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Highlights:

What are the main findings?
• Novel data-driven and knowledge-based energy digital-twin framework integrating a Retrieval-

Augmented Generation (RAG) approach.
• Prototype applied to a real-world scenario involving the management of high-voltage energy infras-

tructures, showcasing the framework feasibility and effectiveness in operational environments.
What is the implication of the main finding?
• Improved management of energy infrastructures enhancing the ability to predict future conditions

and prescribe more informed and data-driven decisions in asset maintenance.
• Exploitation of a conversational virtual assistant to interact with users, improving the accessibility,

interpretability, and usability of complex data for decision-makers.

Abstract: digital-twin platforms are increasingly adopted in energy infrastructure management
for smart grids. Novel opportunities arise from emerging artificial intelligence technologies to
increase user trust by enhancing predictive and prescriptive analytics capabilities and by improving
user interaction paradigms. This paper presents a novel data-driven and knowledge-based energy
digital-twin framework and architecture. Data integration and mining based on machine learning are
integrated into a knowledge graph annotating asset status data, prediction outcomes, and background
domain knowledge in order to support a retrieval-augmented generation approach, which enhances
a conversational virtual assistant based on a large language model to provide user decision support
in asset management and maintenance. Components of the proposed architecture have been mapped
to commercial-off-the-shelf tools to implement a prototype framework, exploited in a case study on
the management of a section of the high-voltage energy infrastructure in central Italy.

Keywords: digital twin; energy infrastructures; energy management; retrieval-augmented generation;
natural user interface

1. Introduction

Over the past decade, the global energy landscape has undergone a remarkable
transformation, marked by significant shifts in technology, policy, and market dynamics.
The evolution of the energy system during this period has been shaped by a combination
of factors, including increasing concerns about climate change, advances in renewable
energy technologies, and the growing recognition of the need for a more sustainable
and resilient energy infrastructure [1]. In particular, the rapid growth of distributed and
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renewable energy sources can be considered as one of the most notable trends in the
last 10 years in the energy systems area [2]. Solar and wind power have experienced
substantial increases in deployment and efficiency. Technological advancements, coupled
with falling costs, have made these renewable sources more economically competitive
with traditional fossil fuels. This shift towards cleaner energy has been accelerated by
a greater awareness of the environmental impacts of fossil fuel consumption and the
imperative to reduce greenhouse-gas emissions. Government policies and international
agreements have driven the transition to a more sustainable energy system. In addition,
many countries have adopted ambitious renewable energy targets, implemented incentive
programs, and established regulatory frameworks to encourage the development and
integration of clean energy technologies. Moreover, the Paris Agreement [3], signed in
2015, served as a catalyst for global cooperation on climate action, prompting nations to
re-evaluate their energy strategies and commit to decarbonization.

Spurred by these goals, Information and Communication Technology (ICT) integra-
tion has been increasingly adopted to transform traditional energy grids into smart grids.
They represent a groundbreaking enhancement in the management and distribution of
electrical power, representing a key element in the modernization of energy systems and
infrastructures [4]. The smart-grid market is experiencing rapid growth worldwide, driven
by an increasing demand for efficient and sustainable energy solutions. As reported in [5],
it was estimated at almost USD 50 billion in 2022 and is forecast to grow at a Compound
Annual Growth Rate (CAGR) of 17.4%, reaching approximately USD 130 billion in 2028.
Smart grids exploit advanced metering systems and data analytics to enhance the reliability
of energy infrastructure and also enable better demand-side management, optimizing
energy distribution and empowering consumers to make informed decisions about their
energy consumption. One of the primary features of smart grids is the integration of
digital communication systems that enable real-time monitoring and control of various
components within the grid. Smart devices, deployed throughout the network, provide a
two-way communication between consumers and utilities and enable a granular collection
of data regarding electricity consumption, power generation, and grid conditions. At
different levels, both system administrators and consumers can gain insights into energy
usage patterns and make informed decisions to optimize distribution during periods of
lower demand or lower pricing, contributing to demand-side management and overall grid
efficiency [6]. Smart grids also enhance the infrastructure resilience against disruptions and
outages. Automated monitoring and control systems can quickly identify and isolate faults,
rerouting power to minimize downtime and improve overall system reliability. Addition-
ally, smart grids can integrate procedures for the rapid detection of unauthorized access or
cybersecurity threats, ensuring the security and integrity of the electricity supply [7].

While progress has been made in transitioning toward a more digital energy infras-
tructure, challenges persist. Standardization and interoperability concerns require ongoing
attention to ensure the seamless integration of data-driven techniques within everyday grid
operations. To overcome these limitations, the Digital Twin (DT) paradigm emerges as a
key enabler; it consists of a representation of a real-world object or process within an infor-
mation system, accurately reflecting its physical counterpart through real-time bidirectional
data exchange for purposes including simulation, testing, monitoring, and maintenance.
Originally introduced in the aerospace industry and popularized in smart manufacturing,
DT architectures and technologies can be exploited for shaping more resilient, flexible,
and sustainable energy infrastructures by providing a virtual counterpart of physical assets
and processes to increase their visibility and controllability. As highlighted in [8], the imple-
mentation of Energy Digital Twins (EDTs) has the potential to transform the management of
energy systems, resulting in enhanced energy efficiency, decreased downtime, and reduced
maintenance costs.

Energy infrastructure DTs covering large areas integrate a wide number and range of
elements, models, data sources, analytic processes, and management tasks. This complexity
poses significant cognitive challenges for users: conventional Graphical User Interfaces
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(GUIs), based only on Three-Dimensional (3D) visualizations and classical computer in-
teraction paradigms, make it difficult to discover resources, retrieve information, and
gain insights in the desired way, often resulting in a restricted user experience [9]. Novel
approaches are required to enable smart-grid DTs to achieve maturity from a usability
perspective. In particular, this work addresses the following Research Aims (RAs) related
to the application of advanced technologies in energy infrastructure management:

• RA1. Enhancing grid management through DTs and data-driven approaches: By
examining the integration of digital twins and innovative data visualization techniques
with data-driven methods, the research highlights how this combination improves
the monitoring of energy infrastructures. This vision aims to enable more accurate
real-time assessments and failure prevention procedures.

• RA2. Leveraging Large Language Models (LLMs) for decision support: The study
explores the challenges and benefits of utilizing LLMs in energy infrastructure. Key
challenges include data integration and data modeling and ensuring accuracy in
domain-specific tasks in order to obtain enhanced decision-making capabilities and
improved automation.

• RA3. Integrating Retrieval-Augmented Generation (RAG) approaches with Knowl-
edge Graphs (KGs): The exploitation of a Resource Description Framework (RDF) [10]
for data modeling in RAG is also a focus of this study. By structuring domain-specific
knowledge, a KG improves the performance of RAG-based LLMs in delivering real-time,
accurate information, thereby increasing the effectiveness of decision support systems.

According to the previous research statements, this paper presents a novel data-driven,
knowledge-based architecture for EDTs, aiming to provide complete visibility of the status
of the energy network and its assets. The proposed framework supports gathering data
streams from sensing devices, pre-processing them and performing Machine Learning
(ML) procedures for detecting and addressing potential grid issues. Most notably, it
includes a virtual assistant—based on an RAG approach integrating a foundation LLM
with domain-specific information organized in a KG—to support end users and provide
informed suggestions regarding energy infrastructure performance issues and maintenance
procedures. The main contributions of the proposal are as follows:

• a reference architecture for energy infrastructure management and monitoring, inte-
grating digital twins and data-driven methods;

• a Natural User Interface (NUI) extending conventional visualization and interaction
paradigms with direct object retrieval and manipulation by means of a combination of
gestures and a conversational virtual assistant;

• annotation of DT models and data streams into a RDF KG, exploited for RAG to
provide real-time domain information to a general-purpose foundation LLM powering
the conversational agent;

• characterization of each architectural module by means of a mapping with Commercial-
Off-The-Shelf (COTS) components to enhance feasibility while simultaneously lower-
ing development costs and time to market;

• a cloud-based prototype implementation integrating open-source software technolo-
gies and tools;

• a case study regarding a section of the high-voltage network in central Italy, showcas-
ing key value propositions of the approach.

Finally, the research aims will be validated through a comprehensive analysis compar-
ing the developed architecture against the current state-of-the-art in energy infrastructure
management. This analysis will also highlight improvements in decision-making pro-
cedures and situational awareness resulting from the implementation of the proposed
methodologies compared to the baseline approaches previously applied in the reference
case study.

The remainder of the paper is organized as follows. Section 2 analyzes emerging tech-
nologies and relevant related work, while the proposal is described in detail in Section 3,
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focusing on the overall architecture and its components. A real-world case study is pre-
sented in Section 4, also highlighting the available open-source tools selected to implement
the prototype system. Section 5 provides a discussion about system peculiarities as well as
the challenges and opportunities related to the proposed approach, and conclusions and
future work directions are provided in Section 6.

2. Background

Here, the main notions regarding novel approaches and technologies integrated in
energy systems are briefly recalled, in order to make the paper self-contained and easily
understandable. Then, the most relevant related work is surveyed.

2.1. Emerging Technologies and Digital Twins for Energy Infrastructures

The integration of emerging technologies with energy grids represents a dynamic
frontier in the evolution of modern energy systems. Rapid advancements in various techno-
logical domains have opened new possibilities for enhancing the capabilities and efficiency
of smart grids from connectivity, automation, and intelligence standpoints. As reported
in [11], the Internet of Things (IoT) has facilitated the proliferation of interconnected de-
vices and sensors, creating a web of energy data where information can be easily retrieved
by means of several endpoints located within the smart grid. The data collected from
IoT devices enables better monitoring, control, and decision-making. The advent of 5G
technology has also provided high-throughput, low-latency communication crucial for
the real-time data exchange required in smart grids [12]. This connectivity evolution en-
hances the reliability and responsiveness of grid components, supporting applications like
autonomous grid management, advanced metering, and seamless integration of electric
vehicles into the grid.

Artificial Intelligence (AI) and ML techniques have found application in optimizing
the operation and management of smart grids [13]. These technologies can be used to
analyze vast amounts of data generated by grid devices, identify patterns, and optimize
grid performance. In particular, ML models can enhance fault detection, predictive and
preventive maintenance, and load forecasting, contributing to the increased reliability and
efficiency of the whole infrastructure [14]. In this area, edge computing [15] represents
a key enabling technology, bringing computational resources closer to data generation
sources in order to reduce latency and improve real-time processing capabilities. Instead
of sending all data to a centralized cloud-based or on-premises datacenter for processing,
edge computing distributes computational resources across the border of the local net-
work. Decentralization reduces dependence on a single point of failure and enhances the
overall resilience of the system. This approach is especially beneficial in scenarios where
bandwidth is limited or expensive, as well as where transmitting large volumes of data
to the cloud is impractical or prevented by privacy requirements. In the context of energy
systems, edge computing allows for quicker decision-making, enabling faster responses to
unexpected events and enhancing grid operations [16,17]. Moreover, it supports a scalable
model adapted to varying workloads and requirements, where additional edge devices
can be added to the network to distribute the processing load, granting a more flexible
and dynamic infrastructure. Following this vision, intelligent systems deployed at the
edge can perform advanced data processing and decision-making locally based on tiny
ML [18,19] algorithms and server-less federated learning approaches [20]. These distributed
approaches call for novel decentralized security architectures for data integrity [21] and
detection of malicious behaviors [22].

In recent years, the exploitation of DT technologies has emerged as a further promising
paradigm for optimizing and managing complex systems, particularly within the domain of
energy infrastructures, with several studies and research projects being conducted across di-
verse areas, including renewable energy and energy storage and distribution [23]. Basically,
a DT is a virtual representation of a physical object, system, or process [24]. This represen-
tation is created using data collected from sensors, devices, and other sources associated
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with the physical entity. The DT serves as a dynamic and detailed model, offering insights
into the real-world object’s status, performance, and behavior. Raw data are continuously
fed into the digital twin in order to obtain a comprehensive and accurate representation
of the physical asset. EDTs usually comprise different modules, including geospatial and
simulation models, data analytics, and connectivity. Geospatial models provide a georefer-
enced 3D visual representation of the physical entity, while simulation models produce a
user-oriented representation of its behavior. Data analytics process the incoming data to
derive insights, and connectivity ensures real-time updates between the physical and digital
domains. Digital twins often cover the entire lifecycle of a physical entity, from design and
development to operation and maintenance [25]. This comprehensive lifecycle manage-
ment allows energy stakeholders to monitor, analyze, and optimize the performance of
assets, systems, or processes throughout their activities. Finally, DTs facilitate the develop-
ment of collaborative environments where various engineers, operators, and maintenance
personnel can interact with and contribute to the digital representation [26]. In energy
infrastructures, this collaboration enhances communication and decision-making across
different processes of a smart grid.

2.2. Related Work

EDT technology offers significant potential in aiding the professionals involved in
industrial energy management to make data-driven decisions, facilitating proactive identifi-
cation of system failures, enhancing system and network efficiency, optimizing operations,
and aligning with sustainability objectives. However, its practical adoption within the
energy sector is affected by constraints such as cost implications, regulatory compliance,
and challenges in evaluating performance. This section reviews state-of-the-art works
on the DT frameworks applied to energy infrastructures. The selected studies integrate
technology, data analytics, cybersecurity, and visualization in a holistic approach to enhance
energy systems’ management and sustainability.

A theoretical framework and technology stack for DTs within the energy sector have
been introduced in [27]. The proposed D-Arc technology stack is platform-agnostic and
applicable to any DT platform and grid systems, aiming to enable the proactive discovery
of system failures, enhance efficiency, and optimize operations. While it defines a work-
flow orchestration model compatible with both on-premises and cloud infrastructures,
the technology-agnostic approach may lack specificity for addressing different use cases.
A cloud-edge EDT framework named C3-FLOW has been proposed in [28] to manage
low-carbon electrical equipment in smart industrial parks. It optimizes device scheduling,
channel allocation, and computational resource distribution, leading to increased accuracy
in federated learning, communication efficiency, and reduction of carbon emissions. How-
ever, the proposal has only been analyzed in a simulation environment, and the architecture
and algorithms have not been tested with real devices. In [29], two types of DT models
have been proposed to fulfill decision-making requirements in Energy Cyber-Physical
Systems (ECPSs): a low-bandwidth model for periodic tasks like energy management
and predictive maintenance, and a high-bandwidth model for real-time functions such as
outage management and system restoration. The proposed architecture employs server-less
computing for monitoring and executing local actions in ECPS, exploiting IoT shadow
states as digital replicas. The ECPS has been evaluated using interconnected embedded
computers for networked microgrids; however, real-world scalability is untested.

The potential benefits of employing the DT concept in power system control centers
have been introduced in [30]. The proposed architecture, based on a simulation engine
called “dynamic digital mirror”, offers a solution for further improvement in power system
monitoring and control. Similarly, in [31], a Power System Digital Twin (PSDT) has been
designed, aimed at enhancing grid operation intelligence, power system control, fault
prediction and diagnosis, and power online analysis by integrating smart sensors, 5G
communications, cloud platforms, and big-data processing. However, both proposals are
described only as architectural models, without the development of a prototype. The
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hierarchical EDT architecture in [32] uses real-time simulation to emulate the physical grid
for enhanced planning and operation. The framework features a vendor-agnostic real-time
simulation system and integrates hardware-in-the-loop physical system emulation. Nev-
ertheless, significant challenges remain open, including improving parameter estimation
accuracy, refining model granularity, and minimizing time delays. The EDT framework
in [33] is aimed at robust smart-grid development. The platform facilitates comprehensive
planning, construction, and operation of the power grid by integrating datasets including
power, regulatory planning, and meteorological data. However, essential technologies such
as DT representation and AI algorithms have not been fully integrated into the platform to
offer production-grade services.

Finally, an architecture based on DT for smart power distribution systems has been
proposed in [34], addressing the challenge of rapidly providing data models, analytics,
and algorithms, incorporating AI and big-data technologies. However, insufficient sensor
deployment is a key limitation, necessitating further exploration of DT technology applica-
bility across the whole smart power distribution system, along with the need for additional
DT model implementation.

3. Framework Architecture

The smart-grid concept emerges as a dynamic synergy between power infrastructures
and ICT networks. Analogous to the human body, where the “circulatory system” ensures
the flow of vital resources and the “nervous system” orchestrates complex monitoring and
interactions, the smart grid harmonizes energy distribution and ICT systems, respectively.
Following this vision, the Smart-Grid Architecture Model (SGAM) [35] has been defined to
guide the development and implementation of smart-grid systems. As shown in Figure 1,
it is a comprehensive framework conceptualizing five reference layers of smart energy
networks that seamlessly integrate physical components, communication systems, and in-
formation technologies. The main goal of the proposed approach is the design of a reference
data-driven framework that accommodates various DT applications adhering to SGAM
guidelines and best practices of large-scale middleware development [36]: interoperability,
self-adaptability, real-time functionality, scalability, reliability, and data security. As shown
in Figure 2, the framework consists of different core layers, each with distinct responsibili-
ties and functionalities. Individual components are detailed in the following subsections,
along with technological choices for their reference implementation and integration.

DEVICE LAYER POWER INFRASTRUCTURE

COMMUNICATION LAYER IT NETWORK 

INFORMATION LAYER METERING DATA / ALARMS

FUNCTIONS LAYER

BUSINESS LAYER
PLATFORM 
FUNCTIONALITIES

Figure 1. Smart-grid architecture model.
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3.1. Sensor Networks and Communication

At the foundational layers of perception and connection, the architecture interfaces
with physical devices at the edge of the network as well as with cloud-based resources.
The lowest level, closest to the field devices for data acquisition, involves the installation
of sensors on the physical assets and overseeing the bidirectional exchange of data from
the devices to the platform. The Data Connectivity layer serves as the backbone for the
system, facilitating seamless communication, synchronization, and integration between
the physical environment and the digital realm. Specifically, the architecture incorporates
different types of device:

• Traditional sensors: These generate signals enabling the digital twin to acquire op-
erational and environmental data from real-world physical assets. They provide
direct measurements of the variables related to the analyzed physical process, such as
temperature and voltage.

• Process Analytical Technology (PAT) sensors: Similar to traditional sensors, PAT
sensors record data from sampling points. Collected data cannot be directly interpreted
as with traditional sensors. Typically, statistical and real-time observation models
are employed to interpret the signal. A near-infrared spectrometer is an example of
PAT sensor.

• Actuators: These control and manipulate physical elements or systems in response
to signals or commands received from control units. They usually translate digital or
analog signals into mechanical, electrical, hydraulic, or pneumatic actions to effect
changes in the physical environment.

Data coming from sensors are processed by the Edge Computing layer. Processing data
close to where they are generated brings considerable benefits in terms of processing latency,
reduced data traffic, and increased resilience in the case of an interruption in the data connection.
In order to take advantage of edge and swarm intelligence paradigms [37,38], the platform has
been designed following a microservices architecture [39], where computation and data
storage tasks are encapsulated in autonomous distributed application components in order
to enable a more dynamic and scalable distribution according to network and system
requirements. Challenges in sensor networks arise from the diversity of communication
protocols and standards available within the energy ecosystem. This diversity, while
enabling resilience and flexibility, presents several hurdles that must be addressed to
ensure a seamless interoperability among heterogeneous devices. As shown in Figure 2,
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the proposed infrastructure includes two types of communication device. aiming to support
interactions among all infrastructure devices over multiple communication protocols:

• Gateways: These receive data locally from the sensors and perform protocol translation
tasks, converting data from diverse protocols into a standardized format. Gateways
may also perform preliminary data processing tasks, such as filtering, normalization,
and data cleaning, to enhance the quality and integrity of the collected data. This
processing helps mitigate noise and reduce bandwidth consumption. They implement
authentication mechanisms and encryption protocols and access control policies to
enforce security measures and data protection.

• Controllers: These handle communication tasks between actuator devices and other
network components, such as gateways. They receive the control actions from the gate-
ways, forward messages to the actuators connected to the physical assets, and man-
age task assignment to facilitate reliable and efficient communication within the
energy network.

In order to respect the strict requirements of energy systems in terms of costs, efficiency
of sensing and information-gathering operations, and reduction of transmission delays for
critical data packets, the proposed platform exploits a communication architecture based on
the Message Queuing Telemetry Transport (MQTT) protocol [40]. MQTT (https://mqtt.org,
accessed on 8 September 2024) is an application protocol based on the publish/subscribe
paradigm, where client nodes communicate through a broker node that distributes mes-
sages over the network. Client nodes, also called “publishers”, can send messages related
to specific “topics”, which will be received by “subscriber” peers waiting for data related
to the same target topic. Gateways can also interact with on-premises or cloud-based ser-
vices exposing REpresentational State Transfer (REST) Application Programming Interfaces
(APIs) [41]. REST APIs provide a uniform, flexible, and lightweight way to integrate appli-
cation functionalities and to connect components in microservices architectures through
simple Hypertext Transfer Protocol (HTTP) requests to perform standard operations like
reading, updating, and deleting data. Information can be delivered to a client in different
formats; however, JavaScript Object Notation (JSON) (https://www.json.org, accessed on
8 September 2024) has been selected as reference format in the proposed platform, as it is
one of the most common representation standards, being programming language-agnostic
and easily human- and machine-readable.

3.2. Data Management and Storage Techniques

Moving up the stack, collected data are filtered and aggregated by the Data Integra-
tion module. It is responsible for modeling information regarding the three lower layers
of the SGAM framework (Figure 1) and creating the unified view depicted in Figure 3.
The creation of logical data models introduces several advantages, including simplifying
the reasoning and discovery of new relationships existing within collected data, creating
uniformity in data documentation and system design, reducing errors during the devel-
opment of novel functionalities of the platform, and simplifying communication between
data engineers and business intelligence teams.

All of the entities reported in Table 1 are modeled as RDF [10] resources following
linked-data best practices [42] in order to make the proposed approach general-purpose
and support semantic-based data annotation and interpretation. In particular, the following
well-known vocabularies are used as upper ontologies modeling basic concepts and proper-
ties concerning energy infrastructures, network communication, and metering procedures:

• Digital Twins Definition Language (DTDL) ontologies for energy grid (https://github.
com/Azure/opendigitaltwins-energygrid, accessed on 8 September 2024) and smart
cities (https://github.com/Azure/opendigitaltwins-smartcities, accessed on 8 Septem-
ber 2024), specifically proposed for modeling DT solutions, including the monitoring
of grid and urban assets (concepts in blue in Figure 3);

https://mqtt.org
https://www.json.org
https://github.com/Azure/opendigitaltwins-energygrid
https://github.com/Azure/opendigitaltwins-energygrid
https://github.com/Azure/opendigitaltwins-smartcities
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• Smart Energy Aware Systems (SEAS) ontology (https://w3id.org/seas/, accessed on
8 September 2024) [43], designed as a set of simple core ontology patterns model-
ing multiple engineering-related concepts and properties of the energy ecosystem
(concepts in violet in Figure 3);

• Procedure Execution ontology (PEP) (https://w3id.org/pep/, accessed on 8 September
2024), including the properties used to describe procedures, outputs, and results
related to metering activities;

• DBpedia [44] resources (DBR) and GeoNames (GN) ontology (https://www.geonames.
org/ontology/, accessed on 8 September 2024) have been exploited to model elements
of the IT network and the relationships between asset locations (concepts in yellow in
Figure 3).

gn:locatedIn

gn:locatedIn

gn:locatedIndtdl:Location

rdf:type

dtdl:Substation

seas:hasSubSystem

edt:DWDM

edt:GridSegment

dbr:Antenna

seas:connectedThrough

dtdl:Device

seas:hasSubSystem

dbr:DataCenter

edt:ServerRoom

seas:connectedTo

seas:connectedTo

edt:fromDevice | edt:toDevice

dbr:Computer
Network

edt:Alarm
pep:hasOutput

dtdl:Line

seas:hasSubSystem

rdf:type

dbr:Rack

seas:hasSubSystem

gn:locatedInseas:hasSubSystem

dtdl:Pole
seas:hasSubSystem

pep:implements

seas:connectedTo

dtdl:Meter

dtdl:MeterReading
pep:hasResult

seas:ElectricityMeteringdbr:NetworkInterface
Controller

seas:connectedTo

rdf:type

DBpedia Resource (DBR) Digital Twins Definition Language (DTDL)

Smart Energy Aware Systems (SEAS)Energy Digital Twins (EDT)

Figure 3. Reference graph-based data model.

In Figure 3,the entities and relationships belonging to each ontology are denoted by
their respective RDF namespace prefix and are shown in a different color. In addition,
a custom EDT vocabulary has been defined to model domain entities (reported in grey in
Figure 3) and properties not included within the aforementioned ontologies.

The Asset Simulation layer is defined for abstracting and virtualizing cyber-physical
entities within the infrastructure. This abstraction enables efficient resource allocation and
management, ensuring that digital components are instantiated and maintained appropri-
ately throughout their lifecycle. It also facilitates the entanglement between physical and
virtual objects, fostering a symbiotic relationship that enhances the overall effectiveness of
the architecture. Finally, the Data Management module acts as system orchestrator, coordi-
nating interactions between various components and services. Additionally, it manages the
large amount of data generated and collected by field sensors, normalizes the information
received using standardized formats, and makes it available to other modules. A major
challenge in such a scenario is to ensure the interoperability of the data models adopted by
different device networks and data sources connected to the system.

https://w3id.org/seas/
https://w3id.org/pep/
https://www.geonames.org/ontology/
https://www.geonames.org/ontology/
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Table 1. Entities defined in the reference data model.

Entity Vocabulary Description

Device DTDL A device included within the energy infrastructure

Meter DTDL
Physical asset used for measuring energy consumption
and detecting events of interest

Electricity
Metering SEAS

Process of measuring and recording electrical energy
consumption

Meter
Reading DTDL

Amount of electricity consumption recorded through a
meter

Alarm EDT Specific event related to an issue identified by a device

Location DTDL Physical location of a device or energy asset

NIC DBR
Network Interface Controller (NIC) representing a
physical connection through which the device interacts
with external peripherals

Computer
Network

DBR Group of interconnected devices capable of
communicating with each other

Substation DTDL
Electrical station part of a generation, transmission, or
distribution system

Antenna DBR
Local secondary substation installed to support critical
scenarios requiring high data availability in the smart grid

DWDM EDT
Dense Wavelength Division Multiplexing (DWDM)
system supporting fiber-optic transmissions

Grid
Segment

EDT Section of a power or communication network

Line DTDL
A line composing a telecommunication or power
transmission infrastructure

Pole DTDL
A utility pole used to support overhead power lines or
other public utilities

DataCenter DBR
Centralized facility designed to store and process vast
amounts of data related to the energy grid

Server
Room

EDT Air-conditioned room devoted to the continuous
operation of computer servers in a datacenter

Rack DBR
Physical container designed to house servers, networking
devices, and other datacenter equipment

All data composing the reference knowledge base are managed through a reference
data lake. It acts as a centralized repository that allows for the storage of a vast vol-
ume of raw, structured, and unstructured data needed for analysis or processing. In this
way, sensor data can be managed along with further system information, including in-
frastructure specifications, business models, or bills of materials. Unlike traditional data
warehouses [45], a data lake also accepts data from various sources, formats, and types,
enabling organizations to ingest and store diverse datasets without prior transformation
or normalization. Data lakes leverage scalable storage solutions, such as cloud object
storage or distributed file systems, which offer cost-effective storage options compared to
traditional data management tools. Moreover, they facilitate data exploration and discovery
by providing tools and frameworks for ad hoc querying, analysis, and visualization of
available data. In the proposed architecture, the data lake can manage data originally stored
in both Relational Database Management Systems (RDBMSs) and NoSQL databases. In par-
ticular, graph databases are suggested for modeling and understanding the relationships
inherent in data, especially in dynamic contexts such as a smart cities or power grids. Data
are stored as knowledge graphs where distinct entities are connected through well-defined
relationships, allowing a structured and semantic-oriented view of the data. In the presence
of specific processes with strict time constraints, such as leaderboards or real-time data
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analytics, in-memory databases are also exploited for caching data to reduce the number of
disk accesses and minimize latency.

3.3. Data Processing and Analytics

Information provided through the module is exploited by the Data Analysis layer. It
provides descriptive, predictive, and prescriptive analytics [46] capabilities aimed at mod-
eling and understanding the state and operational behaviors of energy systems, ref. [47]
starting from data collected by sensing devices and external resources. In the latter case,
the layer may interact with the Data Integration module to activate data crawling ca-
pabilities in order to extend the knowledge base with additional information obtained
from cloud-based services. By means of data mining and machine-learning algorithms,
the system aims to identify actionable insights and extract useful knowledge from the
vast volumes of data generated by the connected infrastructures. As highlighted in [48],
potential applications include the following:

• Fault detection and diagnosis: identify possible malfunctions of the energy grid and
monitor the health and performance of grid assets such as transformers, generators,
or substations;

• Preventive maintenance: based on grid equipment structural and behavioral models,
analyze status data series and predict when maintenance should be performed to
prevent failures and minimize downtime;

• Load forecasting and balancing: predict future electricity demand based on historical
data and balance the load across different parts of the grid to ensure stable operation
and prevent overloading or congestion;

• Demand response optimization: optimize demand response programs to manage
electricity consumption during peak periods or in response to pricing signals.

Depending on the timing of the response and the amount of data to be processed,
the framework enables two main types of processing task:

• Batch processing for large volumes of data and group of transactions. Usually, data
is collected, inserted, and processed to produce results automatically. Tasks are
scheduled over even medium to long periods of time;

• Real-time processing for tasks requiring a rapid response and performed by simple
systems managing rapid transactions. Mainly used in environments where many
events occur in a short time.

The Data Analysis layer enables the application of further techniques to simulate
real-world operational scenarios according to the following analytical approaches:

• What-if analysis [49]: one or more parameters of the reference scenario are expected to
be changed and, after the execution of multiple simulation sessions, results are stored
to allow comparisons and sensitivity analysis;

• Goal-seeking analysis [50]: a simulation objective is defined in terms of observable
variables or Key Performance Indicators (KPIs), and the system will provide support
in defining scenarios aimed to identify and evaluate suitable ways to obtain the
specific result.

3.4. Data Visualization and Digital Twins

At the top of the architecture, the Data Visualization layer operates as a business in-
telligence interface of the system, laying the groundwork for the seamless integration of
physical and digital environments, driving innovation and efficiency in the energy domain.
It uses data from the underlying layers to build different views and virtual representa-
tions, including digital models associated with the constituent elements of the energy
infrastructure (e.g., metering devices, power-grid nodes, small and autonomous system
environments monitored by a transmission/reception tower). The visualization modules
also enable a multi-channel interaction with DT functionalities, providing available high-
level information for the development of web and mobile applications. In this way, end
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users are capable of visualizing and enriching digital models through augmented or virtual
reality tools, exploiting crowdsourcing approaches and advanced visualization solutions
based on interactive human–computer interfaces.

The Data Visualization layer exposes a comprehensive set of digital solutions em-
powering organizations to harness the full potential of digital twins in several application
scenarios. Basically, the proposed architecture provides the following tools in order to
interact with and manipulate data:

• 3D models representing cyber-physical objects. Users can access, view, and modify
assets through their 3D virtual representations;

• Interactive dashboards and business intelligence applications used to monitor in real-time
the whole system and show the results of data processing, relevant KPIs, and warnings
received in the presence of dangerous conditions;

• NUIs that enable users to interact with the platform using intuitive movements and
gestures [51]. Natural User Interfaces are designed to enhance user experience by
reducing the learning curve and enabling a seamless human–machine integration.

As Figure 4 shows, NUIs represent an evolution of established user interface paradigms.
Command-Line Interfaces (CLIs) are abstract in nature, as actions are encoded in text com-
mands; this, however, grants them the advantage of easy programmability by means of
scripts. For this reason, they are more productive for batch systems rather than for real-time
human–machine interaction. In Graphical User Interfaces (GUIs), the adoption of visual
metaphors and symbols reduces the human–machine gap by making use of icons, menus,
and 2D/3D representations of the real world. Interactive applications benefit from GUIs
to increase user productivity. NUIs push interactivity even further by enabling direct and
multimodal input possibly, including hand and body gestures, speech, eye tracking, and
more. They adopt patterns that humans use daily to interact with each other, such as con-
versational language, touch, and gestures. This makes interaction more intuitive, enabling
users to focus on their goals and reducing the cognitive burden of content manipulation and
information processing via artificial systems. For this reason, this paradigm is particularly
fit for complex platforms such as DTs.

Command
Line Interface
•Abstract
•Codified
•Programmable

Graphical User 
Interface
• Indirect
•Use of metaphors
•Exploratory

Natural User 
Interface
•Direct
• Intuitive
•Multimodal

Figure 4. User Interface paradigms.

The proposed DT platform provides specific functionalities leveraging generative
AI methods to support problem-solving and NUIs for querying the KG. The framework
integrates an RAG module combining the strengths of LLMs with information retrieval
and search capabilities, enabling relevant information from vast datasets to be dynamically
fed into the model during the response generation process [52]. LLMs have demonstrated
remarkable proficiency in various tasks, but they often lack context specificity and struggle
with generating accurate responses in real-world scenarios. By incorporating external
knowledge, RAG equips LLMs with a better understanding of context, leading to more
informed, coherent, and accurate outputs for generating high-quality responses. Users are
also able to interact with the system to issue specific actuation commands that are executed
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on the physical twin, allowing direct control over physical assets based on real-time insights
derived from the digital twin.

Finally, the platform includes a data export functionality for generating datasets in the
RDF. Users navigate the reference data lake, query and filter available information, and
export different subsets of the data according to linked-data principles [42].

3.5. System Monitoring and Security

Ensuring the security and integrity of the system is paramount in power-grid scenarios
due to the critical nature of its operations [53]. System monitoring aims to detect and
respond to any anomalies or suspicious activities in real-time, whereas system security
involves protecting the power-grid infrastructure from cyber threats, physical attacks,
and unauthorized access. As shown in Figure 2, a vertical layer has been designed to
support both technical and governance activities, including:

• Access control: multi-factor authentication and role-based access control functionalities,
based on the OpenID Connect (OIDC) [54] protocol, are implemented to ensure
that only authorized personnel can access sensitive data and critical infrastructure
components such as substations, control systems, and datacenters;

• Continuous monitoring: a service orchestrator aggregates and analyzes network traffic
and log data collected from various grid components, enabling security teams to
identify performance issues, suspicious activities, or potential security breaches;

• Vulnerability management: regular vulnerability assessments and patch management
procedures are conducted to identify and remediate security issues in grid components
and software applications. This includes monitoring for security updates and patches
released by vendors and promptly applying them to mitigate potential risks;

• Incident response planning: defining strict procedures, roles, and responsibilities for
effectively managing and mitigating security incidents when they occur;

• Compliance and regulations: ensuring compliance with industry standards is essential
for maintaining the security and reliability of the power grid. Compliance require-
ments include conducting regular security audits, implementing security controls,
and reporting security incidents to regulatory authorities.

4. Case Study: Enhancing Grid Reliability Through Digital Twins

Following the reference architecture shown in Figure 2, a platform prototype has
been developed to prove the feasibility of the proposal and to evaluate its capabilities and
effectiveness. The platform is connected to several controllable sensing and actuation com-
ponents, with multiple continuous data streams feeding various distributed decision points,
either autonomously or under human supervision. The reference case study, described in
details in the following sections, refers to monitoring and managing a section of the energy
infrastructure in central Italy.

4.1. Prototype Implementation

As depicted in Figure 5, the prototype consists of a multi-layer microservice architec-
ture deployed using Kubernetes (https://kubernetes.io, accessed on 8 September 2024) as
the service orchestrator. It is an open-source container orchestration engine for automating
management and scaling of containerized applications. Containers offer process-level
isolation, ensuring that services run independently of each other. This isolation enhances
security and reliability by reducing the risk of software conflicts and minimizing the impact
of failures or vulnerabilities in one container on other services within the environment.
Moreover, containerized services enable one to scale the platform easily and dynamically,
based on processing demand. Containers can be spun up or down to handle fluctuations in
workload, ensuring optimal resource utilization and performance. The prototype supports
a hybrid deployment architecture, blending both on-premises and cloud components. This
approach allows organizations to tailor their customized setup according to specific needs,
such as regulatory requirements, data sensitivity, or workload demands.

https://kubernetes.io
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Figure 5. Prototype architecture.

Grid information is collected from several data sources, including IoT devices connected
to the sensor network, Geographic Information Systems (GISs), Building Information Modeling
(BIM) systems, and cloud-based platforms for asset management and monitoring. The EDT plat-
form integrates different connectors in order to retrieve data using two communication modes:
synchronous, accessing REST API-based services; asynchronous, through publish-subscribe sys-
tems or event streaming platforms (e.g., Apache Kafka (https://kafka.apache.org, accessed on
8 September 2024) or RabbitMQ (https://www.rabbitmq.com, accessed on 8 September 2024)).
The platform also integrates Keycloak (https://www.keycloak.org, accessed on 8 September
2024), an open-source Identity and Access Management (IAM) framework providing user
authentication and federation, as well as fine-grained authorization functionalities.

Extract, Transform, and Load (ETL) procedures have been implemented through
custom scripts in the Python programming language and exploit Pandas (https://pandas.
pydata.org, accessed on 8 September 2024) and NumPy (https://numpy.org, accessed on
8 September 2024) libraries for data manipulation. They are used to pre-process raw data in
order to ensure that the information used for the subsequent analysis is accurate, complete,
and is in suitable formats. This involves detecting and handling missing values, outliers,
duplicate records, and other anomalies that could compromise the integrity of the dataset.
Polished data are then annotated according to the reference KG, described in Figure 3,
and stored in Neo4j (https://neo4j.com, accessed on 8 September 2024), a graph database
management system. It is designed for efficiently managing and querying graph-structured
data characterized by different relationships between entities. Neo4j enables a natural
modeling of interconnected data and supports powerful queries based on a fast traversal
of relationships and complex graph patterns. Both nodes and relationships are associated
with data properties, enabling a flexible schema that accommodates diverse data structures
and also provide a rich and clear data visualization. Additional metadata are stored using
PostgreSQL (https://www.postgresql.org, accessed on 8 September 2024), an open-source
RDBMS widely adopted for its robustness, extensibility, and adherence to SQL standards.
In the proposed scenario, useful metadata include contextual information about energy
assets (e.g., location, links to external documentation or data sources) and custom attributes
related to specific system requirements or applications (e.g., unique identifiers, project
codes, user-defined tags).

Analytics procedures have been implemented using scikit-learn (https://scikit-learn.org,
accessed on 8 September 2024), a popular open-source ML library. It provides a simple and
efficient toolkit for data analysis, covering a wide range of activities, including classification,
regression, and clustering. It also supports parallel and distributed computing, allowing
users to leverage multi-core processors and distributed computing frameworks for accel-

https://kafka.apache.org
https://www.rabbitmq.com
https://www.keycloak.org
https://pandas.pydata.org
https://pandas.pydata.org
https://numpy.org
https://neo4j.com
https://www.postgresql.org
https://scikit-learn.org
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erated model training and evaluation. Information obtained as a result of the processing
procedures are used to further enhance the KG. As described in Section 3.3, the visualization
layer encompasses all services that enhance the user experience by facilitating navigation
and interaction with represented elements. In particular, a web application has been devel-
oped using React (https://react.dev, accessed on 8 September 2024), an open-source library
for building interactive web-based User Interfaces (UIs) in the JavaScript programming
language. It provides a component-based architecture, which allows developers to reuse
components across different parts of an application. This modular approach makes it
easier to build complex user interfaces by breaking them down into smaller components.
The re-usability of components not only saves development time but also improves the
maintainability of the codebase. Each component can be easily updated or modified with-
out affecting other parts of the application. React Native (https://reactnative.dev, accessed
on 8 September 2024) has been adopted to develop a cross-platform mobile application for
iOS and Android platforms. It integrates a subset of React components, implemented for
the web application, reducing the overall development cost compared to building separate
native apps for each platform.

Finally, the proposed architecture integrates a conversational virtual assistant based
on a foundation Large Language Model. It leverages retrieval-augmented generative AI
functionalities to support problem-solving and advanced search activities, providing de-
tailed and contextually accurate responses starting from data stored within the KG. Two
distinct LLMs have been evaluated to implement the virtual assistant: GPT-4 [55] and
Llama 2 [56]. GPT-4 (https://openai.com/research/gpt-4, accessed on 8 September 2024)
is a Large Multimodal Model (LMM) developed by OpenAI, capable of processing both image
and text inputs and producing human-oriented outputs in natural language. Multiple mod-
els based on GPT-4 are available, each with different capabilities and price points. Llama 2
(https://llama.meta.com/llama2, accessed on 8 September 2024) proposes a collection of pre-
trained and fine-tuned LLMs developed by Meta, ranging in scale from 7 billion to 70 billion
parameters. It serves as a freely available alternative to closed models like GPT-4, enabling
the development of customized and privacy-oriented solutions. Both platforms offer useful
capabilities, including Natural Language Understanding (NLU), Text Generation (TG), Code
Generation (CG), Question Answering (QA), and Task Automation (TA), satisfying diverse
user needs and requirements. A comparative analysis between GPT-4 and Llama 2 is reported
in Table 2, highlighting the main features of each platform, usually assisting designers in
making informed decisions based on their specific expectations and preferences.

In the proposed implementation, privacy is an important concern. To address this,
both at-rest and in-transit data encryption are exploited, ensuring that all sensitive infor-
mation remains protected throughout the system’s operation. Importantly, no data are
uploaded to third-party services: even for ML, analytics, and visualization, all processing
is carried out locally. Analogously, although the framework is compatible with GPT-4,
an on-premises installation of Llama 2 has been preferred to enhance the privacy of the
solution. Therefore, Llama 2 has been used to develop the virtual assistant, fine-tuned
to meet the specific needs and requirements of energy grid scenarios. By utilizing an
on-premises LLM backend, the virtual assistant operates by adopting a RAG approach, as
reported in Figure 6, integrating input data stored in the KG while ensuring data privacy
and minimizing reliance on external servers. Basically, the virtual assistant receives a user
query; without RAG, the pre-trained LLM could be directly used to respond to the question,
providing only basic information without knowledge of contextual data. On the contrary,
by integrating a RAG approach, the query is converted into an embedding vector in order
to retrieve relevant factual information available within the Neo4j database, e.g., detected
events, information about energy infrastructures, and metering data. Relevant resources,
obtained by comparing the query against the indexed documents, are used to expand the
context of the input query, providing additional information and perspectives. The frame-
work also supports different prompt templates applied to improve the outputs of LLMs
conversations. The augmented query is then passed to the LLM for response generation,

https://react.dev
https://reactnative.dev
https://openai.com/research/gpt-4
https://llama.meta.com/llama2
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which produces contextual outputs in natural language, leveraging domain-specific data.
Furthermore, the platform offers flexibility by enabling interaction with cloud-based LLMs
in accordance with specific privacy policies. This hybrid approach allows users to exploit
the benefits of cloud-based models, such as advanced conversational skills, enhanced
processing power, and access to a broader range of data, while still maintaining control
over system-sensitive information.

Table 2. Comparative table of adopted LLMs.

Feature GPT-4 Llama 2

License commercial Llama 2 community license

Input text and images text only

Model size ∼1.76 T parameters 7 B, 13 B, 70 B parameters

Model
customization

limited to selected
organizations

highly customizable through
RAG or fine-tuning procedures

Model
updates

updates not immediately
accessible to end users

periodic updates with
potential new features

Tokens per
prompt up to 8192 up to 2048

Integration with
other systems through RESTful API calls LLM backend required

Conversational
skills

immersive conversations
integrating multiple forms
of media

fluent and natural-sounding
responses for interactive
chat experiences

Privacy
concerns

data processed on external
servers, potentially subject to
data breaches or misuse

data processing occurs
on-premises, reducing exposure
to third-party entities

Query Response

Query Embedding

Embedding Pre-trained
LLM

Query + Prompt +
Context

Relevant Chunks

Neo4j DB

User

Input Data

Machine Learning
Algorithms

Detected Events

RAG-based LLM

Virtual Assistant

Figure 6. Retrieval augmented generation architecture.

4.2. Key Functionality Indicators

In order to thoroughly assess the improvements introduced by the proposed method-
ologies, the case study also serves as a benchmark to analyze how the integration of DTs,
data-driven methods, LLM-based decision support, and RDF-based KGs enhances key
operational aspects by comparing the proposed functionalities to baseline approaches used
in the reference scenario. Specifically, the proposed approach has been analyzed with
respect to several evaluation dimensions derived from the research aims in Section 1:
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• (RA1) Enhancing grid management through DTs and data-driven approaches:

a. real-time data integration to provide updates and assessments about the grid in-
frastructure and to represent the asset status in a intuitive and easily
interpretable format;

b. DT replication of real-world infrastructure in terms of asset behaviors and
system processes;

c. failure and anomaly prevention to detect irregularities within the grid infrastruc-
ture that could lead to performance issues;

d. creation of a virtual representation of physical grid components that mirrors
real-time operational data and enables remote control functionalities.

• (RA2) Leveraging LLMs for decision support:

a. exploitation of pre-trained models on domain-specific tasks requiring specialized
language, terminology, and concepts of the energy sector;

b. understanding and generating textual content related to energy infrastructures
for responding to complex, multi-faceted queries related to grid management;

c. provide comprehensible explanations related to the generated content and in-
sights, increasing operator trust and understanding of its outputs;

d. LLM integration into existing operational workflows and automation systems
within the energy infrastructure, in order to interact with other data management
tools and platforms.

• (RA3) Integrating RAG approaches with knowledge graphs:

a. reference data model for annotating data in the knowledge graph, ensuring it
accurately represents real-world relationships and supports relevant queries;

b. integration of data from various sources (e.g., IoT sensors, databases, log files)
into the KG, expanding the scope of the RAG framework;

c. provide contextually relevant and domain-specific results, improving the accuracy
of generated responses and reducing errors.

4.3. Case Study Analysis

This section describes how the proposed implementation has been adopted to enhance
operations in the reference case study. The platform manages a wide section of the central
Italy electric power distribution network, consisting of about 75,000 km of energy lines and
900 substations. It includes the distribution network of the municipality of Rome, composed
of 70 primary cabins and more than 30,000 km of lines. In detail, the EDT platform serves
as a comprehensive tool for managing and optimizing the grid infrastructure, exploiting
predictive maintenance techniques leveraging data collected from smart meters.

Requirements of the case study can be summarized as: “Metering devices are deployed
in the energy grid to monitor consumption in real-time. By analyzing the data generated
by these meters, platform users are able to proactively identify potential equipment failures
or performance degradation. Actionable alerts and recommendations will be forwarded
to maintenance workers through the mobile application, providing useful information and
guiding them to address identified issues effectively”.

A reference workflow is described in what follows, and each task or functionality is
mapped to the specific research statements outlined in Section 4.2:

• System administrators access the web platform and display the whole energy grid,
composed of power plants, substations, lines and poles, as depicted in Figure 7.
For each power station, geographic coordinates are extracted from OpenStreetMap
(OSM) [57] and queried via the Overpass API (https://wiki.openstreetmap.org/wiki/
Overpass_API) (RA1.a). All data related to the grid infrastructure are stored in the
reference KG (RA3.a, RA3.b).

• In the presence of warnings detected through ML algorithms, a red icon is shown on
the map to highlight potential anomalies on the specific node (RA1.c).

https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API


Smart Cities 2024, 7 3112

• Each item can be selected in order to display detailed information and relevant proper-
ties, as well as alarm messages associated with the devices, hosted by a plant or asset.
A list of available actions enabled on the platform is also shown, enabling the user
to remotely interact with network-connected actuators. These actions provide direct
remote control over the physical devices in the system, enabling tasks such as resetting
equipment, adjusting set points, or initiating maintenance procedures (RA1.a, RA1.d).

• The system also integrates 2D models (Figure 8a), presenting selectable zones allowing
users to open further representations of the same asset (RA1.b).

• Users interact with 3D models (Figure 8b) through a gesture-based NUI to perform ac-
tions like rotating the model, zooming in/out on specific components, or highlighting
potential maintenance areas. Models respond dynamically, providing a realistic and
immersive experience for exploring data regarding equipment conditions, structural
components, and spatial relationships (RA1.b).

• The green button placed in the bottom right corner of the user interface opens a
virtual assistant box (Figure 7). By means of simple requests in natural language (e.g.,
”Show me detailed information about recent alarms at plant X”), administrators receive
useful information about monitored devices and detected events, including alarm
type, reference timestamp, affected components, and suggested actions for resolution
(RA2.a, RA2.b).

• After reviewing the alarm information, in case of a critical issue requiring immediate
or preventive maintenance, system administrators notify technicians. A warning
message is automatically composed, indicating the nature of the issue and the urgency
for maintenance action, and sent to the maintenance operators responsible for the
plant (RA2.c, RA2.d).

• Operators receive the notification through the mobile app and are shown informa-
tion about device location (Figure 9a) and maintenance actions (Figure 9b), thereby
minimizing maintenance time and ensuring the plant’s operational efficiency (RA1.a).

• Once the maintenance task is successfully completed, operators close the issue and pro-
vide notes or additional insights gained during the process. The platform receives the
confirmation, updates the maintenance record in real-time, and notifies administrators
or maintenance coordinators (RA1.a, RA2.d).

• Information collected from maintenance completions are annotated to enrich the
RDF-based KG (RA3.a) with valuable insights and contextual data useful for future
analysis (RA1.c). Data are analyzed periodically to identify recurring issues, im-
prove maintenance procedures, and optimize responses provided by the RAG-based
solutions (RA3.c).

Figure 7. Digital representation of the energy grid.
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(a) 2D model (b) 3D model
Figure 8. Digital-twin assets of the energy plant.

(a) Map of the energy grid (b) Details about an alert message
Figure 9. Screenshots of the mobile application.
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5. Discussions

This section assesses the proposal within the context of the state-of-the-art by means of a
comparison with relevant related work and a discussion of open challenges and opportunities.

5.1. Platform Evaluation

Table 3 provides a comparative analysis of Digital-Twin (DT) frameworks across the
research works described in Section 2.2 and this paper. It is structured to evaluate the
support for a broad spectrum of features, categorized into four main areas:

• Infrastructure assesses how each DT framework leverages computational resources
and manages physical components within the infrastructure.

• Data Intelligence examines the platform capabilities in terms of data analysis to extract
knowledge from data generated within the framework.

• Cybersecurity assesses the capabilities of each framework for monitoring and protecting
against threats, to ensure data integrity and confidentiality within the DT environments.

• Visualization details the human–machine interface solutions of each proposal, includ-
ing support for interactive GUIs, GIS maps, 3D models, and NUIs.

The table employs a symbolic notation to indicate the level of support each referenced
framework provides for the listed features: a check mark (✓) represents full support, a cross
mark (✗) denotes lack of support, and a star (✶) indicates partial support or instances where
future updates are planned.

Table 3. Comparative analysis of DT frameworks (✓: supported, ✗: not supported, ✶: partial support).

EDT Platforms [27] [28] [29] [30] [31] [33] [34] This Work
Infrastructure
Cloud Infrastructure ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Edge Computing ✗ ✓ ✓ ✗ ✶ ✗ ✓ ✓

IoT Sensor Networks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data Lake ✶ ✶ ✓ ✓ ✓ ✶ ✶ ✓

Physical Asset Control ✓ ✶ ✶ ✶ ✓ ✶ ✓ ✶

Intelligence
Real-time Data Processing ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Data Analytics and ML ✓ ✓ ✓ ✶ ✓ ✓ ✓ ✓

Asset Simulation ✶ ✓ ✓ ✓ ✓ ✗ ✓ ✶

Scenario Forecasting ✶ ✶ ✓ ✓ ✓ ✓ ✓ ✶

Knowledge Graphs ✗ ✗ ✗ ✗ ✶ ✗ ✗ ✓

LLM RAG ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Cybersecurity
System Auditing ✶ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Access Control ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Visualization
Interactive GUI ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

GIS Maps ✶ ✗ ✗ ✶ ✶ ✓ ✶ ✓

3D Models ✗ ✗ ✗ ✗ ✶ ✓ ✶ ✓

Natural User Interface ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

It can be noted that all the frameworks found to compare with the one described in this
paper lack support for RAG capabilities based on KG and LLM integration, which enable
one to expose EDT asset manipulation and knowledge-enhanced analytics capabilities
through conversational NUIs. Furthermore, the majority of the proposed platforms lack
focus on cybersecurity features, which are essential when managing critical infrastructures
for human society, like energy grids.

The D-Arc [27] framework demonstrates support for many key features for an EDT
framework, in particular for cloud infrastructure, IoT sensor networks, real-time data
processing, data analytics, machine learning, asset simulation, scenario forecasting, access
control, and interactive GUIs. It offers partial support for edge computing and system
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auditing, alluding to some capabilities in these areas, albeit not explicitly detailed. How-
ever, the framework does not explicitly support physical asset control, knowledge-based
capabilities via KG or LLM integration, GIS maps, and natural user interfaces, highlighting
potential areas for future development. C3-Flow [28] prioritizes mathematical system
modeling and computational distribution of the EDT models. Given this focus, certain
features required for production-grade EDT platforms are not explicitly covered. Cyberse-
curity, data storage architecture, and GUIs are not explicitly detailed. Physical asset control
appears to be possible, even if not explicitly performed in [28]. The framework designed
in [29] for ECPSs leverages Amazon Web Services (AWSs) to outline a secure and integrated
cloud-edge architecture. This infrastructure covers cybersecurity requirements by means of
encrypted and authenticated data exchanges. Advanced characteristics like KGs, LLMs,
and interactive GUIs are out of the scope of the performed experimentation, which focuses
on essential operational functionalities and system optimization rather than comprehensive
feature integration. The proposal in [30] primarily emphasizes the integration of EDT
technology and IoT sensor networks, such as Phasor Measurement Units (PMUs) and
Intelligent Electronic Devices (IEDs), to enhance real-time data processing, asset simulation,
and scenario forecasting within power system control centers. Although the work high-
lights the GUIs for human intervention and suggests a degree of physical asset actuation
through intelligent substations and control mechanisms, it lacks explicit discussion on data
mining or RAG methods, security mechanisms, or geospatial components incorporating 3D
models into maps. The DT for the power industry in [31] is one of the most feature-complete
proposals, emphasizing aspects such as smart sensors, 5G communications, and big-data
analytics. Moreover, the work briefly mentions KG integration in the infrastructure. GIS
maps and 3D models are used in laser scanning technology for underground pipe network
visualization. Nevertheless, the work does not describe any cybersecurity-related aspects.
The EDT in [34] highlights how to improve predictive maintenance and fault detection in
power distribution. The platform exploits cloud, edge, and IoT infrastructures for data
collection and management and includes ML-based predictive maintenance and physical
control. Although the work suggests the use of interactive interfaces and mentions GIS
maps and 3D models, these aspects are not fully developed in the proposal.

As highlighted in Table 3, the proposed approach presents a feature-complete DT
architecture for the energy infrastructure domain. The framework leverages the distribution
of computational resources across the cloud-to-edge continuum, as explained in Section 3.1,
and it is able to control geographically-distributed sensor networks. The data lake enables
scalable storage and efficient management of both structured and unstructured data for
advanced analytics and processing (Section 3.3), while physical asset control allows for real-
time interaction with and management of network-connected devices, supporting remote
actuation and monitoring (Section 3.4). The framework also integrates essential functions
such as real-time data processing, analytics, and machine learning to optimize energy
infrastructure management, as explained in Section 3.3. These capabilities are enhanced
with innovative features like RAG, which exploits ontologies and KGs to contextualize and
enrich the outputs of a foundation LLMs, enabling more accurate and relevant responses for
decision support, as described in Section 3.4. The prototype integrates robust cybersecurity
measures, including multi-factor authentication, role-based access control, and continuous
system monitoring to detect and respond to anomalies in real time, as outlined in Section 3.5.
Finally, data visualization and the GUI are central to the platform, offering support for GIS
maps, 3D models, and a NUI. Powered by LLMs, the platform enables chat-like interactions
for intuitive system control and information retrieval, as demonstrated in the prototype
outlined in Section 4.3.

5.2. Challenges and Opportunities

The integration of ICT technologies and digital twins in energy management scenarios
introduces a spectrum of challenges and opportunities, ranging from technical to human
aspects [58]. Based on the experiences that emerged during the design of the framework and
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the development of the proposed case study, the key factors mostly influencing digital-twin
implementation and adoption in energy systems are discussed in what follows.

Integration with legacy systems: existing energy infrastructures frequently include
Supervisory Control and Data Acquisition (SCADA) systems for monitoring and control-
ling industrial processes in real-time. These devices often use proprietary protocols and
technologies that may not easily interface with modern applications. The development
of standardized communication protocols and middleware solutions, such as the Open
Platform Communications Unified Architecture (OPC-UA) [59], aims to enable a seamless
integration with digital twins. However, legacy systems generate vast amounts of data
with different rates, formats, and structures. Integrating diverse data sources can be com-
plex and time-consuming, as it requires data mapping, normalization, and transformation
processes to ensure data consistency and accuracy. Processing inaccurate data can have
deep implications for the accuracy and effectiveness of predictive models and analytics.
When noisy data is fed into ML models, the output becomes unreliable, leading to flawed
conclusions and eroding trust in data-driven, decision-making processes.

In addition, many legacy systems are built on outdated hardware and software plat-
forms, introducing several security risks, such as unauthorized access, data breaches,
and cyberattacks. In the presence of discontinued or unmaintained software, systems
are no longer protected against emerging threats. Hackers actively target unmaintained
software as they know that any discovered vulnerabilities will remain unpatched, pro-
viding them with opportunities to exploit weaknesses and compromise systems. Legacy
systems also use outdated authentication mechanisms and access controls that lack modern
security features such as strong encryption keys and protocols, multi-factor authentication,
and role-based access control, leaving sensitive data vulnerable to interception. Ensuring
the security, privacy, and integrity of data collected and transmitted by legacy systems is
essential to protect critical assets and business information. Along with the adoption of
novel technologies, migration toward defense-in-depth strategies [60] and zero-trust architec-
tures [61] offers compelling opportunities for addressing existing issues and improving the
resilience of current energy systems.

Human factors in digital-twin implementation: the successful implementation of DT
technology in energy management scenarios relies not only on technical aspects but also
on a deep understanding and integration of human factors encompassing the cognitive,
social, and organizational elements that influence how individuals interact with technology
and make decisions [62]. Understanding how emerging approaches can be integrated
with human activities is a prerequisite to unlock the full potential of DTs. As observed
in [63], digital twins are not only expert-centric tools. They can play an active role in
decision-making, task completion, and adaptation to evolving conditions, significantly
reshaping the responsibilities of human operators. In this evolving landscape, end-users
are anticipated to collaborate closely with DT applications, overseeing their performance
and results in specific tasks. In particular, considering the following human factors in the
context of energy infrastructures is crucial for ensuring user acceptance, effective utilization,
and overall success:

• The design of the UI plays an important role in facilitating user interaction with the DT
platform in order to create intuitive and user-friendly interfaces, providing relevant
information, insights, and predictions. UIs should show information in a way that
aligns with the users’ cognitive processes, facilitating quicker and more accurate
decision-making in response to dynamic energy scenarios. Tailoring the interface to
the specific needs and expertise of energy management professionals ensures efficient
use and minimizes the learning curve associated with adopting new technologies [64]

• Increasing trust in EDT systems is paramount for their successful adoption. Human
operators must have confidence in the accuracy and reliability of the DT’s representa-
tions. Research must increase focus on developing validation mechanisms, transparent
communication of uncertainties, and incorporating user feedback to make these com-
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plex models more understandable to (non-expert) users and enhance trust in the
system [65].

• The complexity of EDT platforms often requires comprehensive training and education
programs for end-users. Energy management operators and decision-makers need
to be familiar with the capabilities and functionalities of the DT. Ongoing training
programs help users harness the full potential of the technology, make informed
decisions, and troubleshoot issues effectively [66].

• As DTs collect and process large amounts of data, cybersecurity considerations become
crucial, aiming to ensure responsible data use, privacy protection, and compliance
with relevant regulations. In particular, EDTs must be treated as critical systems in
which security issues need to be considered in terms of confidentiality, integrity, and
availability of both data and resources, along with privacy issues with respect to
entities as well as location and status of assets [67].

6. Conclusions

This paper has introduced a novel data-driven and knowledge-based energy digital-twin
framework, integrating (i) data stream gathering from sensing devices; (ii) data stream mining
and machine learning for predictive maintenance and analytics; (iii) an ontology-based knowl-
edge graph combining annotated data, background domain knowledge, and ML outcomes;
(iv) retrieval-augmented generation exploiting the KG to enrich a foundation large language
model, leveraged to provide a conversational virtual agent for assisting users in making
decisions on energy infrastructure performance and maintenance management; (v) a natural
user interface combining conversational interaction with geospatial information presentation
based on 3D models of infrastructure assets in a geographic information system. All these
functions are supported by a cohesive scalable cloud-edge microservice architecture, charac-
terized by functional layers and by cross-layers dedicated to device support, data integration,
and cybersecurity. A prototype of the proposed framework has been developed, leveraging
commercial-off-the-shelf components for a case study regarding the management of a section
of the energy distribution infrastructure in central Italy. Currently, the platform only supports
Italian as the reference language. The system is mainly conceived for Italian companies of
the energy sector, and several documents and regulations referenced in the platform are only
available in Italian. Using the local language facilitated easier text interpretation, also enhanc-
ing clarity and understanding of the platform functionalities. However, as part of future work,
multi-language support is being considered and will be developed as an ongoing activity. This
will enable the platform to accommodate users from diverse linguistic backgrounds, further
expanding its accessibility and usability.

Moreover, future work regards expanding the prototype into a complete implemen-
tation of the proposed framework and using it in pilot trials in production environments
in order to gather feedback, enabling the assessment of critical aspects of DT implemen-
tation, including the following: (i) performance and scalability; (ii) ease of integration
with a broad range of legacy systems; (iii) user interaction effectiveness; (iv) acceptability
and trust of the system from end users. Further investigation will concern improving and
expanding ML methods and applications, with a focus on eXplainable Artificial Intelligence
(XAI) approaches to further increase system trust, semantic representation refinement for
improving RAG effectiveness for the conversational virtual assistant, and enhancing asset
control and scenario simulation use cases within the framework.
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