajectory-based mobility studies.

• The implemented data fuzzification, which consists of the truncation of coordinates within ½
mile of frequently visited destinations (i.e., location blurring), may induce unintended biases
for movement level intersection studies. Therefore, estimated intersection performance and the
interactions between movements need to be carefully evaluated before taking mitigation ac-tivities.

Abstract: Commercially available crowdsourced connected vehicle (CV) trajectory data have recently
been used to provide stakeholders with actionable and scalable roadway mobility infrastructure
performance measures. Transportation agencies and automotive original equipment manufacturers
(OEMs) share a common vision of ensuring the privacy of motorists that anonymously provide
their journey information. As this market has evolved, the fleet mix has changed, and some OEMs
have introduced additional fuzzification of CV data around 0.5 miles of frequently visited locations.
This study compared the estimated Indiana market penetration rates (MPRs) between historic non-
fuzzified CV datasets from 2020 to 2023 and a 5–11 May 2024, CV dataset with fuzzified records and
a reduced fleet. At selected permanent interstate and non-interstate count stations, overall CV MPRs
decreased by 0.5% and 0.3% compared to 2023, respectively. However, the trend in previous years
was upward. Additionally, this paper evaluated the impact on data characteristics at freeways and
intersections between the 5–11 May 2024, fuzzified CV dataset and a non-fuzzified 7–13 May 2023, CV
dataset. The analysis found that the total number of GPS samples decreased 10% statewide. Of the
evaluated 54,284 0.1-mile Indiana freeway, US Route, and State Route segments, the number of CV
samples increased for 33.8% and decreased for 65.9%. This study also evaluated 26,291 movements
at 3289 intersections and found that the number of available trajectories increased for 28.3% and
decreased for 70.4%. This paper concludes that data representativeness is enough to derive most
relevant mobility performance measures. However, since the change in available trajectories is not
uniformly distributed among intersection movements, an unintended sample bias may be introduced
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when computing performance measures. This may affect signal retiming or capital investment
opportunity identification algorithms.

Keywords: connected vehicle; trajectory; OEM; penetration; highway; intersection

1. Introduction

Roadway infrastructure is critical for moving an ever-increasing number of people and
goods. There are over 4 million miles of public roadways in the United States [1]. In 2023,
there were over 3.2 trillion vehicle miles traveled in the country [2], a 13% increase from
2003 [3]. It is estimated that each year, motorists pay over $1000 in wasted time and fuel
while traveling the transportation networks [1]. Therefore, it is important for transportation
agencies to actively monitor the performance of their managed mobility infrastructure to
identify improvement opportunities and determine the best allocation of limited funds.

Interstates, US Routes, State Routes, and arterials serve most of the traffic demand [2].
Several state agencies liaise with Traffic Management Centers (TMCs) to monitor these
types of roadways and coordinate incident response [4]. Historically, a network of roadside
sensors and intelligent transportation system (ITS) cameras installed statewide, as well
as segment-based crowdsourced speed and travel time data, have been used to assess
prevailing traffic conditions and identify challenges [5,6]. However, sensors and ITS
cameras only provide location-specific information, require regular maintenance, and are
difficult to observe on a large scale. Furthermore, crowdsourced probe vehicle speeds and
travel time data are usually aggregated, which complicates the detailed analysis of traffic
conditions often requiring granular information.

Roadway intersections are another critical component of transportation networks.
There are over 400,000 signalized intersections in the United States, which are estimated to
contribute up to 10% of all traffic delay on the National Highway System [7]. A properly
managed traffic signal can reduce congestion, enhance mobility, and decrease delays and
the number of vehicles stops [8,9]. Over the last two decades, agencies have implemented
Automated Traffic Signal Performance Measures (ATSPMs) to proactively assess intersec-
tion operations. ATSPMs are visualizations and tools derived from traffic signal controller
high-resolution (tenth-of-a-second) output and detector data [10,11]. Actionable insights
are derived thanks to the data’s high reporting intervals [12]; however, ATSPMs are difficult
to scale, and the estimation of performance measures is sensitive to traffic conditions [13]
and detector configuration [14].

In recent years, commercial connected vehicle (CV) trajectory data has emerged as an
alternative dataset to actively monitor roadway and intersection performance [13,15–17].
The main benefit of this dataset is that it allows for the accurate estimation of traffic
conditions at a variety of levels, ranging from the analysis of localized intersection move-
ments [13] to nationwide mobility [18].

1.1. Connected Vehicle Trajectory Data

It is anticipated that in 2025, 470 million CVs will be in operation in the US, Europe,
and China [19]. A study of perhaps the largest provider of CV data in 2022 reported
that, on average, one in every twenty vehicles in the United States provided telematics-
based CV data through a data broker that could be used to estimate interstate and arterial
performance measures [20].

1.1.1. Description

Crowdsourced CV trajectory data consist of sets of waypoints that describe the journey
that equipped vehicles undertake as they traverse the roadways. The waypoint reporting
interval for the same vehicle is usually in the order of a few seconds, and the spatial
accuracy is usually in the order of 2–3 m. Every waypoint has the following descriptive
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information attached: latitude, longitude, timestamp, speed, heading, and an anonymous
trip identifier. By chronologically linking individual waypoints with the same trajectory
identifier, the journey of a vehicle can be obtained.

1.1.2. Applications in Transportation

Commercial CV trajectory data provide accurate information of vehicles’ journeys
at virtually any scale. This characteristic makes them a good candidate for a variety of
transportation studies.

Sakhare et al. have leveraged the CV dataset to measure and visualize freeway
conditions, evaluate incident response, and assess work zone performance [15]. State
transportation agencies, such as the Indiana Department of Transportation (INDOT), use
CV data, in conjunction with other ITS assets, to monitor roadway performance and
safety [21].

CV trajectory data have also been used to evaluate intersections. Various techniques
have been developed to derive traffic signal performance measures [13,16,17] with the
objective of identifying challenges and signal retiming opportunities [13]. Additionally, CV-
derived traffic signal, roundabout, and stop-controlled intersection performance measures
have been used to locate statewide capital investment opportunities [22], helping agencies
perform data-driven investment decisions.

Other studies have used CV trajectory data for a wide range of purposes. Desai
et al. used CV data to assess electric vehicle (EV) usage and charging infrastructure [23].
Alsahfi et al. created an algorithm that can create and update road maps and identify their
characteristics from vehicle trajectories [24]. Further research has focused on the estimation
of infrastructure characteristics from CV data, such as traffic volumes [25], vehicle miles
traveled [26], roadway speeds [27], and traffic signal timing [28,29].

1.2. Motivation and Objective

As the commercial CV data industry matures, the dataset characteristics also evolve
with the objective of ensuring the privacy of motorists that anonymously provide their
journey information while attempting to maintain the scale and granularity needed for
transportation studies. One such change in the CV dataset that occurred in 2024 is the
fuzzification of trajectory waypoints. Waypoint fuzzification entails the distortion of
selected records to protect sensitive information in a manner that attempts to minimize
information loss.

The fuzzification approach implemented in a current CV dataset truncates latitude
and longitude coordinates to two decimal points (location blurring) when vehicles are
located within 0.5 mi of frequently visited locations. Furthermore, when a waypoint is
fuzzified, speed and heading values are not available.

Qualitatively, the impact that this fuzzification has on data availability and distribution
is shown in Figure 1. Figure 1 compares 10 min of data collected on the same day-of-week
(DOW) and time-of-day (TOD) during the second week of May between a historic 2023
dataset with non-fuzzified waypoints (Figure 1a) and a current 2024 dataset with fuzzified
waypoints (Figure 1b). It is important to note that, in addition to the fuzzification difference,
the historic dataset is comprised of more OEM fleets than the current dataset, which is by
itself expected to affect the level of representativeness.

In Figure 1, the overall waypoint sample size decreased 27% from the historic to the
current dataset. Of all waypoints available for the region shown in Figure 1b, 6% are
fuzzified (callout i shows the location of the truncated GPS coordinates), and the rest are
available for analysis. Areas on and between ramps (RA), signalized intersections (S),
and roundabouts (RO) saw fewer sampled waypoints. In particular, RA1 and S1 show a
noticeable decrease of traversing vehicles.
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Figure 1. Non-fuzzified waypoints available for analysis and fuzzified waypoints sampled during a
10-min period.

As transportation agencies, the private sector, and academia continue to use and
invest in CV trajectory data, it is important to assess the impact that privacy filters (i.e.,
fuzzification) and fleet changes may have on derived studies. Since no previous study has
provided such an analysis, the objective of this study is threefold:

1. Evaluate the current CV market penetration rate (MPR) and compare it to previous
years’ estimations.

2. Assess the impact of privacy filters and fleet changes on interstate, US Route, and
State Route coverage.
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3. Evaluate the change on available vehicle trajectories for analysis by movement at
traffic signals, roundabouts, and all-way stops.

These analyses provide stakeholders with insights on the data representativeness
changes and possible effects on related studies. All assessments are conducted using
statewide Indiana CV trajectory data.

2. Market Penetration Rates

The MPR provides agencies with a key metric to answer how representative the
data are of the actual traffic and is essential for building confidence in the data. The
MPR is the estimated percentage of the vehicles on the roadways that provide their
trajectory information.

The MPR of CV data with fuzzified records was evaluated over a week from 5–11 May
2024. The actual traffic volume information was collected from INDOT’s count stations. A
majority of the count stations in Indiana use loop detectors [30–32] to count and classify
vehicles. A total of 28 count stations that were operational during the entirety of the same
week, as shown in Figure 2, were chosen for analysis. Of the 28 stations, 10 were along
interstates and the remaining 18 were along non-interstate roadways that cover various
geographies in Indiana.
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A virtual box a quarter-mile long and as wide as the road width was created around ev-
ery count station. Unique journey identifiers were counted within this box and assumed as
the trajectory counts for the CV data. Heading information from individual waypoints from
the CV data was used as a filter to exclude journeys along a different route and direction.
Since the GPS coordinates of fuzzified records are truncated, they were excluded from the
MPR analysis. The MPR for a count station was calculated using the following equation:

PCV
n =

(
TCV

n
Vn

)
∗ 100 (1)

where PCV
n is the MPR of count station n, TCV

n is the number of unique trajectories from
the CV data within the quarter-mile-long bounding box near count station n, and Vn is the
volume of vehicles from the same count station over the same time period.

Figures 3 and 4 show vehicle volumes, trajectories from CV data, and MPR by count
station along interstate and non-interstate roadways. On 10 interstate locations, the vehicle
volume ranged from 0.11 to 0.61 million over a week. During the same week, the identified
CV trajectories ranged from 5.1 to 25.4 thousand. The MPR ranged from 3.5% to 6%. On
18 non-interstate locations, the vehicle volume ranged from 0.007 to 0.53 million and the
identified CV trajectories from 0.28 to 19 thousand. The MPR ranged from 2.4% to 10.2%.

The reported overall MPR for interstate and non-interstate is given by Equation (2):

PCV
r =

(
∑n ∈ R TCV

n

∑n ∈ R Vn

)
∗ 100 (2)

where r ∈ {Interstate, Non-Interstate} , R is the list of count stations along r, and PCV
r is

the overall MPR of the CV data. Due to the variation in volume at select count stations,
total CV trajectories and traffic volumes across the analysis period were considered for
the overall MPR calculations. This is also a comparable metric with changing stations and
analysis period days across the years. In 2024, the overall MPR on interstates was reported
as 4.6% and on non-interstates it was 5%.

MPR Comparison with Previous Years

The 2024 MPR was compared to reported values in previous studies from 2020 to
2023 [20,33]. Table 1 presents a summary of the MPR analysis across the five years. The
number of days analyzed during each year and the number of count stations evaluated
varied depending upon the availability of the data. However, a minimum of a contiguous
one-week period and at least seven count stations by road type were assessed during any
of the years. Analysis was conducted during the month of August in 2020 and 2021 and in
May for 2022, 2023, and 2024.

The MPR increased every year from 2020 to 2023 along both interstate and non-
interstate roadways. Interstate MPR increased from 4.4% to 5.1%, whereas non-interstate
MPR increased from 4.6% to 5.3% during this period. The increase may be due to the
adoption of newer CVs and/or changes in commercial arrangements in the data supply
chain. In 2024, the MPR dropped 0.5% on interstates and 0.3% on non-interstates. The
reduction in MPR is possibly due to the fuzzified records, a reduced fleet, and/or a change
in the data supply landscape.
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Table 1. Summary of longitudinal traffic penetration analysis of connected vehicles.

Interstate Non-Interstate

2020 2021 2022 2023 2024 2020 2021 2022 2023 2024

Count stations analyzed 21 29 18 7 10 32 29 25 10 18

Analysis period
(days) 31 31 7 7 7 31 31 7 7 7

Total traffic volume
(millions) 28.5 60.6 8.1 2.1 3.1 18.8 24.6 2.7 1.3 2.2

Average daily volume per
station 43,706 67,331 65,057 42,794 43,723 18,948 27,323 15,503 18,096 17,857

Total CV trajectories
(millions) 1.2 2.7 0.4 0.1 0.1 0.7 1.2 0.1 0.07 0.1

Average CV trajector
ies per station 1258 2958 3197 2175 1112 876 1319 798 967 901

MPR (%) 4.4 4.4 4.9 5.1 4.6 4.6 4.8 5.1 5.3 5.0

Due to changes in operating conditions, maintenance issues, or work zone activity,
not all count stations are available across the five years. For comparison of MPR across the
years at a count station level, 12 common count station locations were compared from 2021
to 2024. The details of these 12 count stations are shown in Table 2. Highway or roadway
details with approximate mile marker (MM) information is also provided in Table 2.

Table 2. Count station details.

Station No. Count Station ID Road Type County Location Description

1 952300 Interstate Grant I-69 RM 268.2

2 954300 Interstate Laporte I-94 MM 44.5

3 990206 Interstate Huntington I-69 NB MM 78.2

4 990371 Interstate Marion I-65 MM 121.5

5 954600 Non-interstate Marshall US-31 (SR 10)

6 954700 Non-interstate Porter SR-49 (N E. 600 N)

7 955200 Non-interstate Ripley US-50 (RD 175 W)

8 990202 Non-interstate Elhart US-6 EB RM 93.6

9 990305 Non-interstate Marion Binford Blvd

10 990502 Non-interstate Morgon SR-67 SB RM 80.6

11 990505 Non-interstate Ripley US-421 SB RM 29.2

12 990607 Non-interstate Vanderburgh US-41 NB RM 15.3

Figure 5 shows MPR values for each of the common 12 count stations from 2021 to
2024, colored by the roadway type. The dotted line represents overall MPR calculated using
Equation (2) across all the available stations during that year. The relative position of the
count stations remained the same over the years.
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3. Interstate, US Route, and State Route Coverage

Observing changes in CV data representativeness on interstates, US Routes, and State
Routes is vital for agencies, as these road networks make up a majority of the roadway
infrastructure maintained by a state. Knowing the representativeness of CV data will
help identify opportunities for utilizing this CV data for continuous roadway mobility
monitoring statewide, especially in locations with no existing sensor infrastructure. A total
of twelve interstates (pink), four US Routes (blue), and three State Routes (orange) were
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analyzed in this section, as shown in Figure 6. Interstate 80 (I-80) was excluded from the
analysis owing to its full concurrency in the state of Indiana with routes I-94 and I-90.
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Figure 6. Map of Indiana showing routes analyzed—12 interstates, 4 US Routes, and 3 State Routes.

Each route was divided into tenth-of-a-mile segments (0.1 miles) for the analysis and
for consistent comparisons between multiple years of data. A corresponding geospatial
polygon for each such 0.1-mile segment was created, and CV data were matched to these
segments to determine the exact mile-marker location along a route through which a CV
waypoint passed. Following this geospatial matching process, distinct counts of CV jour-
neys (essentially unique journey identifiers) passing through each 0.1-mile segment were
computed for two analysis weeks—namely, 7–13 May 2023 (historic, non-fuzzified), and
5–11 May 2024 (current, fuzzified). The 2024 dataset contains fuzzified records that cannot
be considered because their GPS coordinates have been truncated and their geospatial
representation does not indicate their actual location. Furthermore, their lack of heading
information makes it difficult to assign them to specific directions of travel, and the lack of
speed information makes them lose significant value for various freeway studies that rely
on this characteristic.

The study location for this section is represented by a total of 54,284 0.1-mile segments
of roadway in Indiana, with 26,838 of them being on interstates, 17,640 on selected US
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Routes, and 9806 on selected State Routes. Table 3 shows that nearly 22% of interstate
segments, 41% of US Route segments, and 55% of State Route segments observed an
increase in CV journeys from 2023 to 2024. A very small percentage of segments showed
no change, while an even lower percentage of segments could not be directly compared
due to missing data in either of the analysis years.

Table 3. Summary statistics of change in number of journeys for route segments analyzed.

Type of Routes Total 0.1-Mile
Segments

Segments with
Increase in Journeys

Segments with No
Change in Journeys

Segments with
Decrease in Journeys

Segments That Could Not
Be Compared

Interstates 26,838 5835
(21.7%)

18
(0.1%)

20,976
(78.2%)

9
(0.0%)

US Routes 17,640 7174
(40.7%)

52
(0.3%)

10,403
(59.0%)

11
(0.0%)

State Routes 9806 5355
(54.6%)

58
(0.6%)

4391
(44.8%)

2
(0.0%)

Total 54,284 18,364
(33.8%)

128
(0.2%)

35,770
(65.9%)

22
(0.0%)

Figure 7 shows a box-and-whisker diagram of the network level percentage and
absolute CV journey changes observed for the three types of routes analyzed. General
trends show that the median percentage and absolute change in CV journeys for interstates
is the highest, followed by slightly lower changes in US Routes and a median change of
nearly 0% on State Route segments.
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A cumulative frequency distribution (CFD) of all 0.1-mile segments and their percentage
and absolute changes in CV journeys between the two years is shown in Figures 8a and 8b,
respectively. Median values for percentage change in journeys range from −4.95% for inter-
states to −1.96% for US Routes to +0.98% for State Routes. Correspondingly, median values
for absolute change in journeys range from −289 for interstates to −37 for US Routes to +10
for State Routes. A number of segments showed reductions in CV journeys of more than 2000,
possibly due to construction-related road closures significantly dropping volumes over those
segments. Similarly, a number of segments showing increases in CV journeys of more than
2000 were a result of construction work being completed and converting an arterial into an
interstate, thus leading to a significant rise in CV traffic passing through that segment.
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Figure 8. CFD of the network level change on the number of journeys by route type and 0.1-mile
segment.

Figure 9 documents percentage and absolute changes in CV journeys on the three
types of routes as a Pareto-sorted column plot with each 0.1-mile segment represented. As
evidenced by the zone of no-change gradually moving from left to right for interstates,
US Routes, and State Routes, the highest percentage decrease in journeys is seen among
interstate segments (78.2%), while the lowest percentage decrease in journeys is seen among
State Route segments (44.8%).
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Figure 10 shows a map-based visualization of the change in the number of CV journeys
across the three types of routes. To remove outliers or minor changes, any segments with
percentage changes in CV journeys between −5 and 5% were ignored in Figure 10a–c and
any segments with absolute changes in CV journeys between −100 and 100 were removed
in Figure 10d–f.
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Figure 10a shows that a majority of rural interstate segments showed a decrease in
journeys (−50% to −5%). Some segments at the Indiana–Ohio border on I-90 and I-74
showed increases in journeys, which may be attributable to construction projects in 2023
that were completed in 2024 leading to higher volumes or off-interstate construction projects
causing additional diverting traffic to utilize the interstate. Segments highlighted in red
in Figure 10d–f near the Indianapolis region in central Indiana are majorly attributable to
a construction project in the northeast corner of Indianapolis that resulted in reduced or
otherwise rerouted traffic through the area.
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In general, the slightly lower MPR as documented in the preceding section, coupled
with a smaller fleet of OEMs being represented in the CV data and the associated fuzzi-
fication can together be assumed to cause the reduction in observed CV journeys in 2024
compared to 2023 for interstate, US Route, and State Route segments. These visuals will be
vital for agencies and practitioners in evaluating the usability of this novel form of CV data
and identifying any significant changes that may bias year-by-year comparisons with CV
data from 2020 to 2023.

4. Intersection Coverage

This section compared the number of vehicle trajectories available for analysis at 2827
signalized intersections, 158 roundabouts, and 304 all-way stops in Indiana between the
historic 7–13 May 2023, dataset without fuzzified waypoints and the current 5–11 May 2024,
CV dataset with fuzzified waypoints.

For a vehicle trajectory to be available for performance analysis, its movement at the
intersection, that is, its direction of travel (i.e., northbound, eastbound, southbound, and
westbound) and its turn type (i.e., right, through, and left), need to be identified. Therefore,
the trajectory of each sampled vehicle contained in the historic and current CV datasets
near the analyzed intersections was analyzed and, if possible, assigned an intersection
movement [13].

Similar to the previous section, any fuzzified waypoint has truncated GPS coordi-
nates with missing heading information, making it impossible to determine its trajectory’s
movement through the intersection. Therefore, fuzzified waypoints are not available for
intersection movement performance analysis. The results of the differences between the
two datasets at distinct analysis levels are presented as follows:

• First, the distribution of the change in available trajectories for analysis at the move-
ment level is discussed.

• Then, the change in the number of vehicle trajectories by turn type is evaluated.
• Finally, a statewide qualitative analysis at the intersection level is provided.

4.1. Change by Movement

It is important to evaluate the amount of data available for analysis at the movement
level. This is because movement level traffic signal performance measures provide prac-
titioners with insights on the operational conditions in which each of the intersection’s
phases serve traffic. Depending on the performance results for all movements at an in-
tersection, signal retiming [13] or capital investment [22] activities may be suggested to
improve operations.

The change in the number of trajectories available for analysis (∆Tijk) at intersection i,
direction of travel j, and turn type k was calculated as follows:

∆Tijk = TC
ijk − TH

ijk (3)

where TH
ijk and TC

ijk are the total number of trajectories assigned direction of travel j and
turn type k at intersection i from the historic and current CV datasets, respectively. The
percentage change %∆Tijk was calculated as follows:

%∆Tijk =

(
∆Tijk

TH
ijk

)
∗ 100 (4)

Figure 11 summarizes in box-and-whisker plots the distribution of the percentage
(Figure 11a) and absolute (Figure 11b) trajectory count changes at the 26,291 movements
of the intersections analyzed. All-way stops showed the largest reduction in median
percentage change (callout i), followed by roundabouts (callout ii). Signalized intersections
had the smallest median reduction (callout iii).
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Figure 11. Box-and-whisker diagrams of the network level change on the number of analyzed vehicle
trajectories by intersection and movement.

Figure 12 supplements the distribution analysis from Figure 11 by showing the change
in available trajectories by movement as CFD diagrams. Traffic signals had the largest
proportion of movements, around 12.5%, where the current CV dataset did not provide
any trajectory available for analysis (callout i). This phenomenon only occurred for less
than 6.25% of roundabout movements (callout ii). Overall, the increase in the availability of
trajectories for analysis followed a similar distribution for all intersection types (callout iii).

It is important to note that most absolute changes were within the ±500 trajectory
count range (Figure 12b). All-way stops presented the smallest decrease in trajectories
available for analysis (callout iv), likely because this type of intersection usually serves
fewer vehicles than the others. The information provided in Figure 12 provides valuable
insights on the expected number of trajectories available for analysis by intersection type
for a week of data.
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Figure 12. CFD of the network level change on the number of analyzed vehicle trajectories by
intersection and movement.

Figure 13 shows Pareto-sorted bar graphs displaying the percentage and absolute
changes on available trajectories for analysis for each evaluated movement. Callouts
indicate the percentage of movements where the available trajectories increased (~29%),
stayed the same (~1%), and decreased (~70%). The next subsection discusses the changes
at the turn type level.
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4.2. Change by Turn Type

In addition to the movement level analysis, it is important to evaluate the change in
the number of available trajectories for analysis at the turn level (i.e., right, through, and
left). The change in the number of trajectories available for analysis (∆Tk) that followed
turn type k was calculated as follows:

∆Tk = TC
k − TH

k (5)
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where TH
k and TC

k are the total number of trajectories assigned turn type k from the historic
and current CV datasets, respectively. The percentage change %∆Tk was calculated as
follows:

%∆Tk =

(
∆Tk

TH
k

)
∗ 100 (6)

Table 4 summarizes the change in the number of trajectories available for analysis by
turn type. Every category shows a reduction in available trajectories as a consequence of
waypoint fuzzification (Figure 1) and MPR reduction (Table 1). Considering all turn types,
signalized intersections had the smallest percentage decrease (−11.22%) and roundabouts
the largest (−17.66%). In particular, through trips at signalized intersections had the
smallest percentage reduction (−10.73%), while through trips at roundabouts had the
largest (−19.46%). The following subsection presents the changes at the intersection level.

Table 4. Number of vehicle trajectories analyzed by intersection and turn type.

Intersection Type Turn Type (k) TH
k TC

k ∆Tk %∆Tk

Traffic signal

All 13,774,803 12,228,874 −1,545,929 −11.2%

Right 948,878 802,500 −146,378 −15.4%

Through 11,138,846 9,943,666 −1,195,180 −10.7%

Left 1,687,079 1,482,708 −204,371 −12.1%

Roundabout

All 562,707 463,349 −99,358 −17.7%

Right 83,080 72,518 −10,562 −12.7%

Through 389,827 313,975 −75,852 −19.5%

Left 89,800 76,856 −12,944 −14.4%

All-way stop

All 498,109 426,220 −71,889 −14.4%

Right 102,935 85,202 −17,733 −17.2%

Through 292,083 254,043 −38,040 −13.0%

Left 103,091 86,975 −16,116 −15.6%

4.3. Change by Intersection

An evaluation of the change in the number of available trajectories for analysis at the
intersection level can help identify overall trends and statewide conditions. The change
in the number of trajectories available for analysis (∆Ti) at intersection i was calculated
as follows:

∆Ti = TC
i − TH

i (7)

where TH
i and TC

i are the total number of trajectories available for analysis at intersection i
from the historic and current CV datasets, respectively. The percentage change %∆Ti was
calculated as follows:

%∆Ti =

(
∆Ti

TH
i

)
∗ 100 (8)

Figure 14 qualitatively shows the percentage (Figure 14a–c) and absolute (Figure 14d–f)
changes at each analyzed intersection. In general, rural areas displayed less pronounced
differences between the datasets. This is likely because those intersections may serve more
commuting traffic than urban intersections, which can reduce the impact of fuzzification as
fewer vehicles have rural areas as destination. Additionally, most intersections fall within
the ≥−50% to <+50% trajectory change categories, which indicates general moderate
differences at the intersection level.
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5. Discussion

CV trajectory data have demonstrated to be a versatile dataset that can be used to assess
mobility under a wide range of scenarios and scales. This study presented a high-level
analysis on the impact that data fuzzification and fleet reduction (Figure 1) had on a current
commercial CV dataset. An evaluation of the current and historic estimated MPRs showed
reductions of 0.5% and 0.3% along interstate and non-interstate roadways, respectively
(Table 1). The summary impact at freeways and intersections is summarized below.

5.1. Impact at Freeways

A comparison of the CV data available on 54,284 individual 0.1-mile segments of
interstates, US Routes, and State Routes between a week of historic non-fuzzified and a
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week of current fuzzified data showed that the number of journeys available for analysis
increased for 33.8% of segments and decreased for 65.9%.

Although the reductions are non-trivial, for simply computing average segment
speeds, the authors do not believe this will significantly impact estimations. For example,
Figure 15 shows trajectory-derived heatmaps of sampled vehicle speeds over one mile of
I-465 in Indianapolis, Indiana. The vertical axis represents the location on the road and
the horizontal axis the DOW and TOD; displayed trajectory segments color-coded based
on their speed portray mobility conditions [15]. A similar coverage can be qualitatively
concluded by comparing the heatmap generated from a non-fuzzified historic dataset
(Figure 15a) and the heatmap generated from the fuzzified current dataset (Figure 15b).
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5.2. Impact at Intersections

A comparison of the number of CV trajectories available for movement level analysis at
3289 intersections between a week of historic non-fuzzified and a week of current fuzzified
data showed an 11.6% overall reduction (Table 4). Of the 26,291 studied individual move-
ments, the number of trajectories available for analysis increased at 28.3% and decreased
at 70.4%. This large and non-uniform reduction in available trajectories for analysis may
substantially decrease sampling on particular movements and perhaps bias intersection
analysis. This change is a concern, because, in many cases, the movements that are fuzzified
going to or from residential or commercial areas are of a significant interest. This is because
signal retiming [13] and capital investment [22] opportunity identification algorithms rely
on the unbiased sampling of vehicle trajectories at all movements at any intersection.

For example, Figure 16 shows trajectory-derived heatmaps of the estimated Highway
Capacity Manual (HCM) level of service (LOS) [13,34] at the minor through movements
of a corridor segment with 12 signalized intersections. The vertical axis represents each
analyzed intersection, and the horizontal axis represents the TOD. It is evident how data cov-
erage is reduced for the heatmap generated with the current fuzzified dataset (Figure 16b,
callout i) when comparing it to the heatmap derived from the historic dataset without
fuzzified waypoints (Figure 16a, callout i). Improvement opportunities will now be more
difficult to identify for the intersection with decreased coverage (callout i).
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5.3. Future Research

This study focused on providing a high-level overview of the impacts that CV data
fuzzification and fleet composition changes have on data availability for transportation
studies. Future research should provide a more in-depth investigation of the effects that
these changes have on specific mobility analyses by type of roadway infrastructure. Subse-
quent efforts should provide special attention to the impact that data fuzzification has on
movement level traffic signal performance estimations, as this granularity of analysis is
critical to identify retiming [13] and infrastructure [22] improvement opportunities.

Furthermore, improved alternative data fuzzification techniques may be derived from
an intentional dialog between transportation agencies, industry, and academia to further
protect motorist privacy while minimizing adverse effects on data availability. Different
fuzzification approaches should be extensively evaluated and best practices defined in
future studies.

6. Conclusions

Even though there is a general reduction in the amount of data available for analysis
in comparison with historic datasets, with MPR values ≥4.6%, the authors believe that the
current CV dataset accounts for enough representativeness to derive most relevant mobility
performance measures. Furthermore, as MPR follows an upward trend, it is just a matter of
time before the current dataset contains more usable data than previous versions.

Of the infrastructure CV coverage analyzed, intersection performance will likely be
the most affected by data fuzzification (Figures 1 and 16). This is because the current data
filtering approach may induce unintended bias on the amount of data available for analysis
by movement at intersections near popular commercial areas or large residential zones.

Although the results of this study are based on data from Indiana, the authors believe
that similar trends are likely to be observed in other locations. This is because if the same
fuzzification approach and fleet modifications are implemented elsewhere, proportional
changes in data availability are expected to be produced.
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