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Highlights:

What are the main findings?
• A proof of concept of a smart energy management system in a smart home. Using the reinforcement

learning technique, we optimise energy use, avoiding non-renewable sources as much as possible
and predicting the critical moments of lower energy production.

• Multiagent reinforcement learning individually manages each of the smart home services (lights,
fridge, etc.) so that it is possible to dynamically switch off or shift the period of operation to
different slots depending on the energy production.

What is the implication of the main finding?
• The use of intelligent techniques to manage the services of a smart home allows optimisation of energy

use, exploiting peak times of possibly unused energy generation (e.g., PV solar) while minimising
the use of non-renewable (petrol generator) or costly (grid peak time, batteries) energy sources.

• By dynamically determining an optimal schedule for smart home services by prioritising green
energy sources, a reduction in carbon emissions is implicitly achieved, since less prioritised
(carbon-based) energy sources are exceptionally used.

Abstract: Reducing carbon emissions is a critical issue for the near future as climate change is an
imminent reality. To reduce our carbon footprint, society must change its habits and behaviours
to optimise energy consumption, and the current progress in embedded systems and artificial
intelligence has the potential to make this easier. The smart building concept and intelligent energy
management are key points to increase the use of renewable sources of energy as opposed to fossil
fuels. In addition, cyber-physical systems (CPSs) provide an abstraction of the management of
services that allows the integration of both virtual and physical systems in a seamless control
architecture. In this paper, we propose to use multiagent reinforcement learning (MARL) to model the
CPS services control plane in a smart house, with the purpose of minimising, by shifting or shutdown
services, the use of non-renewable energy (fuel generator) by exploiting solar production and batteries.
Furthermore, our proposal dynamically adapts its behaviour in real time according to current and
historic energy production, thus being able to handle occasional changes in energy production due to
meteorological phenomena or unexpected energy consumption. In order to evaluate our proposal,
we have developed an open-source smart building energy simulator and deployed our use case.
Finally, several simulations with different configurations are evaluated to verify the performance.
The simulation results show that the reinforcement learning solution outperformed the priority-based
and the heuristic-based solutions in both power consumption and adaptability in all configurations.

Keywords: Internet of Things; edge computing; cyber-physical system; reinforcement learning;
energy management
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1. Introduction

With the rapid evolution of computer systems, high demand, and performance
requirements, the manufacture of embedded devices has advanced dramatically over
the past decades, reducing costs to historic lows while providing acceptable performance.
Low-cost embedded devices have enabled the development of new technologies, greatly
encouraging and simplifying the deployment of sensors and devices among us. Together
with the successful adoption of embedded systems in our society, new paradigms such
as cloud computing, Internet of Things, and edge computing have emerged that aim to
modernise [1] the behaviour of digital interactions in our daily habits. In addition, the
requirement to enable devices to operate independently has led to the development of new
artificial intelligence techniques [2,3] to increase the reasoning capabilities of devices.

One of the approaches of increasing interest in Industry 4.0 is cyber-physical systems [4].
Cyber- physical systems (CPSs) are computer control systems that deeply integrate computation
and physical components to provide an abstraction of control components [5–7]. The
integration of CPS in smart systems facilitates the optimisation of power consumption [8],
which makes them particularly useful for the design of zero-energy buildings [9], smart-
grids, and smart-cities [10]. Energy management is a fundamental aspect of all intelligent
systems in order to reduce carbon emissions [11]. It is also important to increase the use of
renewable energy sources rather than fossil fuels, either by increasing the installation of
clean energy sources or by shifting consumption from fossil to clean production schedules.
Furthermore, energy optimisation has proved to be an issue of great relevance in Europe
recently [12] due to the past energy crisis caused by rising gas prices [13].

The aim of this work is the intelligent energy management of a smart building [14–16],
as it is an important objective of the European energy strategy [17]. Among the artificial
intelligence methods, reinforcement learning (RL) approaches are widely used as a machine
learning control technique [18]. There are several proposals in the literature that use
reinforcement learning to manage energy consumption by shifting energy consumption [19,20]
to reduce final consumption [21], battery usage [22–24], or energy cost [25], and some of
them even use fuzzy reasoning techniques [26,27] and user-preference rules [28]. Nevertheless,
there is no proposal that combines both CPS and RL for the energy management and
optimisation of a zero-energy isolated house with fixed, shiftable, and optional energy
consumptions associated with different services. As discussed in the next section on
related works, many articles focus on the large-scale use of their proposals (smart grid,
smart building) rather than houses, which neglects an important and promising use case.
Moreover, our proposal includes the control of not only typical devices (e.g., HVAC,
refrigerator, and lights) but also cyber-physical systems and even direct digital services
that have a consumption associated with their operation (e.g., game servers, containers,
and dashboards). In addition, as there is no direct connection to the grid, energy decisions
are even more critical because the aim is to avoid completely draining the batteries at all
costs, in which case, a generator would be used as an emergency measure.

Therefore, the main contributions of this work are the following:

• A smart home use case was designed with a set of services deployed, which include
both virtual services and those associated with physical devices.

• Three standard control algorithms for CPS services (basic, priority, and greedy)
are presented.

• A control system for CPSs based on reinforcement learning that responds to the status
of power generation in real time is proposed.

• An open-source dynamic and extensible smart-building energy simulator was developed
to deploy the proposal.

• The performance of the proposal was compared with the basic, priority, and greedy
alternatives, showing that the proposed solution is superior in performance and
flexibility to the other algorithms.
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The rest of this paper is organized as follows. In Section 2, we explore the state of the
art of energy management in buildings. In Section 3, we introduce the energy orchestrator
with its main components. In Section 4, we present our proposals, including a reinforcement
learning approach to energy management. Then, in Section 5, we evaluate the proposed
algorithms in different scenarios and analyse the results. Finally, the conclusions and future
work are presented in Section 6.

2. Background

Energy management in buildings and smart houses plays a crucial role in optimizing
power consumption and enhancing overall efficiency, as evidenced by the variety of
solutions proposed by researchers. In this section, we present an overview of the state of
the art of energy management algorithms in buildings/smart houses, categorizing them
based on their underlying methodology.

2.1. Data-Analytics-Based Algorithms

Data-based algorithms leverage well-known numerical and data mining techniques
such as time series analysis, machine learning, and pattern recognition to extract meaningful
insights from the information collected. By analysing historical and real-time data, these
algorithms are able to detect simple patterns, enabling accurate forecasting, anomaly
detection, and optimisation of energy.

Time series analysis is a classical method used to analyse patterns within a sequence
of data points collected over a time interval. Techniques such as autoregressive integrated
moving average (ARIMA) models, seasonal decomposition of time series (STL), and Fourier
analysis are commonly employed to identify trends, seasonality, and other temporal
patterns. In [29], Nepal et al. propose a hybrid model comprising ARIMA and a clustering
technique (K-means) to forecast the electrical load of university buildings. They claim that
combining clustering and ARIMA increases forecasting performance compared with using
ARIMA alone. Also, Panapongpakorn and Banjerdpongchai [30] use ARIMA together
with neural networks to implement a complex long-term load forecasting system and
compare the performance using statistical criteria of three versions of their hybrid models to
determine which is best for a micromanagement system. Furthermore, Di Silvestre and Riva
Sanseverino [31] design an optimisation energy storage model using Fourier analysis for
optimal power dispatch problems in smart grids and conclude that the results of different
applications on a medium-sized system show that the proposed variable representation is
quite effective and constitutes the first step towards a new way of formulating variables in
dispatch problems.

Model Predictive Control (MPC) is a well-established method for constrained control.
It utilizes a mathematical model of the building and its energy systems to predict future
consumption and optimize control actions. MPC can consider various parameters, including
occupant comfort, weather conditions, electricity prices, and equipment constraints, to
achieve optimal performance. One notable work in this area is in [32], which provides an
in-depth overview of MPCs and presents a clear and robust framework summarizing
the necessary steps to formulate the control problem, especially for the control and
management of thermal needed in buildings. In addition, in [33], they use MPC logic,
based on weather forecasts, for the analysis of loads in an off-grid domestic system. Their
control strategy has the objective of minimising final costs while maintaining optimal
environmental comfort in the house, thus optimizing the use of renewable sources. They
also compare their system with a standard rule-based system to conclude that their
proposal reduces the use of fossil-based power and outperforms the rule-based control.
Likewise, Zhou et al. [34] present a similar approach to the previous one, intended for
a predictive energy management strategy of a smart community, but in this scenario, they
use the information obtained from intelligent transport systems to estimate the upcoming
occupancy of the building to anticipate peaks in consumption due to the charging of electric
vehicles (EVs).
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Support Vector Regression (SVR) is a machine learning-based regression method
especially useful for load forecasting. It is particularly effective in handling non-linear
relationships between input variables and power consumption. SVR utilizes a subset of
training data called support vectors to construct a regression model, enabling accurate
prediction of future demand. An example of this is the works in [35,36], which propose
the use of SVR to estimate the energy consumption in the first case of a laboratory and in
the second case of buildings in a specific region of China. Both papers conclude that with
sufficient historical information, SVR is able to identify patterns and accurately predict
future demands, enabling effective electricity management and optimisation. In certain
cases, such as highly non-linear sample space, the use of standard SVR is not sufficient to
build accurate models. For this reason, Zhong et al. [37] propose to modify the common
modelling strategy in order to use multiple mappings to transform between feature spaces
and finally approach the optimal feature space, since a single mapping cannot guarantee
that the corresponding feature space is optimal.

Bayesian networks (BNs) are probabilistic graphical models that utilize directed acyclic
graphs (DAGs) to represent and reason about uncertain knowledge and dependencies.
In [38], they present a BN technique applied to select the most energy-efficient primary
HVAC unit, rather than using a traditional system based on a designer’s knowledge and
experience. They show that after properly training the BN, the result is similar to traditional
systems but with higher efficiency, and the study also proves the feasibility and capability
of data-driven building design. Similarly, Shoji et al. [39] briefly describe how to use BNs to
learn user behaviour patterns so as to prioritise the operation of some household appliances
under power consumption restrictions. Moreover, Amayri et al. [40] propose a Bayesian
network-based approach to determine occupancy sensing in buildings. By leveraging
sensor data and historical occupancy patterns, the algorithm intelligently adjusts heating
systems (hot water production), resulting in substantial energy savings.

Clustering methods such as k-means clustering and hierarchical clustering are used to
group similar patterns together. By identifying clusters or segments in data, these techniques
facilitate the creation of energy profiles and enable the development of customized management
strategies for different user groups or building types. Thereby, Ayenew et al. [41] use K-mean
to understand and predict the aggregate load of substations in an urban area of Ethiopia,
where frequent power outages are caused by overloaded transmission and distribution
systems. With their proposed solution, they are able to identify intermediate and super-peak
demand hours and potential customers for price-based demand load shifting management,
showing that an increase in electricity prices at peak hours leads to a reduction in electricity
demand, and therefore, the load can be reduced, improving the reliability and stability of
the grid. In the same fashion, Ayub et al. [42] implement a load scheduling algorithm based
on K-mean clustering and integer linear programming to schedule consumers’ appliances
for the following day. They evaluate the proposal using a publicly available real dataset, and
the simulation results show that the approach works better, thus increasing the confidence
and continuity of the system.

2.2. Optimisation-Based Algorithms

Optimisation techniques are widely used in many decision problems, including energy
management, where the best possible result for a given defined problem. Research has
focused on various optimisation approaches, such as linear programming, MILP, dynamic
programming, and genetic algorithms.

Linear programming (LP) is a frequently used technique for solving optimisation
problems. It involves formulating an objective function and a set of linear constraints to
optimize resource allocation and power usage. Umetani et al. [43] develop an LP-based
algorithm on a time–space network model for scheduling the charge and discharge of
electric vehicles within a limited computation time. After comparing their proposal with
the results obtained with an exact MILP solver, they show that it is possible to use heuristic
methods based on LP to solve complex optimisation problems quickly and with results very
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close to the optimal one. Similarly, Bio Gassi and Baysal [44] formulate a complex LP model
combining electricity, heating, and cooling to control a microgrid energy management
system with particular consideration of storage systems, such as batteries, as they are an
important aspect [45] of this type of problem.

Mixed-Integer Linear Programming (MILP) extends linear programming by allowing
decision variables to take discrete values. MILP is particularly useful for problems that
involve binary decisions or discrete choices and is much more widely used in optimisation
systems than LP. A notable work that makes use of MILP in power management is [46],
which presents the modelling and design of a modular energy system and its integration
into a grid-connected PV–wind–battery-based hybrid microgrid. The scheduling model is
a power generation-side strategy, defined as an MILP by taking into account two stages for
proper charging of the storage units based on 24-h ahead forecast data. Following the same
approach, Javadi et al. [47] design a Home Energy Management System (HEMS) based
on MILP for optimal self-scheduling in the presence of photovoltaic power generation
and batteries.

Dynamic programming (DP) is a method for solving optimisation problems by breaking
them down into smaller subproblems and recursively solving them. Tischer and Verbic [48]
use dynamic programming for smart home control, which is equipped with a fuel cell
used for heat and power cogeneration, a PV system, an electric car, a battery, and a storage
unit for thermal energy. Through simulations they show that their algorithm obtains good
results even though its computational speed is slow, they also discuss how to decrease the
computation time by approximating the influence of random variables. In addition, DP
is quite useful for solving battery charging problems in home scenarios [49] and electric
vehicles [50], as it provides a way to choose the most appropriate way to charge batteries
while minimising costs and maximising lifetime.

Genetic algorithms (GA) are nature-inspired optimisation techniques; these algorithms
employ principles of natural selection, crossover, and mutation to search for optimal
or near-optimal solutions in complex optimisation problems with low computational
requirements. The use of GA is more common in the scheduling and shifting of consumption
in houses or buildings, as can be seen in the works of [51,52]. Additionally, Arabali et al. [53]
propose a GA-based strategy to meet the controllable heating, ventilation, and air conditioning
(HVAC) load with a hybrid-renewable generation and electricity storage system.

2.3. Artificial Intelligence-Based Algorithms

Artificial intelligence (AI) techniques have revolutionized energy management techniques
by leveraging large datasets and complex algorithms. These techniques enable intelligent
decision-making, anomaly detection, and adaptive control in a direct and precise manner.

Decision trees are simple yet effective machine learning algorithms used in management
for tasks such as consumption prediction, fault diagnosis, and load classification, they are
based on the recursive partitioning of data according to different attributes, enabling the
generation of rules that guide the decision management system. Ferrández-Pastor et al. [54]
propose a web-based system for automated forecasting of electricity consumption for
multiple instances (buildings) using a decision tree approach that includes conditions based
on available variables (electricity consumption, building condition, outdoor temperature, etc.).
They indicate a decrease in forecasting error (up to 1.75 times) due to the usage of a decision
tree for forecasting model selection Additionally, in [55], a similar work is presented but
with a special focus on IoT systems, where the benefits of these proposals can be completely
exploited. They include, besides the estimate of future consumption, the weather forecast,
as the scheme includes generation by solar panels and wind turbines, and conclude that IoT
infrastructure architecture should be a requirement for such systems in order to perform at
their best.

Gradient boosting algorithms, such as XGBoost (extreme gradient boosting) and
LightGBM (Light Gradient Boosting Machine), are algorithms that iteratively build an
ensemble of weak predictive models, each focused on minimising the errors made by the
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previous models. Gradient boosting algorithms excel at capturing complex patterns and
achieving high prediction accuracy. As can be seen in [56], in the context of consumption
forecasting, there are several different models (for example, LightGBM, CatBoost, and
XGBoost) that can be used to develop solutions. In the aforementioned work, each of
them is examined and tested with different hyperparameters to determine which one is
the most suitable or at least which one works best for a particular type of data, concluding
that XGBoost performs best when trained on the selected dataset. Moreover, Lu et al. [57]
design a short-term prediction of consumption in an intake tower employing an improved
extreme gradient boosting model and compare the performance of the method with five
benchmark models, showing that the mean absolute percentage error of the proposed
model is 4.85%, the lowest of all models. Also, in [58], the three common gradient boosting
methods mentioned above are used in order to implement a control and forecasting
solution in a solar power plant in a smart grid, and after proper training and comparison
using various methodologies, they demonstrate how gradient boosting methods offer
considerable advantages such as high accuracy and fast learning.

Among all the techniques already cited, artificial neural networks (ANNs) are probably
one of the most important in current research, not only in energy management but also
in many other areas [59]. In the context of electricity management, the ANNs are useful
because they can be trained using historical data to predict future demand with high
accuracy. There are a large number of architectures and classes of artificial neural networks,
including fully connected networks, radial basis function networks, feedforward networks,
convolutional networks, recurrent networks, and many more. An example of a fully
connected network (three-layer backpropagation architecture) is shown in [60], where
the authors develop a system to optimally regulate the equivalent factor, a critical scaling
factor that determines the proportion of power consumed from fuel and the battery, of
plug-in hybrid electric vehicles. On the other hand, a deep recurrent neural network
(RNN) is presented in [61] for short-term building energy predictions, serving as a basis for
any other control algorithms that use these predictions in making decisions to optimise
electricity consumption or reduce the use of non-renewable sources. Another promising
approach is the use of convolutional networks to extract features from data, rather than
images, to implement management systems. For example, in [62], the authors propose to
use a deep residual convolutional neural network (CNN) to extract spatial features from
electricity data to predict future loads. They also implemented a Long Short-Term Memory
(LSTM) network to learn the temporal information and a Gated Recurrent Unit (GRU),
performing several experiments with each model and evaluating them with additional
Coefficient of Variation of the RMSE (CV-RMSE) metrics.

Reinforcement learning (RL) has gained significant attention in energy management,
especially those involving HVAC (Heating, Ventilating, and Air Conditioning) systems,
due to its ability to easily learn optimal control policies through interaction with the
environment [63–65]. In fact, RL is a very popular technique in current research, and there is
a growing number of works that use it to dynamically solve all kinds of control problems [66,67].
It was generally used to solve problems in vehicle control and motion-based systems,
but its potential was gradually realised in other areas where the actions of an intelligent
system need to be optimised, standing out for being a very dynamic method that can
adapt easily. In particular, the approaches used for electricity management take advantage
of the adaptive capabilities of RL, based on the rewards received for each action, to
iteratively learn the best decisions for any possible state. For example, in [68] an RL
algorithm is used for real-time scheduling of a microgrid, considering the uncertainty
of the load demand, renewable energy, and electricity price, with the aim of finding
an optimal scheduling strategy to minimise the daily operating cost of the microgrid.
Also, in [20], it is used in the same way to intelligently schedule the power usage of
a house, but in this case, a feedforward neural network (FNN) is also added to increase the
performance of the proposal by allowing the RL agent to use the FNN to predict upcoming
energy consumption data. On the other hand, reinforcement learning can also be used
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for the electric management of electric vehicles (EV/HEVs), as has been carried out in the
other works mentioned above. Weihan Li et al. propose, in [69], an energy management
strategy based on deep reinforcement learning for a hybrid battery system in electric
vehicles, characterising the battery cells electrically and thermally; they aim to minimise
the energy loss and increasing both the electrical and thermal safety level of the whole
system. Furthermore, they compare their deep Q-learning-based solution (using neural
networks) with a classical Q-learning algorithm, and they report that in the HEV scenario,
the deep-based method obtains better results.

2.4. Hybrid Algorithms

Integrated approaches combine multiple algorithmic techniques to harness their
synergistic benefits. For example, Fan et al. [70] combine Bayesian networks and deep
reinforcement learning to optimize the reliability of gas supply in natural gas pipeline
networks, Bisen et al. [71] proposed a hybrid model based on convolutional neural
networks and a modified k-mean clustering method for mobile edge computing, and
Kuppusamy et al. [72] implement an energy management system solution based on
a modified J48 decision tree algorithm with fuzzy logic principles.

2.5. Our Contributions

In conclusion, energy management algorithms in buildings and smart houses have
evolved significantly with advancements in IoT, machine learning, and data analytics.
The discussed papers highlight various technologies, each with its own advantages and
disadvantages, employed in energy management algorithms, including IoT, machine
learning, data analytics, and hybrid approaches. These algorithms contribute to optimizing
consumption, reducing costs, and improving sustainability in buildings and smart houses.

Among all the methods mentioned, those based on reinforcement learning are
particularly promising and easy to implement in real-life settings. As presented above,
there are a wide variety of techniques for addressing optimisation problems applied to
decision systems, but most of them need to be designed with high precision and detailed
knowledge of the scenario in which they are to be applied, which limits their flexibility and
portability. Only those based on artificial intelligence or machine learning can be applied
in dynamic scenarios where the possible states are not known in detail, and among them,
reinforcement learning stands out for its flexibility and ability to learn on the fly without
the need to define the agent’s behaviour beforehand.

For that reason, the present work focuses on RL and applies it to a specific environment
for managing devices, CPSs, and services in an isolated smart home with batteries, solar
panels, a generator, and no connection to the grid. Thus, the algorithm will dynamically
detect, using the rewards of each action taken, which are the best decisions for each moment
taking into account the state of energy production and with the aim of optimising the use
of electricity and avoiding the use of the gasoline power generator. One of the key aspects
of our proposal is the integration of CPSs into the system so that both virtual services
and physical devices are considered equally and managed by a multiagent reinforcement
learning system. Furthermore, considering a scenario without a grid connection is also
important, as none of the analysed proposals contemplated the possibility of a system
being isolated from the energy grid. As a result, they did not address situations involving
critical energy demands and the possibility of a power outage.

3. Energy Orchestrator

Our proposed system consists of an isolated house that has no external energy sources
(grid) and therefore relies on solar panels, batteries, and a generator. The main source
of energy of the system is the solar panel array which produces electricity when there is
enough sunlight and stores the excess energy in a battery rack. When solar production
decreases, the inverter supplies the energy needs of the system by discharging the batteries.
Occasionally, this causes the batteries to discharge completely, reducing the battery lifespan
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and forcing an abrupt shutdown of all system services. To prevent a no-power state,
a generator is available which can exceptionally be used when the energy level of the
batteries is very low to power the system until the batteries are sufficiently charged. Figure 1
illustrates the energy sources and the components of the energy supply system.

Figure 1. Energy supply system.

For this reason, energy management is crucial to avoid draining the batteries overnight
and to take advantage of peak solar generation; therefore, we design a control plane for
the services that will adjust the status of the services according to energy production and
consumption. The control plane is deployed over the system as a service orchestrator
focusing on energy management.

The services managed by the orchestrator are both virtual (video streaming) and physical
(fridge, pool pump) services, and are therefore modelled as cyber-physical services with
a defined power consumption per hour (Wh) and an execution rule (on/off timetable and
maximum run time).

In addition, CPS services can be separated into two groups depending on whether the
orchestrator manages them intelligently. The non-manageable services are those that
the orchestrator cannot dynamically control their operation, so they are restricted to
controlling their on/off switching according to their defined daily execution schedule
(execution rule). On the contrary, manageable services are those that the orchestrator can
manage intelligently, shutting them down when needed (low energy or unexpected load) and
shifting their execution (peak solar generation) according to the current energy status, the
service priority, the service execution schedule, and the maximum time allowed for the
execution of the service.

Furthermore, the orchestrator also considers the existence of unexpected events that
make the energy supply more complex and force it to take actions to reduce or shift energy
consumption. For example, unexpected events can be a reduction in solar production
on cloudy days, the punctual connection of a high power demand device to the system’s
power grid, or the complete draining of the batteries. Figure 2 summarises the proposed
system components and some example services.
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Figure 2. Proposed system.

4. Proposed Approaches

In this section, we present our energy orchestrator approaches. Figure 3 provides an
overview of the architecture of the proposed control algorithms. The energy orchestrator
receives every minute information about the state of energy generation and consumption of
the services provided by the simulator or real-world sensors. At each information update,
the orchestrator generates a set of events that it sends to the control plane, where the main
interface of the service controller receives it.

The service controller will collect event information and then make control decisions
on the services in each timeslot according to the behaviour of the specific controller
implementation. Timeslots are user-defined time intervals, e.g., 60 min, where the control
algorithm will only collect information for decision-making at the beginning of the next
timeslot. In the following subsections, we explain the proposed methods in detail.

Figure 3. Orchestrator architecture.

4.1. Basic Approach

The most basic service orchestration algorithm we propose is the Basic method, which
is limited to keeping the services always on according to their execution rules. Therefore, in
each timeslot, the controller will iterate through the list of deployed services and for each
of them check its execution rule to determine if it can be switched on or not.
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This method is neither practical nor efficient, but it provides an upper bound on
the bad performance of the methods that we use for comparison with other solutions
in the results section. Furthermore, this method can be seen as a comparison with an
ordinary scenario where there is no service orchestrator and the services execution rules
are controlled by standard plug-in time switches.

4.2. Priority-Based Approach

As a first approach to the service orchestrator, we developed a simple algorithm that,
when a critical energy level is identified in a timeslot, sorts the services by priority and
turns off the lower priority services, and when the energy production increases, it turns
them back on in order of priority.

Algorithm 1 shows the complete functionality of the proposed method. It starts
initially by defining at 0, a variable (position) that will be used to determine the position of
the last service with the lowest priority turned off (starting from the end of the list of services
sorted from highest to lowest priority). Then, in each timeslot, a reduction factor (bR) of the
current battery level will be calculated between 0 and mBL, depending on the current
position with respect to the defined number of services.

After that, the method determines whether the energy state is critical or normal by
checking if the average battery level is lower or higher than their respective thresholds
minus the battery reduction factor. If the energy level is critical, the variable position is
increased by one (up to the number of services) to turn off the next lower-priority service;
otherwise, the variable is reduced by one (minimum 0) to turn on the last lower-priority
service turned off. This algorithm has a linear computational cost of order O(n).

Algorithm 1: Priority-based Algorithm
Parameters: list of services sorted by priority svcs, average battery level percentage aBL,

low battery threshold lBT, high battery threshold hBT, battery level modifier
mBL

1 begin
2 position← 0
3 for each timeslot t do
4 // Battery reduce factor

5 bR← mBL ∗ ( position
|svcs| )

6 // Critical level of energy
7 if aBL < lBT − bR then
8 position← max(position + 1, |svcs|)
9 // Normal level of energy

10 else if aBL > hBT − bR then
11 position← min(position− 1, 0)
12 end
13 // Services sorted from high to low priority
14 for i← 1 to |svcs| do
15 if i ≤ |svcs| − position then
16 Turn on the service svcsi
17 else
18 Turn off the service svcsi
19 end
20 end
21 Wait until the end of the time slot
22 end
23 end

Figure 4 shows an example of the possible states that the algorithm can have for certain
parameters.
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Figure 4. Example of priority-based algorithm states (parameters |svcs| = 3, hBT = 45%, lBT = 20%
and mBL = 15%), when turning off or turning on lower priority services (upper and lower arrows).

4.3. Greedy Approach

A common technique for solving computational problems is Greedy algorithms, which
are based on the use of heuristics to directly determine sub-optimal solutions. The major
advantage of these methods is that they require little computational resources and execution
time to achieve local solutions that are often very close to the optimal solution.

As an alternative and more dynamic approach, we also designed an algorithm that
activates or deactivates services by comparing their heuristic value with the heuristic value
of the environment. Consequently, in each timeslot, the algorithm will determine the
heuristic value of the environment and the heuristic value of each service to compare them
and turn off all services that have a value below the environment value. Figure 5 shows the
value of the heuristics of some services together with the value of the environment from
the result of an example simulation.

Figure 5. Example of heuristic values in the simulator.

The heuristic value of the environment is defined as a threshold given by the square
of the inverse battery level. On the other hand, the value of each service is defined as
the product of a constant, the square root of its priority, and the power of eight of its
consumption relative to the battery. The complete control process for each service is
detailed in Algorithm 2, and the computational complexity of the method is O(1) and is
executed by each of the services individually.
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Algorithm 2: Greedy Algorithm per Service
Parameters: daily minimum battery level percentage mB, trade-off constant C, priority of

the service p, power consumption of the service pC, and the total battery
storage capacity bC

1 begin
2 for each timeslot t do
3 threshold← (100−mB)2

4 heuristic← C ∗ √p ∗ (1− (pC/bC))8

5 if heuristic < threshold then
6 Turn off the service
7 else
8 Turn on the service
9 end

10 Wait until the end of the time slot
11 end
12 end

4.4. Reinforcement Learning Approach

As seen in the literature [73,74], one of the most promising artificial intelligence
methods for dynamic control of autonomous systems is reinforcement learning, which has
been shown to be much more effective than other AI and heuristics approaches [75,76] in
real-time control system.

Therefore, we propose using multiagent reinforcement learning to design the CPS
service orchestrator. Thus, each service will run an RL agent that will make control decisions
locally to optimise a global reward [77]. Figure 6 shows the behaviour of a multiagent
RL system, in which each agent performs local actions according to their local states and
rewards and is then jointly applied to modify the global environment.

Figure 6. Multiagent reinforcement learning.

RL agents are implemented as a Q-Leaning model-free algorithm, so each of them will
store a Q-table that will be updated based on local rewards, status, and actions. At each
control time step of an episode, the agent will decide a control action (at ∈ A = {0, 1}),
whether to turn off (action 0) or turn on (action 1) the service for that time step. The decision
will depend on the environment, which is based on the battery percentage, the minimum
daily battery percentage, and the real-time energy available, calculated as the difference
between energy production and energy consumption in Wh. Figure 7 depicts an overview
of the proposed Q-Learning agent.
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Figure 7. CPS Q-Learning agent.

Classical Q-Learning algorithms require a finite state space, so it is necessary to
discretize continuous values of the environment before using them. The discretisation
process of the state parameters is summarised in Figure 8; the scheme followed is a direct
discretisation that splits the range of values into sections of equal width [78].

Figure 8. Discretisation of state parameters.

The learning process uses a Q-Value table to store and query the value of the Q-function
for each state and action. When an action is performed, the new Q-Value in the table is
updated according to the following one-step Q update formula:

Q(st, at) = (1− α) Q(st, at) + α (Ct(S) + γ min
a

Q(st+1, a)) (1)

The reward obtained after the execution of an action is a piecewise function of two
elements that depends on the action taken, the parameters of the service, and the new state
of the environment. Therefore, the reward of service “S” at time “t” is formulated as the
following weighted sum between the service priority (Sp), the current operating time (Srt),
the waiting time (Swt), the inverse battery level (Bt), the minimum daily inverse battery
level (Bm

t ), and the generator usage (Gt):

Ct(S) =

{
β2Swt − β4Bm

t a = 0

β0Sp + β1Srt + β2Swt + β3Bt + β4Bm
t + β5Gt a = 1

(2)

where each βx is the trade-off constant for each parameter. In order to change the order of
magnitude of some of the parameters, several modifications have been made to the raw
parameters. The Bt, Bm

t , and Gt parameters are reduced by the exponential consumption
over battery factor, defined as the power of two of the division of the service consumption
by the total battery. Also, the raw value of the inverse battery level (100 minus the battery
level) is squared to exponentially increase the penalties when the battery level is low.
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In addition, the control policy follows a decay ε-greedy approach; thus, the best action,
the one with the higher Q-Value, will only be selected if a random number e is greater than
or equal to ε. Otherwise, the action is chosen randomly from the set of feasible actions.
Since the policy is decay, the value of ε will be reduced by the simulation time (to one-tenth
per week) and the priority of the service (higher priority, higher reduction).

Regarding the workflow of the method, the control process divides the operating
time into slots of fixed duration. In the first minute of each timeslot, the decision-making
algorithm is executed for the current state of the environment; after that, the algorithm
waits until the last minute of the timeslot to determine the reward for the action taken
based on the average state of the waiting time. This control loop is repeated by each agent
continuously until the end of the simulation. Figure 9 illustrates the described behaviour.

Figure 9. Timeslot structure of the RL control process.

Therefore, each agent will run the RL algorithm independently and synchronised with
the global timeslots to update at the end of each one the local reward of its actions. The
proposed multiagent solution based on decay ε-greedy Q-Learning is shown in Algorithm 3,
which has computational complexity O(|S||A|).

Algorithm 3: Decay ε-greedy Q-Learning Algorithm
Parameters: discount factor γ, learning rate α, exploration rate ε, and weighting parameters

β

1 begin
2 for each timeslot t do
3 Observe actual state st
4 Determine feasible action set A′ from A
5 e← random number from [0,1]
6 ε′ ← ε÷ Sp(1 + simulationMinute

1120 )
7 if e < ε′ then
8 at ← randomly select an action from A′

9 else
10 at ← arg min

a∈A′
Q(st, a)

11 end
12 Execute energy management action at
13 Wait for next feedback step
14 Observe new state st+1
15 Calculate reward Ct by (2)
16 Update Q(st, at) according to (1)
17 end
18 end

5. Simulations Results and Discussion

In this section, the performance of the proposed solution is analysed using the results
of a smart house simulator [79]. The detailed simulation results are available in our GitHub
repository [80] and the source code of the Java simulator implemented with the proposed
methods is also available in our GitHub repository [81] so that anyone can easily test the
methods and verify the results. We used the simulator to simplify testing and ensure
repeatability, but the original experiments to verify if the simulator was realistic were
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performed in a real home with a Node-Red control system; therefore, our proposal is easily
applicable to real environments directly by integrating the algorithms into the control plane
of the smart home system.

5.1. Simulation Setup

To evaluate our proposal, we configured the aforementioned simulator to emulate
a house with different energy sources and a set of CPS services. The characteristics of
the energy system of the house are summarised in Table 1, and the parameters of the
reinforcement learning algorithm are shown in Table 2.

Table 1. Characteristics of the simulated house.

Parameter Value

Simulated Time 25 days

Procedural data generation Disabled

Battery capacity 7000 Wh

Battery discharge rate 4000 W

Solar peak production 2200 W

Cloudy days First 4 days

Cloudy solar production 80% of a sunny day

Unexpected load days 4th, 13th, 17th, and 22nd

Unexpected load (kW) 1.2, 1.2, 1.8, and 1.8

Unexpected load time Between 10:30 a.m. and 12:00 p.m.

Table 2. Reinforcement learning algorithm parameters.

Parameter/RL Algorithm Single

Timeslot 60 m

Learning rate α 0.2

Discount factor γ 0.8

Initial ε 0.2

Initial Q-Value (Off, On) 0 and 50

Value of βx 50, 0.02, −0.01, −40, −200, −2000

To ensure a fair comparison between methods, the procedural option to randomly
modify the solar generation in the simulator was deactivated.

In addition, two unexpected events were implemented to verify the performance of
the methods in critical situations. The first one consists of simulating cloudy weather (as
it typically has a significant impact on solar production [82] and is a relatively common
phenomenon) for the first four days so the solar output drops to 80%. The second one
simulates the occasional switch-on from 10:30 to 12:00 of a high-consumption device (1.2 kW
and 1.8 kW).

Finally, to demonstrate the behaviour of the energy orchestrator, a set of CPS services,
both manageable and unmanageable, are deployed. Table 3 lists the deployed services
showing the consumption and run rules for each of them.
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Table 3. CPS services deployed (configuration 1).

Service Smart Priority Load Rule

Fence lights No - 15 W 8 p.m.–8 a.m.

Facade lights No - 10 W 8 p.m.–8 a.m.

Fridge No - 120 W All time

CCTV DVR Yes 10 20 W All time

Internet Yes 8 40 W All time

Pool Pump Yes 4 600 W 9 a.m.–5 p.m.
(max 3 h)

Streaming Svcs. Yes 2 30 W All time

Fountain Yes 1 35 W 9 a.m.–3 p.m.

5.2. Tested Methods

Using the simulator, we obtained a complete set of data on the performance of the
orchestrator and the energy consumption and production for 25 days. We tested four
control algorithms for the orchestrator. The first one, called Basic (BSC), does not perform
any intelligent control of the services; it only turns on and off the services according to its
running rules. The second method, Priority-based (PB), sorts the services according to their
priority, and if it detects that there is a critical energy level, it turns off the lower-priority
services until the energy production increases.

The third one is a Greedy (GDY) method that is based on comparing the value of
a dynamic heuristic that depends on the state of the environment with the heuristic value
of each service. In case the service has a lower value, it is turned off.

Lastly, the fourth one is the multiagent reinforcement learning (RL) algorithm explained
before, which dynamically decides whether to turn services off or on at each timeslot
(subject to execution rules). Due to the nature of RL algorithms, the agent needs to gradually
learn the best actions to take based on the rewards. For this reason, the algorithm requires
repeating the simulation several times (saving the Q-tables) to progressively converge to
the best policy. In our scenario, the simulation had to be repeated five times in order to
obtain the best solution (RL5).

5.3. Tested Configurations

To verify the correct performance of the methods, we designed three different
configurations of the simulation scenario. The first one (configuration 1) is the main scenario
of the discussion and the focus of our analysis, and its deployed services and simulation
parameters are mentioned above.

The second one (configuration 2) is the same scenario but the fountain and pool pump
services are changed to high priority to check if it still optimises energy usage properly.
The Table 4 lists the service parameters.

Finally, the last configuration (configuration 3) is totally different with respect to the
services that are deployed; in this case, they are all services with similar consumptions (lists
in Table 5) in order to test a scenario with other kinds of services.
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Table 4. CPS services deployed (configuration 2).

Service Smart Priority Load Rule

Fence lights No - 15 W 8 p.m.–8 a.m.

Facade lights No - 10 W 8 p.m.–8 a.m.

Fridge No - 120 W All time

Pool Pump Yes 8 400 W 9 a.m.–5 p.m.
(max 3h)

Fountain Yes 6 35 W 9 a.m.–3 p.m.

Internet Yes 3 50 W All time

CCTV DVR Yes 2 40 W All time

Streaming Svcs. Yes 1 30 W All time

Table 5. Smart services deployed (configuration 3).

Smart Service Priority Load Rule

Kubernetes Cluster 10 150 W All time

Internet 9 25 W All time

VPN Router 8 15 W All time

Dashboard Services 4 50 W All time

Game Servers 2 140 W All time

Dashboard Displays 1 180 W 10 a.m.–6 p.m.

5.4. Data Models

All the information used by the simulator to determine the solar production and
passive consumption of the system is based on statistical models modelled using data from
a real solar infrastructure in Murcia (Spain) for two months, identical to the one described
in Section 2. There are two models for solar generation, one based on actual measurements
of solar output and the other based on solar irradiance measured by a meteorological
station [83].

Figure 10 shows graphically the solar generation model used for the simulations,
where, for each hour, the mean value of solar radiation and the upper and lower bound of
the 95% confidence interval are indicated using a blue shadow (left graph). The confidence
interval is used to procedurally generate each day differently but with correlated values by
using Perlin noise [84], as can be seen in the right graph of the aforementioned figure, thus
enabling the dynamic and realistic behaviour of the simulations.

Figure 10. Solar energy production model with confidence interval (left) and procedural energy
generation example (right).
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As previously mentioned, the procedural generation option is disabled in all our
simulations to ensure a fair comparison by providing the same input data for all simulations;
thus, the simulated solar production in our tests is the same as shown in the second graph
in the figure above for all days in all simulations.

5.5. Experimental Results and Analysis

The most important metrics to consider when evaluating each method are the average
daily percentage of execution of each service (relative to its maximum time) and the final
energy consumption of the generator, since using the generator is considered exceptional
and should be avoided as much as possible. Therefore, the goal for the comparison of each
method is that the generator usage is as low as possible, while the average run time of each
service is as close to 100% as possible. It is important to note that the primary goal is to
keep services running as much as possible, so in some scenarios, very low generator usage
is not ideal, as it can significantly reduce the average execution time of each service. Table 6
shows the performance of each method in the simulator according to configuration 1 and
the simulator parameters mentioned above.

Table 6. Performance of methods (configuration 1).

BSC PB GDY RL RL5

CCTV DVR 100% 93.7% 100% 99.8% 100%

Internet 100% 89.3% 100% 100% 100%

Pool Pump 100% 90.7% 72.0% 88% 70.7%

Streaming Services 100% 74% 100% 100% 99.2%

Fountain 100% 11.3% 49.3% 98.7% 99.3%

Generator (Watts) 20,180 5934 7502 14,680 7335

As shown in the table, the Basic method represents the worst possible performance as
it keeps all services on; therefore, the generator consumption result of this method serves
as the upper bound of the methods to be compared.

The second proposal, the Priority method, provides the best result with respect to
generator usage at the cost of significantly reducing the running time of lower-priority
services. This method could be considered useful in simple scenarios where no dynamism
is required and only priority-based management is relevant; however, in scenarios such
as the one we propose, more flexibility and real-time adaptability of the algorithms are
needed to maximise the uptime of all services while reducing the generator usage.

On the other hand, the Greedy method offers superior final performance concerning
the consumption of the generator and by keeping the services on as much as possible. This
is due to the use of dynamic heuristics that change according to the energy state, shutting
down all services that have a lower value. Thus, when solar production is low or the
battery reaches critical levels, the lowest priority services with the highest consumption
are preferentially switched off (e.g., pool pump). The disadvantage of this method is the
low dynamism, as the trade-off between priority, consumption, execution time, and energy
status is manually defined and does not easily adapt to changes in the system.

In contrast, the method based on reinforcement learning is completely flexible, as it
continuously adapts to changes and does not need to define any heuristics beforehand. The
drawback is the need to repeat its execution several times (episodes) until the algorithm
converges (learns) to the optimal solution. For that reason, the table compares the result of
the simulation with the initial RL method (without knowledge) and the result after running
the simulation five times, keeping the Q-tables of each agent.

As can be seen, the method without initial knowledge hardly turns off the services, as
it does not yet know the most appropriate actions to take, which leads to a high generator
consumption. On the contrary, the trained method achieves the best solution as its generator
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usage is the lowest while keeping the services on as much as possible. The proposed method
not only adapts in real time to unexpected events but is also able to shift the execution of
scheduled services to the hours of highest solar production or to the hours it estimates to
be the most suitable.

To graphically summarise the comparison between the methods according to their
generator usage, Figure 11 shows the punctual and the aggregate usage of the generator in
watts during the simulation execution.

Figure 11. Comparison of generator usage of each method.

The Basic method uses the generator continuously every night as the batteries run out
of energy. However, Priority and Greedy methods reduce the use of the generator only to
occasions where unexpected consumption occurs. Similarly, the RL method only uses the
generator when the energy production is not sufficient due to unexpected consumption, but
it also manages to minimise the use of the generator by shifting or limiting the execution
time of the energy-intensive services.

Figure 12 shows a detailed comparison of each method in a three-day segment of the
simulation, where the behaviour of each algorithm in different situations can be more precisely
appreciated. Each graph in the figure shows the consumption of the active services in each
hour (timeslot) combined with the battery level (per mille) and the energy consumption (W).

The first graph shows the default behaviour of the system, in which the services are
turned on according to their execution rules, causing the system to run out of energy during
peak hours on both the second and third days. Also, on the third day, an unexpected
consumption of 1.2 kW occurs.

The second graph illustrates the previously mentioned behaviour of the priority-based
method; when critical energy situations occur, the lowest priority services in each timeslot
are progressively shut down in order until energy production improves and then gradually
switched back on.

Likewise, the third graph shows how the Greedy method detects the low battery status
of the second day in order not to turn on any services with low priority. In addition, during
the unexpected consumption on the third day, it also turns off the low-priority services to
save energy.

In contrast, the last graph shows how the RL algorithm is able to dynamically adapt
the execution of the services to reduce the use of the generator while maximising the
running time. One of the most important results of the proposed method is the shift of
the pool pump service to the period of the highest battery level and solar production.
Also, the partial turn-on of the pump service in case of detecting a low energy production
level or total turn-off in case of unexpected high consumption proves the proper adaptive
behaviour of the algorithm.
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Figure 12. Three days simulation of each method.

Finally, the complete simulation result of 25 days is shown in Figure 13 in the same
format as the previous figure. Both the Greedy and RL methods avoid the continuous
discharge of the batteries due to the unexpected load, but the RL approach constantly
demonstrates its adaptive behaviour by shifting the energy consumption of some services
or performing partial or intermittent power cycles when the energy conditions are critical.

Figure 13. Twenty-five-day simulation of each method.
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5.6. Parameters Tuning

In the previous section, we presented the results of our proposal taking into account
the parameters of the RL agent in Table 2. The value of these parameters was established by
testing each of them in different simulations to determine which was the most appropriate
value for each parameter. In this sub-section, a brief overview of the results of each variable
of the simulator ise presented in order to justify those that have been finally chosen.

One of the most important parameters of reinforcement learning is the learning
rate (α): the lower the rate, the lower the value of new rewards. Figure 14 shows how
the generator usage evolves after each simulation episode for different values of alpha.
When the value is 0.1, it can be observed that the system takes a long time to stabilise the
generator usage at the best value (around 7400), as its learning rate is too slow. On the
other hand, when alpha is 0.5, the best use of the generator is quickly achieved due to the
high impact of rewards on new Q-Values; however, the system does not stabilise easily
over several simulations.

Figure 14. Evolution of reward per episode for different values of alpha.

As a result, intermediate values, such as a learning ratio of 0.2, are considered that
keep the best of both, converge quickly, and are reasonably stable in the following episodes.

Furthermore, the value of the reward is defined by several parameters as a weighted
sum based on each βx, which has an impact on the final performance of the system. In
the following tables, we summarize the results of the simulation (running time of services
and use of generator) in the fifth episode for different values of the three most relevant
reward components (service priority, battery level, min battery level) so as to determine the
behaviour of each of them.

The first table (Table 7) depicts the impact on the simulation results of different
weighting values of the service priority. The lower the value, the less important the
service priority is for the RL agent’s decisions; on the contrary, high values denote the high
importance of the priority, so the agent will try not to shut down those services. For this
reason, the table shows that increasing the importance in the final reward of the priority
of the services increases the use of the generator, as the agent tries to keep the pool pump
(medium priority and high consumption) turned on for a longer time. For our simulations,
we use 50, as we consider it to be the best fit in terms of giving importance to the priority of
service but not so much as to drastically increase the generator usage.
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Table 7. Performance in the 5th episode for different service priority (Sp) weights (β0).

10 50 100 200

CCTV DVR 99.8% 100% 99.8% 100%

Internet 99.7% 99.8% 99.5% 99.8%

Pool Pump 2.71% 70.7% 88.3% 90.7%

Streaming Services 99.5% 98.5% 99.8% 99.8%

Fountain 98.7% 99.3% 98.0% 98.7%

Generator (Watts) 3784 7320 12,990 15,410

In addition, another important parameter of the reward is the current battery level,
as it balances the importance that the agent gives to the remaining stored energy. We
compare different values of β3 in Table 8 with the value used in the simulations section
(40). As opposed to the previous one, more importance to the battery level means less
use of the generator as the running time of the service decreases. Having a low value
would not be particularly useful since the agent would not take into account the battery
energy level; on the other hand, a very high value would make the agent not give enough
attention to the other parameters and just optimise the battery usage. For this reason, we
use an average value that provides a reasonable trade-off between the battery level and the
other parameters.

Table 8. Performance in the 5th episode for different battery level (Bt) weights (β3).

10 20 40 80 160

CCTV DVR 100% 99.8% 100% 100% 99.7%

Internet 100% 99.7% 99.8% 99.5% 100%

Pool Pump 85.3% 76.0% 70.7% 68.4% 56.2%

Streaming Svcs 99.8% 99.5% 98.5% 99.3% 99.5%

Fountain 97.3% 97.3% 99.3% 99.3% 100%

Generator (W) 12,910 9035 7320 6632 4521

Likewise, the impact on the simulation results of parameter β4 was tested with various
values to determine the most suitable. In this case, the parameter controls the weight that
has the lowest battery level of the last day (Bm

t ) so that the worst stored energy state of the
system on the previous day is modelled as a negative reward to avoid it on the current day;
in other words, it is used to penalise past actions that produced a low level of stored energy.

Table 9 presents the results of the simulations for five different values, and as can be
seen, the central value is chosen for the same reason as the previous parameter.

Table 9. Performance in the 5th episode for different min-battery (Bm
t ) weights (β4).

50 100 200 300 400

CCTV DVR 99.7% 100% 100% 100% 100%

Internet 99.7% 99.8% 99.8% 99.8% 99.8%

Pool Pump 85.3% 82.7% 70.7% 50.7% 22.7%

Streaming Svcs 99.7% 98.8% 98.5% 99.2% 99.2%

Fountain 100% 99.3% 99.3% 98.7% 99.3%

Generator (W) 12,970 11,655 7320 5261 3908
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5.7. Performance of Other Configurations

After analysing the results of the first configuration in the previous section, it can be
concluded that the RL algorithm works properly. However, it is relevant to determine
whether the algorithm is able to perform similarly in scenarios with other characteristics.

Configuration 2 is designed to be similar to configuration 1 but changes the priority of
the high-demand devices; in particular, the pool pump and fountain are given maximum
priority to force the algorithm to optimise power consumption considering the low-demand
services much more. In the same way as the first configuration, the performance of each
method for this configuration is summarised in Table 10.

Table 10. Performance of methods (configuration 2).

BSC PB GDY RL RL5

Pool Pump 100% 98.7% 100% 98.7% 92.1%

Fountain 100% 51.3% 100% 100% 99.3%

Internet 100% 75.5% 100% 93.7% 93.7%

CCTV DVR 100% 67.8% 100% 81.2% 80.2%

Streaming Services 100% 60.2% 43.3% 61.3% 99.2%

Generator (Watts) 23,227 4828 13,659 10,036 7325

As shown in the table, the Basic method is still an upper limit of bad performance,
which, in this case, is easily improved by the Greedy method just by reducing the Streaming
Services runtime. Also, the Priority solution achieves a low generator usage but, at the
same time, a low execution time of the services, especially those with low priority.

On the other hand, the method based on reinforcement learning provides the best
performance in both the initial and the trained versions by balancing the execution time of
all services according to their rewards. Figure 15 details the single and aggregate generator
usage of each method during the simulation.

Figure 15. Comparison of generator usage of each method (configuration 2).
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For a detailed view of the behaviour in this scenario, a three-day overview is provided
in Figure 16. Similar to the previous scenario, the RL algorithm tends to defer the execution
of the high-consumption services, but it does not turn them off, as they now have maximum
priority. On the contrary, the other services (lower priority) have to reduce their execution
time in order to limit energy consumption.

Lastly, Figure 17 summarises the full 25-day simulation run for this configuration,
detailing for each day and hour the behaviour of the three proposed methods.

Likewise, we also propose configuration 3, which follows a different approach to verify
the performance of the RL algorithm when managing services of similar consumption,
instead of easily detecting critical services due to their high consumption. In this scenario,
the trade-off between services runtime is crucial to optimise energy consumption, in
particular the final generator usage. The results of the 25-day simulations are summarised
in Table 11, comparing the percentage of execution of the services in each method and
showing the final usage of the generator.

Figure 16. Three-day simulation of each method (configuration 2).
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Figure 17. Twenty-five-day simulation of each method (configuration 2).

Table 11. Performance of methods (configuration 3).

BSC PB GDY RL RL5

Kubernetes-cluster 100% 98.8% 100% 98.8% 99.8%

Internet 100% 97.5% 100% 100% 99.7%

VPN-router 100% 95.5% 100% 100% 100%

Dashboard-services 100% 87.2% 100% 99.8% 99.8%

Game-servers 100% 78.8% 100% 86.7% 85.7%

Dashboard-displays 100% 40.0% 44% 81.5% 71.0%

Generator (Watts) 16,204 115.2 6455 5932 2532

As can be seen in the table, the Basic method defines the worst possible performance
if no dynamic control algorithm is used. The greedy method significantly improves
performance but only by turning off the lowest priority service for most of the days,
and the priority method shows the same behaviour as the previous configuration, with
very low generator usage due to the reduced execution time of the services in order of
priority. In fact, in this case, the reduction is so drastic that the generator is only used
at a specific moment (approx. 100 W) in the middle of the fourth day when unexpected
consumption occurs. However, this low consumption is reached by significantly reducing
the uptime of the services, which suggests that as a basic strategy for non-critical services,
it is very useful, but in more complex scenarios where we want to optimise both uptime
and consumption, it is not the most appropriate method.

Besides, RL methods achieve the best performance as we expect, the non-knowledge
version narrowly outperforms the Greedy method but manages to better balance the
execution time of each service, improving the overall quality of service. The trained version
of the RL method stands out from the other methods as it achieves the lowest generator
usage and an acceptable service execution ratio, even while shifting the execution of services
by being able to shift the execution of services to periods with better energy production or
in case it is needed to make partial executions of services in order to save energy.
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The evolution of the generator usage (with cumulative) during the simulation of this
scenario is shown in Figure 18; furthermore, Figure 19 entirely details the performance of
the proposed methods during the full simulation.

Figure 18. Comparison of generator usage of each method (configuration 3).

Figure 19. Twenty-five-day simulation of each method (configuration 3).
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6. Conclusions and Future Work

This paper proposes the design of a smart house service orchestrator intending
to reduce the use of non-renewable energy. The energy orchestrator manages services
modelled as a cyber-physical system, and we propose using a multiagent reinforcement
algorithm to intelligently and dynamically control the energy usage of the services. Therefore,
we formulate the environment and the management of each CPS service as independent
Q-Learning agents that will perform actions and receive feedback on each time slot.

To verify the performance of the proposed method, an open-source simulator is also
developed in which three scenarios are deployed to compare the proposed solution with
a priority-based, heuristic-based, and basic-based one. The experimental results show that
our proposed method is superior to the priority-based and heuristic-based ones, and it
also achieves the intended autonomous and dynamic behaviour without any guidance. In
addition, the source code of the simulator and the results of the simulations are available in
our GitHub repository for verification and reproducibility of the results.

However, we consider that the performance of our proposal can be improved using
neural networks (DQL) to overcome the Q-Leaning limitations, such as a low number
of states and discrete variables. Furthermore, the architecture of the orchestrator could
be enhanced to provide a passive knowledge transfer model following the multilayer RL
proposal of our previous work on tasks offloading in edge computing [85].
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Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement Learning
CPS Cyber-Physical System
MPC Model Predictive Control
SVR Support Vector Regression
BN Bayesian Network
DAG Directed Acyclic Graph
LP Linear Programming
MILP Mixed-Integer Linear Programming
DP Dynamic Programming
GA Genetic Algorithm
AI Artificial Intelligence
ANN Artificial Neural Network
RNN Recurrent Neural Network
CNN Convolutional Neural Network
FNN Feedforward Neural Network
XGBoost eXtreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
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HVAC Heating, Ventilating and Air Conditioning
PV Photovoltaics
EV Electric Vehicle
HEV Hybrid Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
W Watt
Wh Watts per hour
BSC Basic control algorithm
PB Priority-based control algorithm
GDY Greedy control algorithm

Nomenclature of the Priority Method:
aBL Average battery level percentage
lBT Low battery threshold
hBT High battery threshold
mBL Battery level modifier
svcs List of services sorted by priority

Nomenclature of the Greedy Method:
mB Daily minimum battery level percentage
C Trade-off constant
p priority of the service
pC Power consumption of the service
bC Total battery storage capacity

Nomenclature of the RL Method:
α Learning rate
γ Discount factor
ε Exploration rate
Ct(S) Reward of service “S” at time “t”
βx Trade-off constant for each reward parameter
Sp Service priority
Srt Service current operating time
Swt Service waiting time
Bt Inverse battery level
Bm

t Minimum daily inverse battery level
Gt Current daily generator usage
Q(s, a) State-Action value function
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