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Highlights:

What are the main findings?

• Provides insights on fast, lightweight authentication and highlights how blockchain enhances
security, privacy, and efficiency in IoV for DWC systems.

What is the implication of the main finding?

• Provides insights into driver identification for EV safety and comfort, and analyzes the economic
viability of DWC for the EV ecosystem.

Abstract: The rapid advancement and adoption of electric vehicles (EVs) necessitate innovative
solutions to address integration challenges in modern charging infrastructure. Dynamic wireless
charging (DWC) is an innovative solution for powering electric vehicles (EVs) using multiple mag-
netic transmitters installed beneath the road and a receiver located on the underside of the EV.
Dynamic charging offers a solution to the issue of range anxiety by allowing EVs to charge while
in motion, thereby reducing the need for frequent stops. This manuscript reviews several pivotal
areas critical to the future of EV DWC technology such as authentication techniques, blockchain
applications, driver identification systems, economic aspects, and emerging communication technolo-
gies. Ensuring secure access to this charging infrastructure requires fast, lightweight authentication
systems. Similarly, blockchain technology plays a critical role in enhancing the Internet of Vehicles
(IoV) architecture by decentralizing and securing vehicular networks, thus improving privacy, secu-
rity, and efficiency. Driver identification systems, crucial for EV safety and comfort, are analyzed.
Additionally, the economic feasibility and impact of DWC are evaluated, providing essential insights
into its potential effects on the EV ecosystem. The paper also emphasizes the need for quick and
lightweight authentication systems to ensure secure access to DWC infrastructure and discusses how
blockchain technology enhances the efficiency, security, and privacy of IoV networks. The importance
of driver identification systems for comfort and safety is evaluated, and an economic study confirms
the viability and potential benefits of DWC for the EV ecosystem.

Keywords: dynamic wireless charging; electric vehicle; authentication; blockchain; Internet of
Vehicles (IoV); driver identification

1. Introduction

DWC represents a revolutionary approach to EV charging, enabling vehicles to charge
on the go via power transmitters embedded in roadways [1]. This technology promises to
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alleviate range anxiety—a common concern among EV users—by reducing the need for
frequent stops to recharge. However, the authentication of an EV has been playing a crucial
role in finding an appropriate user to charge their EV. Hence, authentication algorithms that
are accurate but also efficient and fair are necessary for billing schemes to establish effective
EV charging [2]. Moreover, fair billing improves EV owner’s coordination in addition
to enhancing their contribution to further development of DWC systems. However, the
establishment of effective authentication for dynamic EV charging is not an easy task and
requires multiple modules to coordinate and function [3]. In addition, when an EV comes
in contact with the identity equipment, there have to be low latency communications with
the help of rapid authentication protocols to guarantee that only a valid user is allowed,
thereby directing the gateway to be opened. In [4], the authors mainly emphasize the
billing and authentication aspects among EVs traveling over DWC lanes. In this approach,
the authentication and registration with the DWC infrastructure are taken care of by the
CSC. This scheme makes use of symmetric and asymmetric encryption; pseudonyms, i.e.,
fake names; and lightweight hashing in EV authentication with the charging segments [5,6].
The integration of vehicle networks into the Internet of Vehicles (IoVs) marks a significant
advancement in enhancing performance and overcoming the limitations of intelligent
transportation systems (ITS) [7]. The IoV employs two primary communication modes:
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications. These modes
utilize control solution communications and on-board units (OBUs) to gather data, enabling
real-time actions by vehicles and traffic controllers [8].

Traditional IoV architecture relies on V2V and V2I communications, but its applica-
tions remain underdeveloped and fraught with challenges [9]. Blockchain technology, a
popular distributed ledger, offers a promising solution to these issues within IoVs [10]. By
providing low-cost credit facilities for fundamental information management, blockchain
enhances the IoV environment by ensuring transparency, immutability, and privacy. For
example, blockchain can store comprehensive lifecycle information for vehicles, including
certificates and insurance data [11]. Its incentive mechanisms can foster vehicle coopera-
tion, and smart contract technology ensures secure and efficient execution processes. The
IoV, a rapidly growing field, refers to a network of interconnected vehicles that communi-
cate with each other and external systems to exchange data and offer services to drivers
and passengers [12]. With the increasing complexity of IoV systems, the need for secure
and efficient data exchange and storage solutions becomes more pressing. Blockchain
technology, as a decentralized and distributed database, provides secure and transpar-
ent data storage and transactions, maintaining data integrity and offering tamper-proof
records [13]. Recent research has extensively explored blockchain applications in IoV sys-
tems, revealing key benefits. One major advantage is secure and reliable data exchange,
crucial for safety-critical applications like autonomous driving where data accuracy and
integrity are paramount [14]. Several blockchain-based solutions have been proposed,
such as using smart contracts to manage and enforce data access and sharing policies and
employing permissioned nodes to ensure secure and efficient data exchange. Blockchain
technology also enhances IoV systems by facilitating secure and transparent payment
systems [15]. Traditional payment systems involve intermediaries like banks and payment
processors, which increase costs and cause delays. Blockchain-based payment systems can
eliminate intermediaries, enabling faster and more efficient transactions. For instance, a
proposed blockchain-based payment system for EV charging allows users to pay directly at
charging stations using cryptocurrency [16]. Additionally, blockchain can provide secure
and transparent records of vehicle ownership and maintenance history, reducing fraud
and improving the efficiency of registration and maintenance processes. For example,
a blockchain-based vehicle registration system using smart contracts can automate the
process and ensure secure record-keeping [17]. Overall, blockchain technology has the
potential to significantly enhance the security, efficiency, and transparency of IoV systems.
However, challenges such as scalability, interoperability, and regulatory issues remain.
Further research is needed to develop and test blockchain-based solutions to address these
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challenges and ensure secure and efficient IoV systems [18]. As electric vehicles gain
prominence in urban transportation due to their rapid acceleration, strong power, energy
efficiency, and reduced emissions, these advancements become increasingly vital [19].

Given the crucial role of drivers in the safety of urban public transit, driving safety is
a top research priority in the field of DWC of EV technology [19]. A fundamental aspect
of designing an intelligent cockpit is driver identification. By accurately recognizing the
driver, the system can tailor the driving experience to enhance safety and comfort. Driver
identification techniques have numerous applications, including advanced driver assistance
systems, fleet management, driver profiling, vehicle anti-theft, auto insurance services, and
ride-hailing platforms [20]. For instance, these techniques can call personalized program
parameters for individualized driving support and reduce vehicle misuse and theft by
comparing the driver’s information with authorization data. They can also automatically
adjust seat alignment and air temperature based on the driver’s preferences. In ride-hailing
services, driver identification can improve service quality, especially with shared vehi-
cles [21]. In the context of intelligently networked vehicles and traffic control systems,
driver identification has significant market potential and research relevance, becoming a
hot topic in recent years [22]. Research in engineering management and intelligent trans-
portation has yielded significant advances in driver identification. The main objectives are
to quickly and accurately determine driver identity and to create personalized operations
for enhanced driving and traffic safety. Researchers have developed driver recognition
methods with varying levels of granularity based on specific requirements [23]. The core
workflow of driver identification involves four steps: data collection, data processing,
driver identification, and result application. The process begins with collecting a variety of
driving-related data, such as driving behavior, vehicle movement, and road conditions [24].
This data must be preprocessed—through extraction, segmentation, or normalization—to
ensure high quality and proper arrangement. Concurrently, data features should be de-
signed and selected. The third stage involves identifying the driver. Various techniques are
used to fuse the collected data and create a model linking data characteristics to drivers,
which is then used for identification [25]. Finally, the outcomes of driver identification are
applied in engineering applications like personalized driving assistance and auto insurance.
Early research employed techniques such as hidden Markov models (HMM) [26], Gaussian
mixture models (GMM) [27], random forest (RF) [28], support vector machines (SVM) [29],
linear discriminant analysis (LDA) [30], artificial neural networks (ANN) [31], K-nearest
neighbors (KNN) [32], and extremely randomized trees (ET) [33].

Several studies have analyzed the economic implications of dynamic charging. A
study by the IEA in 2020 found that dynamic charging could reduce the need for a public
charging infrastructure, thereby reducing costs for governments and taxpayers [34,35].
The study also found that dynamic charging could improve the utilization of the charg-
ing infrastructure, leading to a more efficient charging network. Another study by the
NREL in 2019 analyzed the economic viability of dynamic charging for electric buses [36].
The study found that dynamic charging could reduce battery size and cost, leading to
significant savings for fleet operators. The study also found that dynamic charging could
enable the electrification of bus routes that were previously considered impractical due to
range limitations.

A 2021 study by the European Commission analyzed the cost-effectiveness of dynamic
charging compared to static charging for electric buses [37]. The study found that dynamic
charging could be more cost-effective in certain scenarios, particularly for high-capacity
buses that require larger batteries. Hence, the need for a DWC system is crucial for smart
cities applications with suitable authentication, blockchain technology for data communi-
cation, and driver identification approaches [38]. This paper provides a comprehensive
survey of the above-mentioned topics for the DWC of EV. Figure 1 shows the section-wise
structure of this review paper. The major contributions of this review paper are as follows:
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• The manuscript explores the integration of DWC technology for EV, particularly fo-
cusing on critical components like authentication techniques, blockchain applications,
driver identification systems, and communication technologies.

• The study emphasizes the importance of fast and lightweight authentication systems
for secure access to the DWC infrastructure, along with blockchain’s role in decentral-
izing and securing vehicular networks to improve privacy and efficiency within the
IoV architecture.

• The economic aspects of implementing DWC are thoroughly evaluated, offering
insights into its feasibility, cost implications, and potential impact on the broader EV
ecosystem.

• By providing a comprehensive analysis of current technologies and challenges, the
manuscript offers valuable guidance for advancing the DWC infrastructure and inte-
grating it into smart city applications.
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The remainder of this paper is organized as follows: Section 2 provides a description
of DWC construction and its economic analysis, and Section 3 presents different types of
authentication techniques used in the DWC system. Section 4 then outlines the related
works on blockchain and its applications in IoVs. The driver identification system and vari-
ous models are presented in Section 5. Standards and protocols and new communication
technologies for EVs are presented in Sections 6 and 7, which concludes the paper.

2. Dynamic Charging Technology

Dynamic charging refers to the method of wirelessly charging EVs while they are in
motion. This technology involves embedding wireless charging technology in the road,
allowing EVs to charge their batteries as they drive. Dynamic charging has the potential
to significantly minimize range anxiety for EV drivers, as they would no longer need to
stop and charge their vehicles at designated charging stations [39]. It could also reduce the
need for large battery sizes in EVs, as they could charge more frequently while on the road.
However, the implementation of dynamic charging technology would require significant
infrastructure investments, including the installation of wireless charging technology in
roadways and the upgrading of the electricity grid to handle the increased demand for
power [40]. Additionally, there are potential safety concerns related to the use of dynamic
charging technology, as well as the impact on traffic flow and the need for regulatory
and standardization frameworks. Overall, while dynamic charging has the potential to
revolutionize EV charging, there are significant technological, economic, and regulatory
challenges to be overcome before it is widely accepted.
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2.1. DWC System and Charging Demand Estimation of EVs

Estimating the charging demand of EVs using wireless charging technology would
involve analyzing factors such as the count of EVs on the lane, the driving patterns of EV
users, the charging capacity of the wireless charging infrastructure, and the availability and
accessibility of the charging infrastructure. One approach to estimating charging demand
is to use data from existing EVs and their charging behaviors [41]. These data can be used
to estimate the average distance driven per day, the average time spent driving, and the
average charging requirements of EVs. This information can then be used to estimate the
number of charging stations and the capacity of the wireless charging set-up needed to meet
the demand. Another approach is to use simulation models to estimate charging demand.
These models can take into account factors such as EV adoption rates, the availability of
the wireless charging infrastructure, and the impact of various policies and incentives on
EV charging behavior [42]. Overall, accurately estimating the charging demand of EVs
using wireless charging technology would require a comprehensive understanding of the
various factors that influence EV charging behavior and the development of appropriate
modelling tools and data sources to estimate charging demand. Elongated tracks (more
than 10 m) serve as transmitter pads in a DWPT framework in Figure 2a to charge EVs
while they are moving [43]. Another DWPT construction with numerous lumped pads
inserted in the pavement is shown in Figure 2b [44]. In order to combine the advantages
(and disadvantages) of the two previously mentioned layouts, elongated pads, which are
depicted in Figure 2c, are broader than combined pads but shorter compared to long rails.
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Figure 2. DWC system: (a) Elongated rails; (b) Lumped pads; (c) Elongated pads.

The DWC technique has successfully satisfies the needs of electric car charging times
and area while reducing the size of the vehicle rechargeable battery, extending the cruise
range, and using only existing road resources [45]. It should be mentioned that when
driving on non-charging roads, a specific quantity of battery is required for cars to maintain
a specific distance. The transmitting side and receiving side make up the majority of a
DWC for electric cars. Transmitting coils, compensation networks, and high-frequency
inverters are the major components of the transmitting side. The primary components of
the receiving side include battery packs, AC-DC rectifier filters, compensation networks,
and receiving coils. The transmitting coils in the dynamic charging system locate the
receiver coil and then turn on the transmitting coils next to it [46]. The transmission coils
are disabled if there are no cars to save electricity. Figure 3a shows the schematic view of
DWC, and Figure 3b illustrates the view of the expressway from the top.
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2.2. Structure of Dynamic Wireless Charging

The building cost of DWC is determined by several factors, such as the kind of
technology used, the magnitude of the charging infrastructure, and the location of the
charging system. One of the main components of a DWC system is the charging pads,
which are installed on the road or in designated charging areas [47]. The cost of the charging
pads will depend on the type of technology used, such as inductive or resonant charging,
and the size and capacity of the pads. Typically, larger and higher-capacity pads will be
more expensive than smaller and lower-capacity pads [48]. Another component of a DWC
system is the power electronics and control systems, which are used to manage the flow
of electricity between the charging pads and the vehicles. The cost of these systems will
depend on their complexity and capacity, as well as the level of automation and control
needed [49]. In addition to the charging pads and control systems, the construction cost of
DWC will also include the cost of installation, including excavation and trenching for the
charging infrastructure, as well as the cost of any necessary modifications to the road or
charging areas.
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The location of the charging system can also impact the construction cost. For example,
if the charging infrastructure is installed in a highly populated or urban area, there may be
additional costs associated with traffic management and permits. Overall, the construc-
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tion cost of dynamic wireless charging can vary widely depending on these and other
factors [50]. However, it is generally expected to be beyond the cost of a static charging
infrastructure because of the additional complexity and technology required.

2.3. Types of Economic Analysis of DWC System

There are several types of economic analysis that can be used to assess the viabil-
ity and benefits of dynamic charging technology. The following are some of the most
common types:

• Cost-Benefit Analysis (CBA)

This kind of economic analysis compares the costs and benefits of a project or invest-
ment to determine its overall economic viability [51]. In the context of dynamic charging, a
CBA would compare the costs of building and operating the infrastructure with the benefits
of reduced emissions and increased convenience for electric vehicle owners. The analysis
would need to consider both the direct costs, such as the cost of building and operating the
charging infrastructure, as well as the indirect costs, such as the opportunity cost of using
resources for this project instead of other projects.

• Life-Cycle Cost Analysis (LCCA)

LCCA is a type of economic analysis that considers all budgets related with a scheme
over its whole life cycle [51]. In the context of dynamic charging, an LCCA would con-
sider the expenses of building as well as operating the charging set-up, as well as the
cost of disposing of the equipment at the termination of its valuable life. This analysis
may allow decision-makers to compare the long-term costs of dynamic charging with
alternative solutions.

• Net Present Value (NPV) Analysis

This kind of economic study contrasts the present value of expected cash flows with
the current value of expected cash outflows using a reduced cash flow analysis [51]. An
NPV analysis would take into account the initial investment in developing the charge
stations, as well as the continuing operational expenses and income for charging electric
vehicles. The analysis would calculate the investment’s net present value while accounting
for the net present value.

• Return on Investment (ROI) Analysis

ROI is a type of economic study that compares the return on an investment with the
cost of the investment [51]. In the context of dynamic charging, an ROI analysis would
compare the revenue generated by the charging infrastructure with the initial investment in
building the infrastructure. The analysis would provide decision-makers with an estimate
of the financial return on the investment in dynamic charging technology.

• Sensitivity Analysis

Sensitivity analysis is a kind of commercial analysis that explores the impact of changes
in assumptions on the results of the analysis [51]. In the context of dynamic charging, a
sensitivity analysis would explore the impact of changes in factors such as electricity prices,
vehicle adoption rates, and infrastructure costs on the viability of the technology. This
analysis would help decision-makers to identify the key assumptions driving the analysis
and assess the robustness of the results.

There are several equations used in the economic analysis of dynamic charging. Some
of the key equations include the following:

• Total Cost of Ownership Equation

This equation is used to calculate the total cost of owning an electric vehicle, taking
into account the initial purchase cost, operating costs (such as electricity and maintenance),
and the residual value of the vehicle [52].

TCO = Purchase_cost + Operating_costs − Residual value (1)
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Assuming a typical electric vehicle with a range of 100 miles, a battery capacity of 60
kWh, and an electricity cost of $0.12 per kWh, the TCO of the vehicle over 5 years can be
calculated as follows:

Purchase cost = $35,000
Operating costs = ($0.12/kWh × 60 kWh × 100 miles/100 miles) × 5 years = $4320
Residual value = $15,000
TCO = $35,000 + $4320 − $15,000 = $24,320.

• Levelized Cost of Electricity Equation

This equation is used to calculate the average cost of electricity over the lifetime of
a dynamic charging system. It takes into account the initial capital cost, operating costs,
and the amount of electricity generated [52]. Assuming a dynamic charging system with a
capital cost of $1 million, an operating cost of $50,000 per year, and an electricity generation
capacity of 500 MWh over 10 years, the LCOE of the system can be calculated as follows:

Total cost = $1 million + ($50,000 × 10 years) = $1.5 million

LCOE = $1.5 million / (500, 000 kWh x 10 years) = $0.03/kWh (2)

• Net Present Value (NPV) Equation

The net present value equation is employed to determine the current value of upcom-
ing cash flows while accounting for time value of money. It is frequently used to evaluate
an investment’s profitability [52].

NPV = ∑
(

CFt

(1 + r)t

)
(3)

where CFt is the cash flow in year t, r = discount rate, t = year. Assuming an investment of
$1 million in a dynamic charging system with expected cash flows of $200,000 per year over
10 years, a discount rate of 8%, and a residual value of $100,000, the NPV of the investment
can be calculated as follows:

NPV = $422,170 (4)

• Internal Rate of Return (IRR) Equation

This equation is used to figure out how much a return on investment will be. It is the
valuation method at which an investment has no net present value [52].

NPV = ∑
(

CFt

(1 + IRR)t

)
(5)

where CFt = cash flow in year t, t = year, IRR = internal rate of return. Using similar
investment assumptions to those above, the IRR of the investment can be computed by
finding the concession rate that creates the NPV of the investment identical to zero:

IRR = 12.2% (6)

• Benefit-Cost Ratio (BCR) Equation

The benefit-cost ratio equation is used to assess the economic viability of an investment.
It is the proportion of the present value of benefits to the present value of costs [52].

BCR = ∑
(

Bt

(1 + r)t

)
/∑

(
Ct

(1 + r)t

)
(7)

where Bt = benefits in year t, Ct = costs in year t, r = concession rate, t = year. Assuming
a dynamic charging system with a benefit of $300,000 per year and a cost of $100,000 per
year, over a 10-year period, the BCR of the investment can be calculated as follows:
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Benefits = $300,000 × 10 years = $3 million
Costs = $100,000 × 10 years = $1 million
BCR = $3 million/$1 million = 3

These equations can be used to assess the economic viability of dynamic charging in
different contexts, such as for electric buses or personal electric vehicles. By using these
equations, it is possible to determine the potential cost savings and benefits of adopting
dynamic charging technology and to compare it to other charging solutions. Calculations
for the economic analysis of dynamic charging depend on several factors, including the
specific context of the analysis, such as the type of electric vehicle or the location of the
charging infrastructure. However, the following is an example of calculations that can be
used to assess the economic likelihood of dynamic charging. To calculate the costs and
benefits, we used data from a pilot project in Sweden, which involved the setting up of
a dynamic charging set-up on a 2 km stretch of road. The direct costs of the project were
estimated to be €1.6 million, with ongoing operating costs of €27,000 per year. The indirect
costs were estimated to be €1.1 million, based on the opportunity cost of using resources
for this project instead of other projects [53].

The benefits of the project were estimated to be a reduction in CO2 emissions of
138 tons per year, based on the assumption that 100 EVs would use the dynamic charging
infrastructure daily. The increased convenience for EV owners was estimated to result
in a 10% increase in EV adoption in the region. The potential economic benefits were
estimated to be €1.2 million per year, based on the assumption that increased EV adop-
tion would result in increased demand for EVs, driving innovation and job creation in
the EV industry. Based on these estimates, the NPV of the project was calculated to be
€2.2 million, with a BCR of 1.9. These example calculations illustrate how economic analysis
can be used to assess the viability of dynamic charging technology and the potential cost
savings and benefits of adopting it. The specific calculations will depend on the context
and assumptions used in the analysis.

2.4. Challenges

Economic analysis of dynamic charging can be challenging due to various factors.
Some of the challenges are as follows:

• Complexity of the technology

Dynamic charging involves a complex system of infrastructure, vehicles, and power
grids. Economic analysis of dynamic charging requires a detailed understanding of this
system, which can be challenging.

• Interdisciplinary nature

Economic analysis of dynamic charging requires expertise in economics, engineering,
and other fields. This interdisciplinary nature can make it challenging to find individuals
or teams with the necessary skills to conduct an effective analysis.

• Limited data availability

As mentioned earlier, economic analysis requires data on variables such as consumer
behavior and infrastructure costs. However, there may be limited data available on these
variables, which can limit the accuracy of the analysis.

• Difficulty in estimating costs and benefits

Economic analysis of dynamic charging involves estimating the costs and benefits of
the technology, which can be challenging due to the uncertainty of future developments,
such as battery costs and performance.

• Heterogeneous adoption

The adoption of dynamic charging may be heterogeneous across different regions,
vehicles, and driving patterns. This heterogeneity can make it challenging to conduct an
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analysis that accurately captures the costs and benefits of dynamic charging for different
groups of people and regions.

• Time lag

Economic analysis is often conducted retrospectively, after the technology has been
implemented. However, the time lag between implementation and analysis can mean that
the analysis is not timely, and the findings may not be as relevant as they could be.

In summary, economic analysis of dynamic charging can be challenging due to the
complexity of the technology, the interdisciplinary nature of the analysis, limited data
availability, difficulty in estimating costs and benefits, heterogeneous adoption, and the
time lag between implementation and analysis. Despite these challenges, commercial
analysis can still provide rich insights into the benefits and costs of dynamic charging.

2.5. Advantage of Economic Analysis of Dynamic Charging

Dynamic charging, which refers to the ability to charge EVs on the move, has been
identified as a potential solution to the problem of range concern, which is a major obstruc-
tion to the acceptance of EVs. Economic analysis of dynamic charging can provide valuable
insights into the costs and benefits of this technology. Some of the advantages of economic
analysis of dynamic charging are as follows:

• Identifying cost savings: Economic analysis can help identify cost savings associated
with dynamic charging, such as reduced battery size, which can result in a lower cost
of ownership for EVs.

• Assessing the economic feasibility: Economic analysis can assess the economic possi-
bility of DC by determining costs of implementing the infrastructure and the potential
revenue streams that can be generated from the technology. This can help policymakers
and investors determine whether dynamic charging is a worthwhile investment.

• Evaluating the influence on the power grid: Dynamic charging can have a significant
influence on the power grid, as it requires a large amount of electricity to be supplied to
the charging infrastructure. Economic analysis can evaluate the influence of dynamic
charging on the power grid and determine the infrastructure requirements necessary
to support the technology.

• Understanding the impact on consumer behavior: Economic analysis can help under-
stand the impact of dynamic charging on consumer behavior, such as the willingness
to pay for dynamic charging services and the potential increase in demand for EVs.

• Supporting policy development: Economic analysis can support the development of
policies and regulations related to dynamic charging by providing insights into the
costs and benefits of technology on the environment and society.

Overall, commercial analysis can offer rich insights into the benefits and costs of
dynamic charging, which can help policymakers, investors, and consumers make informed
decisions about the adoption of this technology.

2.6. Limitations in Economic Analysis of Dynamic Charging

While commercial analysis can provide rich insights into the benefits and costs of
dynamic charging, there are also some limitations to this approach. Some of the limitations
include the following:

• Uncertainty about future technology: Economic analysis relies on assumptions about
future technology, such as the cost and performance of batteries and charging infras-
tructure. These assumptions can be uncertain, and if the technology does not develop
as expected, the economic analysis may be inaccurate.

• Lack of data: Economic analysis requires data on variables such as consumer behavior
and infrastructure costs. However, data on these variables may be limited or difficult
to obtain, which can limit the accuracy of the analysis.

• Difficulty in accounting for externalities: Economic analysis typically focuses on the
private costs and benefits of dynamic charging, such as the cost of infrastructure
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and the savings from reduced battery size. However, dynamic charging can also
have externalities, such as reduced air pollution, that are difficult to account for in
economic analysis.

• Limited scope: Economic analysis is typically focused on specific outcomes, such as
the cost-effectiveness of dynamic charging. However, there may be broader social,
environmental, and equity considerations that are not fully captured in economic analysis.

• Geographical and temporal limitations: Economic analysis may not be generalizable
to different geographical contexts or time periods. For example, the costs and benefits
of dynamic charging may vary depending on the region or country, and economic
analysis may not capture the long-term impacts of the technology.

Overall, while economic analysis delivers valuable visions of the costs and benefits of
dynamic charging, it is vital to know its limitations and to complement economic analysis
with other types of analysis, such as environmental and social impact assessments.

3. Authentication Techniques

There are various authentication techniques described in the literature, but here only
prominent techniques used in DWC of EVs are discussed:

• Symmetric and Asymmetric Cryptography

Public-key cryptography or asymmetric cryptography is one of the techniques used
for authentication, where keys are in pairs, such as private and public keys, for coding
and decoding [54]. With the help of the receiver’s public key, a message can be encrypted
in public-key cryptography, and only the particular receiver with the use of a private key
can decrypt the message [55]. Nevertheless, a shared key is employed for both coding and
decoding in symmetric-key cryptography. Figure 4 explains the complete procedure of
symmetric encryption.
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Four cryptographic goals mostly detect and prevent fake users from stealing, altering,
tampering with, etc., the specific data. These goals are classified as follows:

• Confidentiality

It is a methodology to ensure that data can be accessed only by authorized persons.
To obscure data and provide confidentiality, numerous techniques can be used, such as
physical protection and encryption procedures [56].

• Data integrity

In this process, it must be ensured that the data is sent completely and without
any modifications. Data modifications can occur through substitution, insertion, and
deletion [57].

• Authentication

In the process, the recipient has to identify whether the captured data has come directly
from the authorized sender or not [58].
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• Non-repudiation

In this process, both senders, as well as recipients, are ensured not to refuse the
transmission, which means that the sender should not deny transmitting the data, and
similarly, the recipient should not deny capturing the data sent by the sender [58].

• Digital signatures

It is one type of cryptographic procedure that checks the faithfulness of a message or
a digital file. To transmit information across an unclear channel, asymmetric cryptography
uses this protocol. Here, the end user can authenticate whether or not the note or message
is sent by the authorized dispatcher [59]. The mostly used digital signature protocols or
techniques are DSA, RSA, and ECDSA [60,61]. Of all of these, ECDSA is the highly suggested
digital signature structure, and it is considered the IEEE 1609.2 standard [62,63]. Signature
verification, key generation, and algorithm signing are the three steps incorporated into
digital signature schemes.

• Hash chains

A hash function remains a mathematical one-way function, where a message is
mapped from a random size to a static-sized message, which can be utilized for effec-
tive verification. In general, a hash chain is considered a chain of numerous one-way hash
functions obtained by means of hash algorithms like SHA-1 or SHA-2 [64]. The primary
key is chosen uncertainly, and the left-out keys are mathematically estimated with the help
of the H. An individual key can be initiated by Kj = H(Kj−1) for j = 1, 2, 3, . . . . . . , n [65].
Figure 5 shows the sample four-key hash chain.
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• Fast Authentication for Dynamic EV Charging

Fast message signing, quick signature verification, quick handoff authentication, and
little communication overhead are all aspects of FADEC proposed in [66]. To avoid having
to re-authenticate each time an RSU is encountered without compromising security, FADEC
enables the electric vehicle to utilize the identical key to verify with a number of RSUs.
FADEC enhances the delivery ratio by greater than an order of magnitude and cuts the
data transfer latency by up to 97% when compared to ECDSA [67]. To the extent that we
are aware, this is the initial study to take secure V2G interaction for dynamic EV charging
into consideration.

• Hash-based Message Authentication Code

HMAC is an authentication protocol that depends on a symmetric key, K, transferred
between the receiver and the sender. Whenever the sender wishes to transmit a message M,
then he uses the shared key K to compute a hash value HMAC(K, M). M and HMAC(K, M)
are both transmitted to the recipient. By recalculating HMAC(K, M′) and confirming that
HMAC(K, M′) = HMAC after obtaining message M′ as well as its signature HMAC(K, M),
the end user may confirm that M′ = M and the information is from the genuine sender
(K, M). When using the right keys and hash algorithms, HMAC authentication may achieve
112-bit security level while being faster than public key-based authentication [68].

• Elliptic Curve Digital Signature Algorithm

Each interaction party in the DSA has a private key S and a public key P. The private
key must only be accessible to the owner, whereas everybody is given access to the public
key. The sender creates a signature S(M) for the message M by signing it with his encryption
key S and sending it along with the message M. When obtaining M′, S(M), the recipient
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might compute P(S(M)) by using the demonstrated sender’s public key P and confirm
that M′ = P(S(M)) in order to determine the message’s authenticity. A DSA that uses
elliptic curve cryptography is called an ECDSA. ECDSA is recommended by the IEEE
802.11p standard [68] as a means of authenticating vehicle safety notifications. However,
prior research [69] has demonstrated that ECDSA requires non-trivial time to register
or sign as well as to evaluate an autograph and is unsuitable in situations where there
are numerous signatures to validate, which is typical in situations where several electric
vehicles provide regular updates. The susceptibility of ECDSA to DoS threats, where
the intruder might overwhelm the network with numerous bogus signatures while the
receiver RSU is occupied validating those phony signatures, is another significant flaw in
the protocol.

• Just Fast Keying

JFK [70] is considered as a key swap-over mechanism that is centered on Diffie-
Hellman. JFK aims to make it possible for two collaborating negotiators to create a trans-
ferred undisclosed key, though the interaction medium is unsecure, meaning that the
enemy might listen in on the stream. Digital signatures are used on JFK communications
to guard against man-in-the-middle attacks. In addition, the main benefit of JFK is that it
resists DoS attacks and shields the RSU against signature flooding attacks, in which the
attacker floods the RSU with many signatures to check before it has time to verify those
from trustworthy cars.

• Fast and Lightweight Privacy-Aware Authentication

FLPA has the following desirable qualities as represented in Figure 6: (1) EV users’
identity and position are kept private by unknown EV verification to the CSP and the
charging setup utilizing demonstrable aliases rather than their true identities. (2) It has
quick and easy authentication between EVs and charging stations that does not use the
CSP and simply calls for one message passing and straightforward hash chain verification.
(3) The FLPA enables fair billing and stops dishonest EVs from twice spending identical
charging coins. (4) It also provides conditional anonymity, which allows only a TA to track
an EV’s history for the reasons of revocation and other protective measures [71].
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4. Blockchain Technology in DWC-EV
4.1. Layers of Blockchain

The implementation of blockchain in the IoV requires a layered approach to address
the complexity and security requirements of the system. Generally, the layers can be
separated into three main categories: the sensing layer, the communication layer, and the
application layer [72].

• Sensing Layer

This is the bottom layer of the IoV blockchain architecture, which deals with data
acquisition and communication. In this layer, sensors, cameras, and other data acquisi-
tion devices gather information from the surrounding environment and transfer it to the
network layer. The data gathered in this layer are highly sensitive and require secure and
efficient transmission.

• Communication Layer

This layer is accountable for ensuring secure communication between diverse IoV
devices and components. It is the middleware that facilitates the communication between
the sensing layer as well as the application layer. The network layer delivers a secure
and reliable communication channel using blockchain technology, ensuring data integrity
and confidentiality.

• Application Layer

The top layer of the IoV blockchain architecture is the application layer. It involves the
design and development of applications that leverage the data collected from the perception
layer to provide various services to drivers and passengers. In this layer, smart contracts
are deployed to automate transactions and enforce data sharing policies. The application
layer includes various applications such as autonomous driving, traffic management, and
smart parking.

Each layer of the IoV blockchain architecture has its own set of challenges and require-
ments [72]. For example, in the sensing layer, the challenge is to ensure accurate and reliable
data acquisition and transmission. In the communication layer, the challenge is to design
a secure and efficient communication protocol that can handle the massive amounts of
data generated in the sensing layer [73]. In the application layer, the challenge is to design
and develop applications that can leverage the data collected from the perception layer to
provide value-added services to users. In summary, the use of blockchain technology in
the IoV requires a layered approach to address the complex security and efficiency require-
ments of the system [74]. The sensing layer deals with data acquisition and communication,
the communication layer provides a secure and reliable communication channel, and the
application layer provides various services to drivers and passengers [75]. An architecture
is suggested for multiple technologies in the IoV system. It is primarily comprised of five
layers. An illustration of a combined blockchain and IoV design is shown in Figure 7.

Layer 1: All of the vehicle sensors make up the sensing layer, which gathers data and
identifies specific events that are relevant such vehicle circumstances, driving patterns,
weather conditions, etc.
Layer 2: Different wireless communication modes are made possible by the second layer
that is the communication layer (e.g., V2I and V2V). Current and upcoming networks,
including Wi-Fi, GSM, Bluetooth, and LTE, are often connected thanks to a communica-
tion layer.
Layer 3: A gateway between the communication layer and application levels, the blockchain
serves as a governance layer. This may offer blockchain built keys and group information
into blocks in such a broadened IoV architecture. Furthermore, by offering a set number of
tokens in exchange for sharing information resources, it may use incentive mechanisms to
encourage users to do so. This would enable users to actively contribute transactional data
to the system.
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Layer 4: The IoV network’s third layer, or computing, is responsible for storing, analyzing,
and making choices pertaining to a variety of situations. Additionally, this layer offers data
computing services.
Layer 5: The IoV’s topmost level, the application layer, can provide customers with a
variety of various vehicle services.
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4.2. Blockchain Applications in IoV

According to their function and area of activity, blockchain applications inside the IoV
were divided during the analysis process into eight major categories as shown in Figure 8:
privacy and security, P2P energy trading, data safeguard and management, microgrid
management, AI/ML and IoV, IoV management, block chain performance in the IoV, and
general-purpose studies (e.g., reviews, surveys, etc.).
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Figure 8. Applications of blockchain in IoV.

The writers discovered that about one out of three applications dealt with security
and privacy (27%), including efforts for identity management, V2X, and authentication.
IoV management (25.8%) was the second-most common group. P2P energy trading and
general-purpose studies came in third and fourth, making up 12.7% and 12.3% of all studies,
respectively. Figure 9 shows that other application fields accounted for about 22% of the
total. Figure 10 shows the classification of the selected application categories.
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4.3. Challenges of IoV-Assisted Smart Grid

While blockchain technology offers many potential benefits for IoV-assisted smart
grids, there are also several challenges that must be addressed to fully realize its poten-
tial [76]. Here are some of the key challenges of using blockchain in IoV-assisted smart grids:

• Scalability

This is considered one of the main issues with blockchain technology, as the current
blockchain technology can only manage a restricted number of transactions per second.
The quantity of transactions in a large-scale grid network can soon overload the blockchain
network, resulting in long transaction times and expensive fees. New scaling methods,
such as sharding and layer-2 protocols, are being created to overcome this problem [77].

• Interoperability

The IoV ecosystem involves a wide variety of devices, systems, and stakeholders, each
with their own data formats and communication protocols [78]. Ensuring interoperability be-
tween different blockchain-based solutions and legacy systems can be a significant challenge.

• Energy Consumption

The process of validating and adding transactions to a blockchain needs a significant
quantity of computational power, leading to high energy consumption [79,80]. In a smart
grid network that relies on energy-efficient solutions, this can be a significant challenge.

• Regulation and Governance

Blockchain technology until today has been in its initial stages, and there are currently
few regulations governing its use. This can lead to uncertainty and confusion around the
legal and regulatory frameworks for blockchain-based smart grid solutions.

• Security and Privacy

Although blockchain technology is usually regarded as safe, assaults are still possible.
In addition, the use of blockchain for data storage and sharing can raise concerns around
data privacy and confidentiality [81,82].

• Cost

Implementing blockchain technology in a smart grid network can be expensive, as
it requires significant investment in hardware, software, and infrastructure. Additionally,
the costs of transaction fees and energy consumption can add to the overall cost of the
system. In summary, while blockchain technology has the possibility to transform the way
we manage and distribute energy in smart grid networks, it also faces several challenges.
These challenges include scalability, interoperability, energy consumption, regulation and
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governance, security and privacy, and cost. Addressing these challenges will be critical to
realizing the full potential of blockchain-based IoV-assisted smart grids.

• Blockchain-based IoV Security

Blockchain technology has the possibility to enhance the safekeeping of IoV by pro-
viding a safe and decentralized stage for storing and verifying transaction data. Here are
some of the ways in which blockchain can improve the security of IoV:

• Identity management

Blockchain technology can be used to create a secure and decentralized identity
management system for vehicles and their owners. This can help to prevent identity theft
and fraud, as well as provide a secure and trusted platform for vehicle registration and
ownership verification.

• Secure communication

Blockchain technology can provide a secure and tamper-proof communication network
for vehicles and other IoT devices. By using blockchain, vehicles can securely communicate
with each other, as well as with other devices in the IoV ecosystem.

• Data privacy

Blockchain can provide a secure platform for the storage and sharing of vehicle data.
By using blockchain, participants can control who has access to their data, reducing the
risk of data breaches and unauthorized access.

4.4. Smart Contracts

Blockchain technology enables the use of smart contracts, which are self-executing
contracts that automatically enforce the rules and terms of a transaction. By using smart
contracts, participants can automate the verification and validation of transactions, reducing
the risk of errors and fraud.

• Immutable Record

Blockchain provides an immutable and tamper-proof record of all transactions, which
can help to prevent fraud and other security threats. By using blockchain, participants
can verify the authenticity of transaction data, reducing the risk of tampering and other
malicious activities.

• Distributed consensus

Blockchain uses a distributed consensus mechanism to validate transactions, ensuring
that transactions are validated by multiple parties and reducing the risk of fraudulent
activity. This can help to increase the security and trustworthiness of the IoV ecosystem.
Blockchain technology has the potential to improve the security of the Internet of Vehicles
by providing a secure and decentralized platform for storing and verifying transaction data,
as well as enabling secure communication, data privacy, smart contracts, immutable record-
keeping, and distributed consensus. By leveraging the security features of blockchain,
the IoV ecosystem can become more secure and trustworthy, reducing the risk of fraud,
cyberattacks, and other security threats.

4.5. Blockchain Contributions in IoV-Assisted Smart Grids

The integration of blockchain technology in IoV-assisted smart grids has the potential
to bring numerous benefits, including increased security, transparency, and efficiency.
Figure 11 presents the most convincing arguments for using blockchain in IoV-assisted
smart networks. Here are some of the key contributions that blockchain technology can
make in IoV-assisted smart grids:
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• Decentralization

Blockchain technology delivers a decentralized as well as distributed ledger that can
facilitate safe and apparent transactions without the necessity for a central authority. This
can help to reduce the risk of fraud, cyberattacks, and other security threats in smart
grids [83]. Given that blockchain is founded on a decentralized framework that does
away with centralized companies and third parties, it is an excellent choice for creating
a more open and decentralized electricity market and trading system. Decentralized IoV
connections, which also include more scattered elements like RSUs, automobiles, and
people, may be created because to blockchain technology. These scattered entities can
simultaneously handle their own operations on an independent basis [84].

• Trust and transparency

Blockchain provides a tamper-proof and transparent ledger of all transactions, en-
abling all participants to track and verify transactions in real-time. This can increase trust
and transparency in energy transactions [85], as participants can be confident that their
transactions are being processed fairly and accurately [86].

• Smart contracts

Blockchain technology permits the practice of smart contracts, which are self-executing
contracts that automatically enforce the rules and terms of a transaction. This can help
to automate the billing and payment processes in smart grids, reducing the need for
intermediaries and increasing the efficiency of transactions [87,88].

• Energy Trading

Blockchain can facilitate P2P energy trading between consumers, allowing them to
buy and sell excess energy to each other. This can help to balance the supply and demand
of energy, reduce energy waste, and increase the use of renewable energy sources [89,90].

• Data Privacy

Blockchain can deliver a safe and private platform for the storage and sharing of
energy information. By using blockchain, participants are in charge of who may access
their data, decreasing the threat of data breaches as well as unauthorized access [91].

• Traceability
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Blockchain can provide a secure and immutable record of energy transactions, enabling
participants to trace the origin and destination of energy flows. This can help to increase the
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accountability and transparency of energy transactions [92,93]. Blockchain technology can
bring numerous contributions to IoV-assisted smart grids, including decentralization, trust
and transparency, smart contracts, energy trading, data privacy, and traceability. These
contributions have the potential to increase the security, efficiency, and sustainability of
energy transactions in smart grids.

4.6. Limitations of Using Blockchain in IoV-Assisted Smart Grids

The integration of blockchain in IoV-assisted smart grids has the possibility to improve
the security, reliability, and effectiveness of energy transactions. Nevertheless, there are
some limitations that must be addressed before blockchain can be fully implemented in
smart grids. Figure 10 illustrates the constraints in the areas of blockchain as well as IoV-
assisted smart networks. Here are some of the key confines of implementing blockchain in
IoV-assisted smart grids:

• Scalability

One of the major restrictions of using blockchain in IoV-assisted smart grids is scala-
bility. Smart grids generate large amounts of data and require high transaction processing
rates, which can put a strain on the blockchain network. As the number of participants in
the network grows, the processing time for each transaction increases, leading to slower
transaction speeds [94].

• Energy Consumption

Blockchain technology is highly energy-intensive, and the energy consumption re-
quired for mining and verifying transactions can be significant. This can be a challenge in
IoV-assisted smart grids, where energy efficiency is a key requirement. Therefore, develop-
ing energy-efficient blockchain protocols is necessary to overcome this limitation [95].

• Interoperability

Smart grids rely on the integration of multiple devices and systems, which can make
interoperability a challenge. Different devices and systems may use different commu-
nication protocols and data formats, which can make it difficult to integrate them with
blockchain networks. Addressing interoperability challenges requires standardization
efforts and the development of protocols that can be easily integrated with existing smart
grid systems [96].

• Regulatory challenges

The implementation of blockchain in IoV-assisted smart grids may raise regulatory
challenges due to the decentralized and autonomous nature of blockchain. Smart grids are
subject to regulatory requirements that may conflict with the blockchain’s decentralized
nature. For example, blockchain-based energy trading may require regulatory approval
and compliance, which may not be easily achieved [97,98].

• Security

While blockchain technology is generally considered secure, there are still security
concerns that need to be addressed in IoV-assisted smart grids [99]. One of the key concerns
is the possibility of a 51% attack, where an invader gains control of the bulk of the blockchain
network’s computing power, allowing them to manipulate the network’s transactions.

5. Driver Identification Data

Obtaining sources of data for drivers has been the subject of various studies by
researchers. The identification of drivers may be done using a variety of data sources.
As illustrated in the below Figure 12, the primary data sources may be divided into the
following three groups: on-board sensor data, driving simulator data, and biometric data.
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• Biometric Data

In identifying drivers, some studies employ driver biometric information. Commonly
used terms include face, movement, fingerprints, audio, condition, gesture, and grip
posture [100]. With great precision and significant pertinence, these data can accurately
and immediately depict the driver’s physical attributes. However, the current issues are
that new equipment is often needed to capture data, leading to several issues including
space occupation and increased costs. At the same time, there have been challenges
with ongoing real-time identification, data collecting that invades individual privacy, and
software restrictions such as simple data fabrication [101].

• On-Board Sensor Data

As sensor technology, on-board CAN software, networking communication technol-
ogy, and intelligence terminals have all advanced quickly, numerous on-board sensor
devices have gathered enormous amounts of high-quality, accurate, and objective data in
actual driving situations. Relevant researchers have shown a considerable deal of interest in
such data since they offer rich information that may be required to analyze the driver [102].
Smartphones, smart watches, navigation systems, and IMU data [103] are examples of
common data from on-board sensing devices. The on-board CAN bus data have evolved
into the primary data source for driver identification as a result of the integration of CAN
technology in current automobiles. Some scholars have had success identifying drivers
using the on-board CAN bus data [104,105].

Another type of on-board sensor information used to recognize drivers is GPS data.
One may get GPS data by utilizing a common portable device or the on-board navigation
system. It provides real-time functionality, high scalability, good practicability, and a low
purchase price. To identify drivers, some studies utilize GPS information. Researchers have
concentrated on driver identification by collecting data from built-in sensors on mobile
terminals such as smartwatches and smartphones due to their prominence [106,107].

In conclusion, several data sources may be utilized for driver recognition, and each
type of data has distinct properties; Table 1 lists the pros and cons of several types of data.
On-board sensors can be utilized to actively and continually confirm the identification of
the driver while driving with no negative influence on individual privacy. They have high
efficiency, dependability, and safety, and they are increasingly replacing other methods of
identifying the driver.
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Table 1. Strengths and weaknesses of various types of data.

Data Biometric Data Driving Simulator Data On-Board Sensor Data

Strengths Simple, direct special sensor, high
accuracy Easy to implement

Easy to do the test again with the
ability to manually design driving
situations and collect data on
various working conditions.

Unbiased and realistic driving
scenario and the information is
reliable, accurate, and difficult to
fake. Good real-time data at a
reasonable price without
compromising privacy.

Weakness

Built-in sensor surges hardware
cost, and the device needs to
manually activate image intrusion
into personal privacy.

Distinct from actual operational
circumstances, and the price of test
facilities is not expensive for data
accuracy.

Data gathering over the CAN bus
protocol needs authorization and a
significant expenditure in
constructing a database.

• Driving Simulator Data

The capability of using driving simulation to acquire information on several working
circumstances such as roads, traffic, and weather situations has great flexibility; however,
the leading drawback is that a driving simulator has restricted capacity to replicate and
capture the actual driving circumstances, and the driving simulation info may not match
the actual driving data [108].

5.1. Driver Identification Models

Figure 13 depicts the categorization of driver identification techniques into three
groups based on the properties of the models: deep learning model recognition, classic
machine learning model recognition, and hybrid model recognition methods.

Smart Cities 2024, 7, FOR PEER REVIEW  23 
 

 
Figure 13. Categorization of driver identification techniques. 

• Traditional Model 
Machine learning is the process of deriving broad principles from scant observational 

evidence and applying these principles to forecast unlabeled data. In order for the typical 
ML model to forecast the outcomes of the output, the data must first be expressed as a 
collection of features before being fed to the predictions and classifier. The parameters 
have a significant influence on the identification accuracy of the model and are mostly 
dependent on artificial experiences or the addition of new feature methods for extraction. 
SVM, RF, GMM [109,110], HMM [111], additional trees [112], LDA [113], GDT [114], ANN 
[115], and KNN [116] are examples of common models. The examination of the develop-
ment of the application of SVM and RF models to detect drivers is the primary focus of 
this research. 
• SVM Model 

The SVM is a binary classification model. Its basic model is the linear classifier having 
the largest variation in the feature space. The fundamental idea behind the SVM classifier 
is to resolve the separation hyperplane with the biggest geometric interval and the ability 
to accurately split the training dataset [117]. SVM models have the potential to signifi-
cantly improve a number of different areas of EV DWC systems. Using behavioral patterns 
or biometric data, SVM may identify and authenticate drivers or cars in real time for au-
thentication and security purposes, ensuring that only authorized users have access to the 
charging infrastructure. In order to accurately authenticate drivers and enhance safety 
and personalization, SVM can assess data from driving behavior or biometrics for driver 
identification. Furthermore, SVM can identify abnormalities or flaws in the DWC system, 
enabling prompt interventions to preserve reliability. SVM can categorize and validate 
transaction data when combined with blockchain technology, enhancing the security and 
effectiveness of communications within the Internet of Vehicles (IoV) ecosystem. Because 
SVM can handle high-dimensional, complicated data, it is perfect for enhancing DWC 
system security and performance. 
• RF Model 

The RF model is a non-linear classifier that performs interactive educational training 
on samples using several trees to complete predictions. As seen in Figure 14, it creates a 

Driver Identification Methods

Traditional Models Deep Learning Models Hybrid Model

• SVM
• RF
• GMM
• HMM
• Extra Tree
• LDA
• GDT
• ANN
• KNN
• Others

• DNN
• MLP
• CNN
• Basic RNN
• RNN-LSTM
• RNN-GRU
• DBN
• Others

• SVM+LSTM+BP
• CNN+RNN
• CNN+LSTM
• CNN+GRU
• Others

Figure 13. Categorization of driver identification techniques.

• Traditional Model

Machine learning is the process of deriving broad principles from scant observational
evidence and applying these principles to forecast unlabeled data. In order for the typical
ML model to forecast the outcomes of the output, the data must first be expressed as a
collection of features before being fed to the predictions and classifier. The parameters have
a significant influence on the identification accuracy of the model and are mostly dependent
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on artificial experiences or the addition of new feature methods for extraction. SVM, RF,
GMM [109,110], HMM [111], additional trees [112], LDA [113], GDT [114], ANN [115], and
KNN [116] are examples of common models. The examination of the development of the
application of SVM and RF models to detect drivers is the primary focus of this research.

• SVM Model

The SVM is a binary classification model. Its basic model is the linear classifier having
the largest variation in the feature space. The fundamental idea behind the SVM classifier
is to resolve the separation hyperplane with the biggest geometric interval and the ability
to accurately split the training dataset [117]. SVM models have the potential to significantly
improve a number of different areas of EV DWC systems. Using behavioral patterns
or biometric data, SVM may identify and authenticate drivers or cars in real time for
authentication and security purposes, ensuring that only authorized users have access to
the charging infrastructure. In order to accurately authenticate drivers and enhance safety
and personalization, SVM can assess data from driving behavior or biometrics for driver
identification. Furthermore, SVM can identify abnormalities or flaws in the DWC system,
enabling prompt interventions to preserve reliability. SVM can categorize and validate
transaction data when combined with blockchain technology, enhancing the security and
effectiveness of communications within the Internet of Vehicles (IoV) ecosystem. Because
SVM can handle high-dimensional, complicated data, it is perfect for enhancing DWC
system security and performance.

• RF Model

The RF model is a non-linear classifier that performs interactive educational training
on samples using several trees to complete predictions. As seen in Figure 14, it creates a
cluster classification model made up of several decision trees in random order. The RF
model selects input variables and feature values at random to handle a vast volume of high-
dimensional data. It features a low generalization error rate and good training efficiency. It
is used by certain academics to pinpoint drivers. For instance, Hallac et al. [118] suggested
identifying drivers with a 76.9% accuracy rate utilizing the RF model for CAN bus data
acquired while turning and driving. The main problem with the RF model is overfitting in
some challenging classification or regression operations. The findings mentioned above
show that the classic machine learning model’s recognition accuracy is typically within 90%
and that the input dataset and design choice have a significant impact on this accuracy. This
is mostly caused by the use of manual extracting features in standard machine learning
techniques, the inability to capture complicated temporal aspects, and the poor capacity to
fit high-dimensional nonlinear data. Big data samples are also challenging to enter.

• Deep Learning Model

The artificial neural network is where the deep learning technique has its roots. It is a
method of computing that stacks several nested loops before processing the result one layer
at a time. It converts the input representations, which are not deeply linked to the output
objective, into higher-order data augmentation. In 2016, this technique was attributed
partly to the task of identifying drivers, and it performed well in terms of identifying
and describing prospective driving behaviors. With the growth of big data and cloud
computing, as well as a significant increase in computer power, the deep learning approach
has been successfully applied to map driving info to distinctive features of drivers in order
to recognize drivers. CNN, RNN, and MLP [119] are common models. The investigation of
driver recognition techniques using CNNs and RNNs is the central subject of this work.

• CNN Model

Deliberately designed to analyze data with an identical grid layout, a CNN is consid-
ered a neural network that enhances a DNN with a convolutional network to efficiently
extract features. It has the attributes of shared weights, local connection, and automated
extraction of features. CNN is limited in that it cannot represent modifications in time series,
though. A convergence layer, a layer, and complete connection layers are cross-stacked to
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create the CNN. To recognize handwritten digital images, LeCun et al. [120] developed the
first CNN model in 1998. The difficult part of the driver identification process is identifying
and extracting the essential characteristics of each driver’s distinctive driving style. This
is a smart approach, since a CNN can autonomously extract characteristics from driving
data. The prediction accuracy might reach 80% in just 4–5 min, according to the real-world
car test. To identify drivers and extract attributes relevant to driving behavior, Azadani
et al. [121] employed a CNN as an input and feature data such as speeds, accelerating, and
steering wheel orientation as outputs. Real-world driving data from 95 individuals were
used to evaluate the model, and the findings revealed that the deep learning algorithm
performed very well indeed.

The CNN method is superior to the conventional machine learning approach in that it
employs the original signal peptide of car CAN bus information as an input and achieves
an overall accuracy of 99.3%. CNN has the drawback of being unable to obtain the long-
duration time aspects of the dataset and can only catch local time properties according to
the length of the convolutional kernel.
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• RNN Model

A neural network with the capacity to store time information is the RNN model. The
data input that its neurons may absorb includes both external information and internal
information. The interplay between the information received then and the rest of the time
generates the output of its neurons. Input, hidden, delayer, and output layers, as shown
in Figure 15, make up the network topology of the fundamental RNN, which has a loop.
The fundamental RNN is capable of modeling time-series data, but it suffers from gradient
disappearing and explosion brought on by long-term dependency.
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• Hybrid Model

Numerous researchers have tried to use hybrid models to even further enhance the
accuracy of driver detection in order to fully use the benefits of various fundamental models.
The hybrid model is classified down into compound type, series type, and parallel type in
this study. For driver detection, several studies have employed the serial hybrid method.
For illustration, Zhang et al. [122] created a hybrid model by stringing together CNN and
RNNs and using the data from the vehicle’s CAN bus to identify the driver. The precision
of recognition is approximately 98.36%. As per Moosavi et al. [123], a hybrid model should
be created by stringing together a CNN and an RNN. The CNN should be utilized to
extract the semantic patterns of driver performance from the vehicle’s CAN data, and
the RNN should be utilized to classify the driver’s preferred driving techniques. Several
scholars used hybrid parallel models to determine drivers. For instance, Mekki et al. [124]
suggested a hybrid model for driver identification by simultaneously feeding simple and
multivariable time-series driving statistics into the CNN and LSTM. The driving data series’
temporal correlation is what the model understands. The built-in driver identification
model has a high level of resilience and generalizability, and its accuracy can touch 95%. To
increase detection performance and accuracy, Hammann et al. [125] suggested a hybrid
model built from RESNET and LSTM running concurrently (as shown in Figure 16). The
detection performance of five drivers on the database Utdrive achieved 96.90% using this
model.
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A few pieces of research show complex hybrid models. For example, Moreira et al. [126]
produced a driver detection technique by combining integrated hybrid models from LVQ,
RF, SVM, and boosted C4.5, significantly lowering model generalization errors (as shown
in Figure 17). Jafarnejad et al. [127] recommended a hybrid model structural design made
up of integrated modules and also an RNN layer that uses GPS movement data attributes
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to identify drivers. In the case of between 5 and 100 drivers, the identification accuracy is
between 86.5% and 98.1%. With a hybrid network model built by Sánchez et al. [128] using
Resnet-50 and also the GRU, the maximum driver recognition accuracy was 92.02%.
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In summary, the hybrid model can choose the fundamental model in accordance with
the objectives and data available and design various model configurations or learning
networks with various width and depth structures to enhance the precision, reliability,
and real-time efficiency of driver identification. The three forms of identification models
have been analyzed above, and it is clear wherein each category of the model has unique
functional properties. The manual choice of attributes has a considerable impact on the
precision of the standard machine learning model, which typically requires extracting the
statistical aspects of the data using specialized knowledge. The comparison of feature data
as well as the length of the tester data have a significant impact on the DL model, which
needs a huge sample size of info and has attributes like feature extraction, seamless ability
to connect with the classifiers, high precision, and huge computational resources and power
occupation. The hybrid model has great generalization and resilience capabilities and fully
exploits the benefits of many models.

5.2. Summary on Driver Identification Technique in EV

The driver identification technique is a significant study area in the creation of intel-
ligent cars and vehicles and cutting-edge transport networks and is crucial in scientific
disciplines like traffic safety and driving support. The evolution of driver detection meth-
ods is examined in this research. The article’s important contents include assisting future
researchers in conducting in-depth studies of driver identification systems, serving as a
reference for additional data collection research, suggesting a possible solution to assist
researchers in creating models with performance improvement, and providing insightful
data on technological trends to advance research into electric vehicles.

In addition, this study breaks down the fundamental phases of the driver detection
step into four categories: data sampling, driver recognition, data processing, and technical
application. Data collection and model development, the two crucial components of the
driver identification process, are examined and addressed. It is demonstrated that the
on-board sensor info includes valuable information and may be utilized as the primary data
source for detecting drivers by contrasting and examining the benefits and drawbacks of
various types of data. It is determined that the DL model has benefits over the conventional
ML model in terms of recognizing robustness and accuracy and will eventually replace
it as the go-to technique for accurate driver identification by examining the research
improvements of the three different ML models—deep, traditional, and hybrid. It is also
validated that the hybrid model can rationally choose models in accordance with the
activity target and data needed, allowing it to fully capitalize on the benefits of various
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models in order to further enhance generalization ability and identification robustness, as
well as having a promising future.

Despite considerable progress in the efficiency of driver recognition, there continue
to be numerous studies that need to be done. The methods for identifying drivers have
advanced considerably, as seen in the explanation above. Yet, in actuality, because it
is a continuously connected system, numerous things might affect its quality. Driver
authentication programs on the web still need to develop in terms of computing accuracy
and efficiency, among other things. Firstly, the abundance, complexity, and variety of
driving situations all have a significant role in how reliable the driver identification system
is. Vehicle on-board multi-sensor data has progressively replaced other sources as the
primary data source for driver recognition with big props to qualities like objective reality,
precision and reliability, large amounts of data, no intervention for the driver, safeguarding
individual privacy, and less financing costs. Data label automated labeling technology
and data enhancement generating technology have grown into significant methods of
enhancing data. The driver identifying the system’s accuracy, real-time efficiency, and
resilience are all improved by the combination of software and hardware technologies. To
improve vehicle and traffic safety, academics must keep doing in-depth, precise theoretical
study as well as applied research on driver screening methods.

6. Standards, Protocols, and Emerging Technologies for EVs

There is a growing need for charging points since EVs have emerged as a crucial
component of the transportation infrastructure. Protocols are standards and procedures
that provide efficient data transfer and interaction between different organizations in the
EV business. Administrators and service operators of charging stations have difficulties
with the procedures and rules governing their platforms. In order to facilitate effective
communication between multiple organizations, including plug-in EVs of plug-in, smart
grids, and charging element stations, standards and protocols are utilized. To fulfill the
ever-increasing EV expectations and necessities, several international organizations and
research institutions have established and implemented both open-source and private
networks. Interoperability constitutes one of the difficulties in the creation of plugin EVs.
Battery BEVs are more popular, which presents problems with effective management of
energy from the grid, management of the battery, and data transmission authentication.
The entire EV protocols’ parameters and specifics have already been released [129] by the
Dutch innovation hub ElaadNL. Prominent standards and protocols for EVs have been
deliberated in [94,95] and abridged in Tables 2 and 3.

Table 2. PEV industry standards use cases [129,130].

Standard/Protocol Use Cases

OCPP [129,130] Billing, charging point operation, smart charging, charging session authorization, grid management,
reservation

OCHP [129,130] Reservation, charging session authorization, providing charging point data, smart charging, roaming

OCPI [129,130] Reservation, charging session authorization, providing charging point data, smart charging, roaming

OSCP [129,130] Distributing capacity budgets, utilizing these budgets to manage grid capacity, and smart charging by
sharing capacity projections

OpenADR [129,130] Smart charging, managing grid, handling registrations

eMIP [129,130] Charging session authorization, roaming, facilitating smart charging features, billing

ISO15118 [129,130] Schedule-based charging, charging session authorization, certificate handling

IEEE2030.5 [129,130]
Solutions for n-house smart grids, requesting action and load management, sharing metering
information, publishing tariff details, text message sending, giving information on real consumption and
invoicing, and reservation for energy flow.
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Table 2. Cont.

Standard/Protocol Use Cases

IEC61850 [129,130]
Modeling of communication parameters, uniformity of message format,
plug-and-play functionality for a variety of applications, including coordinating EV charging stations
and operating virtual power plants.

Table 3. Use cases of various EV standards and protocols [131].

Use Cases OCPP
[131]

OCHP
[131]

OCPI
[131] OSCP [131]

Open
ADR
[131]

eMIP [131] IEEE 2030.5
[131]

IEC 61851
[131]

Manage Grid * *

EV Charging *

Handle
Registration * * *

Billing * * * *

Provide Charge
Point Info * * *

Smart Charging * * * *

Roaming * * *

The V2G sector of the economy is still developing. When efficiently integrating EV
features into the management operations of the grid, the protocols standardization is
essential for addressing novel needs of the EV communications set-up [132]. The operation
of IEEE 2030.5 [133] has previously been modified to include CA Standard 21 [133] and
IEEE 1547-2018 [133]. This is a web services-based application level standard featuring
built-in privacy that is intended to utilize the current network to convey its communications
across devices. It is quickly becoming the DER messaging industry standard [133]. The IEC
is working to define a number of standards for the DC rapid charging option. The criteria
for grid connections and communication architecture for rapid charging are represented by
the IEC 61851-23 standard [133]. In Table 3, numerous message protocols and standard use
cases for EVs are shown.

The IEC 61850 protocol has also been updated often to include EVs as well as their
associated activities [134]. To effectively handle an ad hoc fleet of vehicles and the billing
load, attempts have been made to link several protocols, including IEC 61850 [135] and
IEEE WAVE [135]. Even though ad hoc networking across multiple EVs has prompted
privacy issues, the early findings have been quite encouraging. Investigations on protecting
these information exchanges have been conducted in order to solve these worries. The IEC
61850 connectivity of EVs in a network is handled by XMPP in [136], another endeavor
that associates standard harmonization and resolving safekeeping distresses. By the use of
hardware-in-the-loop testing, whereby standard instructions are transferred to carry out for
controlling power systems, such methods have additionally been examined in real-world
testing circumstances. IoEV focuses on tying up EVs online to regulate and coordinate
energy and data transmission for V2X. Several standards are being developed or have
already been published, because this is a developing field. The SAE has established a
set of networking protocols and standards that the EV must adhere to when it is being
charged. In [137], prototypes for grid power management, EV, PV, and household energy
management systems are developed based on IEC 61850. Moreover, communication
information channels have been developed, and their effectiveness has been assessed using
a variety of communication methods. According to simulation results, [138] Hussain et al.‘s
technique of using cognitive radio to enable a connection during contingencies is feasible.
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6.1. New Communications Technologies for Electric Vehicles

During the past several years, the volume of autonomous vehicles has substantially
expanded. Autonomous cars and smart cities both rely on effective and dependable V2X
communication. Architectures that are low-latency and energy-efficient must be used to
achieve V2X communication [139]. Figure 18 shows an example of V2X communication
between a vehicle and a passenger, network, vehicle, and infrastructure. Data interchange
from automobiles to those other devices at great speed avoiding data packet loss is the
major problem in V2X communication. The other equipment, as well as the technological
components of the car, must quickly reply to requests issued by each other. For V2X com-
munication, innovative technologies including IoT, LoRa, and 5G are frequently employed.
For EVs, the IoT offers a number of benefits and flexibility. Several writers have suggested
numerous IoT-based charge management system types. For the purpose of coordinating
the charging of large-scale vehicles in multiple residential complexes, a better-decentralized
charging system is suggested [140]. To extend the lifespan of EV batteries, a precise charg-
ing status estimation is required. It has been suggested to use the Coulomb technique as
well as MQQT for connectivity in a battery management system [141].
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Frameworks and architectures built using the aforementioned technologies have been
offered by several authors. Using EMU, customers may view their energy use. EMUs
assist users while interacting with the electricity grid. EMU communicates with EVSE
using WLAN as well as Zigbee (802.15.4). Zigbee is a comprehensive solution used by the
majority of smart home environment vendors [143].

Facilities for smart grid programs are available through mobile communications with
several carriers. To facilitate garage charging, EMU as well as power meter makers integrate
digital communication devices. Application data are transmitted at regular intervals,
including pricing and energy usage statistics. The most well-known mobile networks
provide a number of benefits: Since about all mobile networks utilize licensed spectrum,
it is not necessary to use unauthorized bands of the frequency range, and all mobile
networks are fairly configurable in order to link numerous EVs, cellular communication
technologies like 5G are sufficiently forward-looking to encounter the needs of smart
grids. The discussion of numerous trends, possibilities, and modeling techniques for
LoRa technology was done by Mukarram A. M. Almuhaya et al. [144]. For the purpose
of evaluating the LoRa/LoRaWAN efficiency of the system, the writer examined widely
used simulation tools. The LoRa/LoRaWAN efficiency was also categorized by the authors
according to network throughput, network availability, energy usage, service quality,
and privacy.

Wi-Fi is being used by charging points to provide wireless communication among
the electric car, the customer, and the equipment for charging, transforming them into
far beyond a simple charger. In both wireless and wired charging environments, Wi-Fi is
increasingly the most efficient way to manage the charging flow [145]. The development
of electrical vehicle applications has made considerable use of wireless communication
protocols like Zigbee and LoRa. Examples of these applications include the modeling of
EVCS, system configuration for the EV smart charging network, and adoption of SEM with
the help of the network of LoRa.

6.2. Computational Technologies Intended for EVs

The past several years have seen a transformation in numerous industries, including
the healthcare system, education, military, finance, farming, and banking, thanks to com-
puting technologies like big data, artificial intelligence, and block chain. Several datasets
have indeed been subjected to the use of AI technologies like deep learning and machine
learning for forecasting and anticipating outcomes. AI has a part or subset called ML that
imitates human behavior. Labeled data may be analyzed using supervised ML techniques
such as classification and regression. In biology, a part of science and focused marketing
applications, untrained ML techniques including dimension reduction, correlation, and
grouping known as clustering are widely employed. The use of reinforcement algorithms
in car navigation applications is widespread. Robotics for factory automation typically uses
reinforcement learning methods.

A subclass of AI called deep learning methods may be used on unstructured informa-
tion to enable computational methods to gradually learn characteristics from information
at different stages. In ADAS, deep learning methods are widely applied. Researchers
utilize programs like PyTorch, Tensor Flow, and Keras to develop applications for deep
learning. Big data refers to vast quantities of complicated, difficult-to-manage, organized,
and unstructured data that are either impractical or impossible to analyze using conven-
tional techniques. With the expansion of IoT, smart meters, RFID tags, and sensors are
producing enormous amounts of data, necessitating data analysis and interpretation. Big
data analytics and processing are commonly carried out using specified tools like Apache
Spark as well as Hadoop. Blockchain technology keeps track of all payments in a digital
ledger that cannot be altered or compromised [146]. As a new payment occurs, the entry
is recorded in the recipient’s digital ledger. It is a distributed ledger system that records
transactions using an unchangeable cryptographic sign known as a kind of hash. The most
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well-known digital coins that employ blockchain’s distributed ledger system are Ethereum
and Bitcoin.

6.3. ML for Plug-In Electric Vehicles

A common subclass of artificial intelligence used in applications for computer vision
and data science is machine learning. Applications for EVs may benefit from the efficiency
that makes them successful by utilizing machine learning technologies. As EV shipments
have risen quickly, setting up infrastructure like EVSE and properly controlling EVs is diffi-
cult. EVs are preferred because they are energy efficient. EV management and coordination
may be done using machine learning technologies. As shown in Table 5, there are three
different categories of algorithms used in machine learning: supervised, unsupervised, an
reinforcement. Figure 19 depicts the procedures needed to apply ML algorithms to EVs.

Table 5. Various ML types.

Types of ML Purpose

Supervised Regression, Classification, Forecasting

Semi-supervised Labeled as well as unlabeled data

Unsupervised Clustering, Association, and Dimensionality reduction

Reinforcement RNN, ANN
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For load prediction, unsupervised ML techniques including k-nearest neighbors, de-
cision trees, and random forests were utilized. The estimated driving distance of EVs is 
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For load prediction, unsupervised ML techniques including k-nearest neighbors,
decision trees, and random forests were utilized. The estimated driving distance of EVs
is unreliable, and hence an improved BMS is needed to determine how much power
is still available for additional travel. To accurately anticipate the driving distance of
EVs, Yong Wanga et al. suggested the LGBM. The characteristic significance scores are
given in this method in order to determine the link. A model was put out by Donovan
Aguilar Dominguez et al. to forecast when an EV offering vehicle-to-home services will be
available [147]. In order to forecast the accessibility of EVs, ML algorithms have been used
for data pertaining to various car usage profiles, defined by the count of trips done each
week. On the basis of a Bayesian-based probabilistic model, Rafael Basso et al. suggested
time-dependent EV scheduling problems with chance limitations [148].

6.4. Big Data Technologies for EVs

Big data is the term used to refer to the enormous volume, complexity, and wide
variety of information that is challenging to analyze by conventional means. Big data
includes unstructured information, including text files, emails, movies, and audio files [149].
The adoption of carbon-free commuting has been significantly impacted by EVs. Data are
created from a variety of sources, including onboard as well as off-board sensors of different
infrastructures, which are communicated with by PEVs. EVs are indeed generators of this
data. Big data may be utilized to create algorithms, siting plans for charging outlets, and
different BMS rules after it has been saved in cloud servers. Big data technology makes it
easier for EV producers and governments to seize these chances. Organizations are capable
of determining the number of EVs utilizing nearby charging stations thanks to real-time
recharge data from EVs. Peugeot and IBM joined together to provide new associated car
facilities, such as analyzing driving data to benefit merchants and auto dealers. Peugeot can
examine a variety of vehicle and driver data for secure transportation thanks to IBM’s big
data and analytics technology. In smart urban areas, the data obtained can help decision-
makers with road construction and reduce traffic congestion [150]. Driving circumstances
may be adjusted for any hazardous situations avoided with the use of streaming data.

Every 2x years, where x = 1,2,3, . . ., n, the amount of data doubles. The velocity, variety,
and volume of data have expanded as a result of recent IoT developments. Big data is a
result of the enormous quantity of data produced by structures, electric vehicles, and smart
grids mostly with the fastest data transfer speeds. Table 6 lists the distinctions between
conventional and big data. Novel analytical methods are used with vast, diverse datasets
that comprise varied amounts of structured and unstructured data from multiple sources
in big data analytics. Huge amounts of data are generated as a result of the continual
transmission and receiving of information from the infrastructure, passengers, other cars,
and other sources via various sensors both within and outside the automobile. To effectively
use this massive data, sophisticated data analytic techniques are needed in order to extract
insightful and valuable information. The two big data analytics solutions that can be used
to address future big data difficulties are Hadoop and Apache Spark [151]. To manage the
enormous amount of data produced by ESEVs, intelligent electronic devices, and smart
meters, big data analytics is required. Each EV has sensors and electrical components that
track the battery’s operation and charge level.

Table 6. Difference of big data and conventional data.

Big Data Conventional Data

Data Type Structured, unstructured, semi-structured Structured

Data Structure Distributed Centralized

Data Relationship Complex Uncertain

Data Volume Petabytes and zettabytes Terabytes
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Several technologies may be used to store and evaluate the volume of information
produced by diverse sources. Before employing the tools for gaining insights, it is important
to differentiate between big data and regular data. Big data and conventional data are used
with different techniques and instruments. Big data analysis may not be supported by
analytical methods used for conventional data. Big data analytics and processing make
considerable use of the Spark and Hadoop frameworks.

Huge data collections may be processed over computer clusters using Apache Hadoop,
a robust and dependable distributed software system. The architecture is made to expand
from one server to several servers, and the framework additionally recognizes and manages
application layer errors. Modules like Hadoop Common, Hadoop YARN, HDFS, and
Hadoop MapReduce are part of the Apache framework. The HDFS framework’s shared
file system, which has a maximum throughput, is its foundation. Large sets of data are
processed in parallel while being managed by a cluster using MapReduce and Hadoop
YARN. Ambari, Hive, Cassandra, Hbase, and other projects are among the others that are
linked [152]. For working on data-science-related tasks on single-node clusters, Apache
Spark is yet another well-liked framework. Apache Spark’s main strengths include ML
and SQL analytics, as well as real-time streaming information processing. For ad hoc
and dashboarding reporting, Apache Spark could perform SQL queries fast. A variety
of ML and analytics frameworks may be connected with Apache Spark. Hadoop works
well for batch processing because it uses the MapReduce capability to split huge datasets
among clusters for computing in parallel. In contrast, live broadcasting data analysis
makes considerable use of Spark. The security features of Apache Hadoop include LDAP,
ACLs, and more. Hadoop provides essential protection for Spark. The big data of electrical
vehicles are made up of information from PEVs, charging stations, and infrastructure, and
it has to be analyzed using big data analytic software that runs across a cloud service.
The charging status of the car may be checked via smartphone applications created by
automakers. Data are mostly produced by the vehicle’s electronic components and sensors.
Based on EV users’ charging habits and tendencies, genuine government businesses can
deploy charging stations using big data. For upcoming initiatives, enormous and diverse
amounts of created data may be kept on the cloud.

Applications like battery monitoring, determining the best location for placing charg-
ing points, and checking PEV performance may all benefit from big data analytics. Big data
analysis using conventional statistical techniques and algorithms does not yield relevant
information. The absence of publicly accessible actual data regarding EVs and equipment
is one of the problems with big data. For the direct contact of the electrical vehicles with the
remaining infrastructure, effective and safe data analytics methodologies and technologies
are needed.

6.5. Blockchain Technology for Electric Vehicles

A blockchain eliminates the need for a centralized authority to authenticate pay-
ments among two or more entities by distributing a digital ledger over a public or private
computer network. The ledger will then be updated when each transaction has been
computationally encoded, confirmed by many arbitration methods, and inserted as a new
part of the record chain. Vehicles that utilize blockchain technology may process payments
quickly. A hash known as SHA 256 is utilized to capture blockchain payments and to
confirm the legitimacy of the transaction. Blockchain is a game-changing innovation in the
fields of finance, medicine, and network security. The EV industry may be significantly
impacted by blockchain technology [153]. Figure 20 displays the publishing data on the
usage of blockchain for electric vehicles.
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Furthermore, it has an upward trend, demonstrating its attractiveness for EV applica-
tions. Figure 21 depicts the whole blockchain infrastructure for EV applications. Making
use of blockchain tools for EV-based applications will accelerate the growth of the EV sector.
The blockchain design for EV infrastructure is shown in the upper diagram. In a blockchain
network, V2X commutations including vehicle-to-access-point techniques are frequently
employed. Every mobile entity in the structure will have its own ID. Access or node points
must be positioned at periodic intervals because they are the electronic components that
can gather information from EVs. The EVs’ integrated sensors provide data to the access
points utilizing a variety of wireless communication methods on a continual basis. These
characteristics include battery level, vehicle status, billing for recharging, and others. The
records are viewed as blocks by the entry points throughout the blockchain system, and ev-
ery access point should confirm the payment to maintain transparency. The transportation
consultants connect to the blockchain system to continually monitor the state of the EVs
and deliver to the EV owner individualized advice.
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The advantages of implementing blockchain technology towards EVs include the
ability to instantaneously verify payments through automated approvals and the processing
of EV payments through the execution of contracts with the terminal based on the user’s
preference. Blockchain apps may be created on a variety of blockchain platforms. The
prominent blockhead systems are shown in Table 7 [154] and include the Ethereum, XDC
network, Hyperledger Fabric, Ripple, R3Corda, and others.

Table 7. Blockchain systems grouped by ledger and industry type.

Blockchain Platforms Industry Type Ledger Type

XDC Network Cross-Industry Permission-less

Ethereum Cross-Industry Permission-less

Hyperledger Fabric Cross-Industry Permissioned

R3 Corda Financial Services Permissioned

Ripple Financial Services Permissioned

Ethereum is considered a decentralized P2P blockchain platform that generates a
network for safely running and validating software code, or “smart contracts”, over the
internet. The Ethereum virtualized engine and Solidity programming language may be
used to create incredibly adaptable decentralized applications [155]. The application code
for smart contracts is built in Solidity as well as Vyper and is stored at a particular location
on the blockchain. In Ethereum, a payment is defined as a verified data package containing
a text to be transmitted from a third-party account. Upon Ethereum, apps that are both
economic and semi-financial may be created. The first ever distributed platform to enable
smart contracts created in Go, Node.js, and Java is Hyperledger Fabric.

Because the Fabric interface is permitted, players might not even entirely trust each
other; however, a governance entity is based on the level of faith that exists among them.
The pluggable administration identity methods used by Hyperledger Fabric include LDAP
and OIDC. Blockchain technology may be used to solve issues including a lack of account-
ability in trade processes, according to [156]. In toll booths, blockchain may be utilized
to handle payments automatically. E-wallets are being created by several businesses to
process payments. PEV owners have the option of using smart contracts to supply surplus
energy to charging points and using e-wallets or digital payments to pay their bills. Table 8
provides a comparison between Ethereum and Hyperledger Fabric.

Table 8. Comparison between the Ethereum and Hyperledger Fabric frameworks [157].

Hyperledger Fabric Ethereum

Private vs. Public Private Public

Governance Federated Decentralized

Permission Permissioned Permissionless

Smart Contract Languages Javascript (Node.js),
Java, Go Vyper, Solidity

Private Transactions Yes No

Consensus Mechanism Pluggable BFT Proof-of-work

Speed 3000 Tps 15 Tps

Blockchain additionally enables producers to keep an eye on inconsistencies when
raw resources for EV manufacturing are delivered to the facility. Some writers put forth
frameworks and regulations for blockchain-based EV energy-selling platforms. For im-
proved prediction and analysis with accountability, deep learning, and machine learning
technologies could be used alongside blockchain knowledge.
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6.6. EV Security Considerations

Because of their simplicity of use, EVs are presently utilized by a large number
of individuals in city and semi-city locations all over the world. Throughout the last
few decades, numerous automakers have been producing plug-in EVs. EVs emit little
greenhouse emissions and cost less to operate and maintain. By reselling the power that is
retained in their car’s battery packs to the grid, EV owners may make money. The expense
of battery packs, timing battery changes, access to charging stations while going to remote
locations, and a strain on electric networks during peak charging times are all negatives of
utilizing EVs. No matter whether it is a BEV or a PEV, every EV has a number of electrical
systems and pertinent system software to communicate with the sensing devices and other
equipment both within and outside of the car. To reduce the dangers associated with EV,
both software and hardware protection is crucial. EVs may transmit signals and messages
to other cars, passengers, and equipment to interact.

The linked devices come with some amount of danger. Connected vehicles use the
Internet to transmit critical data further about drivers as well as other mobile units to
an external infrastructure. Cybersecurity threats on connected vehicles grew seven-fold
in 2019 [158]. The majority of connected and EVs depend upon embedded software to
effectively manage and run the systems. An attacker can take advantage of security flaws
to disable the brakes, take over the steering, and disable sensors, cameras, and ECUs, as
well as access the private data of the equipment and other cars. The majority of connected
vehicle and EV users operate navigation systems and other Bluetooth-related functions
via smartphone applications, which could enhance the potential threat. Now, the biggest
worry is the safety of EV battery charging. To interface with EVSE, an app is necessary for
charging. The EVSE’s constituent parts, such as firmware upgrades, physical connectivity,
the line of connection between the EVSE and the car, and the mobile app are used by the
driver of the car to monitor charging.

For EV protection, different automobile companies are using different coding protocols.
The automobile industry uses ISO21434 [131] to lessen the risks associated with cyber
security. It is difficult to minimize a few of the problems with cyber security concerns due to
the intricate ecosystem of EVSE and EVs. The main difficulties are access and authorization
control, individuality and connection management, and limits of the equipment and
communication routes. A variety of threats against EV infrastructure, including rejection
of service, latency attacks, and Sybil attacks, demonstrate a sociological, physical, and
digital impact. By employing the aforementioned techniques, the attackers can disrupt
connectivity on a more general or collective level. They can also create disruptions by
demanding power at the wrong times, and they can duplicate ID credentials for a variety
of uses. In order to secure data transfer between the charging point and the EVs, defense
scientists have suggested authentication mechanisms. The authors of [159,160] covered
several security-related topics, risks, and the risk paradigm in the EV charging network.
The writers also contrasted several safekeeping methods that provide capabilities for
invoicing, protected payment, and verification. A verification protocol that offers straight
authentication procedures between several components was presented by Farooq et al. [161].
For EV charging networks, a method was created by Hamouid et al. The standard also offers
other benefits like anonymous and quick verification in addition to hiding the position
of the EV throughout the whole charging procedure. To reduce the cyber security threats
in the smart grid field, some researchers have presented security-related procedures for
diverse reasons. The economic analysis of dynamic charging suggests that this technology
could have significant cost savings for governments, fleet operators, and individual electric
vehicle owners. By reducing the need for public charging infrastructure and enabling
the electrification of previously impractical routes, dynamic charging could accelerate the
adoption of electric vehicles and reduce greenhouse gas emissions.
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7. Conclusions

In this paper, dynamic charging is treated as a favorable technology that has the
potential to address the issue of range anxiety in electric vehicles. The economic analysis
suggests that this technology could have significant cost savings for various stakeholders.
The authors spoke about several computational as well as communication protocols and
how they are used in the EV field. The emphasis lies on using EV industry standards and
protocols in a variety of situations, including allowing charging periods, paying, running
the charge depot, controlling the grid, and advanced charging use cases. For effective
data transmission and security, V2X networking uses a variety of wireless connectivity
protocols, including BLE, Zigbee, Lora, and Wi-Fi. In the article, use cases for commu-
nication technologies within the IoEV area were covered. To forecast charging behavior
and locate charging stations in the best possible locations, computational methods like
neural networks and ML are deployed. In addition to the aforementioned two use cases,
ML algorithms may track the driver’s behaviors and battery state. The use of big data
technologies for the data obtained in the EV sector is also covered in the study. To help
authors and researchers identify gaps in the EV study area and effectively perform their
study, the authors have undertaken a thorough literature review on communication and
computational technologies. For effective V2V, V2I, and V2P communication, a variety of
standards and protocols are accessible. Deep learning and machine learning may be used to
make decisions and predictive analytics to manage EV charging. For secure and transparent
operations, energy trading platforms for EVs can leverage blockchain technology. In order
to create frameworks, structures, and regulations for improved future prospects, the EV
sector may employ each of the technologies and communication protocols stated above.
Further research is needed to explore the economic implications of dynamic charging in
different contexts and to identify any potential barriers to its widespread adoption.
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