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Highlights:
What are the main findings?

• Development of a novel lightweight machine learning classifier for anomaly detection in smart cars.
• Comparison with the baseline methods and existing literature revealed remarkable reduction in

computational cost with significant increase in detection rate accuracy.

What are the implications of the main finding?

• A decent choice for the imbalanced data and critical applications like spam identification, fraud
detection, financial analytics and many others.

• Development of a firmware compatible with the central gateway and the target electronic control
unit in smart cars is a key adaption challenge.

Abstract: The automotive industry has evolved enormously in recent years, marked by the prolif-
eration of smart vehicles furnished with avant-garde technologies. These intelligent automobiles
leverage cutting-edge innovations to deliver enhanced connectivity, automation, and convenience
to drivers and passengers. Despite the myriad benefits of smart vehicles, their integration of digital
systems has raised concerns regarding cybersecurity vulnerabilities. The primary components of
smart cars within smart vehicles encompass in-vehicle communication and intricate computation, in
addition to conventional control circuitry. In-vehicle communication is facilitated through a controller
area network (CAN), whereby electronic control units communicate via message transmission across
the CAN-bus, omitting explicit destination specifications. This broadcasting and non-delineating
nature of CAN makes it susceptible to cyber attacks and intrusions, posing high-security risks to the
passengers, ultimately prompting the requirement of an intrusion detection system (IDS) accepted
for a wide range of cyber-attacks in CAN. To this end, this paper proposed a novel machine learning
(ML)-based scheme employing a Pythagorean distance-based algorithm for IDS. This paper employs
six real-time collected CAN datasets while studying several cyber attacks to simulate the IDS. The re-
silience of the proposed scheme is evaluated while comparing the results with the existing ML-based
IDS schemes. The simulation results showed that the proposed scheme outperformed the existing
studies and achieved 99.92% accuracy and 0.999 F1-score. The precision of the proposed scheme is
99.9%, while the area under the curve (AUC) is 0.9997. Additionally, the computational complexity of
the proposed scheme is very low compared to the existing schemes, making it more suitable for the
fast decision-making required for smart vehicles.

Keywords: controller area network; cyber-security; cyber attacks; intrusion detection system; smart
vehicles; machine learning; pythagorean distance
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1. Introduction

The evolution of automotive industry has brought many changes which improved
the security and safety of the commuters. However, reports of World Health Organization
revealed that there are almost 1.3 million causalities every year by road accidents, i.e.,
one death in every 24 s [1]. Some real-life examples of the car hacking include “Jeep Chero-
kee Hack” in 2015 [2], “Tesla Model S Hack” in 2016 [3], and “Nissan Leaf Vulnerability” in
2016 [4]. In the Jeep Cherokee case, the car was remotely hacked by two security researchers,
Miller and Valasek, exploiting its infotainment and advanced driver assistance (ADAS)
systems. This hijacking attempt was deliberate by the company to test the “Zero-day ex-
ploit”, a hacking technique. “Tesla Model S Hack” happened when some researchers from
the Keen Security Lab remotely hijacked the car’s CAN-bus, taking control of the ADAS
system both in driving and parking mode. They could control dashboard screen, door locks,
car brakes, windscreen wipers, move seats, open boot and sunroof. While being able to
remotely access the Nissan Leaf, experts in hacking gained remote access to the car through
mobile application using vehicle identification number. This allowed them to operate the
car air conditioning system, obtain driving history, and perform climate control functions
successfully. During the year 2022, a large number of cars from 16 different makers were
hacked by the group of seven researchers who were able to gain access to various car func-
tions, such as honk vehicles, flash headlights, lock/unlock cars, start/stop engine, precisely
locate cars, and even alter car ownership remotely. The impacted companies were Hyundai,
Honda, Land Rover, Kia, Ford, Ferrari, Nissan, Mercedes-Bens, BMW, Acura, Toyota, Rolls
Royce, Porsche, Jaguar, Infiniti, and Genesis [5]. This all shows a serious efficiency and
safety concern for the auto-industry which demands a more secure, robust, and efficient
self-defense mechanism for cars with less human intervention. Many renowned companies
as Google in USA performed road tests of connected intelligent cars in 2009 [6]. The Univer-
sity of Michigan [7] examined the performance of similar cars designed by Tesla [8] in the
field of Mcity. In the subsequent years, Mercedes Benz, Audi, and BMW started working on
controller area network (CAN), a key element for establishing communication in smart cars
(SCs). These intelligent smart cars can perform inter- and intra-vehicular communication
and are able to make quick intelligent decisions for collision avoidance.

Keeping the legacy system, SCs are integrated with advanced technology, connectivity,
and digital interface which add intelligent smart features such as keyless entry, automatic
parking, traffic sign recognition, lane keeping, emergency braking, obstacle detection,
and many others to name. The advanced featuring is by the virtue of embedded electronics
which includes the utilization of numerous sensors and electronic control units (ECUs)
that build an in-vehicular network in SCs to establish effective communication for efficient
and safe drive. The in-vehicular communication is achieved through controller area net-
work which is considered an efficient communication protocol compared to ethernet and
FlexRay networks used in SCs [9]. Being message-oriented protocol, CAN allows robust
communication between sensors and ECUs, but it lacks proper data authentication and an
encryption mechanism. This makes CAN-bus highly vulnerable to cyber attacks arising
serious questions on the reliability of a smart car. An unauthorized user can gain access to
the system, launch an attack, manipulate the data and thus infiltrate the safe operation of a
smart car to gain personal, financial, or any other benefit. This situation demands devel-
opment of an efficient, reliable and robust intrusion identification and detection system
for SCs. The communication between an IDS and the users normally involves (i) Attack
Identification and Detection, where the IDS detects an illegal attempt made by the threat
actor to establish control of the CAN-bus to send malicious data; (ii) Alert Generation,
where alerts are generated by the IDS and are sent to the car dashboard and or to the
driver’s mobile app; (iii) Automated Response, which is performed by the IDS to disable
the OBD-II port restricting external access. In the worst case, (iv) an alert is also sent to the
manufacturer for detailed check and debugging. In this study, the primary focus is on Step
(i) of the IDS process with the assumption that the proper communication is taking place
between the IDS and the users.
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1.1. Related Works

Machine learning (ML) presents promising solutions for intrusion and anomaly detec-
tion in cyber-physical systems [10–13] . ML techniques primarily learn from data and make
predictions based on the data pattern and training. Numerous ML-based studies have been
conducted to design an intrusion detection system (IDS) and analyze the behavior of a
smart car under different cyber attacks [14–21].

Utilizing SVM-, kNN-, and DT-based ML approaches and real-time data from Chevro-
let Spark and Kia Soul, Bari et al. [14] investigated the performance of an ML-based IDS
for smart cars. The study conducted experiments using DoS, impersonation and fuzzy
attacks. Results showed a remarkable high accuracy of 99.9% with a 1.0 F1-score; however,
the computational time including model training and testing time for all the attack types
and classifiers is significantly high for all the cases. While evaluating the performance of
a machine learning-based IDS proposed by researchers in [15] utilizing RF, DT, MLP, and
SVM classifiers, the authors successfully identified and detected the DoS, fuzzy, and imper-
sonation attacks injected on the real-time data from the CAN-bus of KIA Soul. Though the
study achieved the accuracy of 98.5269%, the model is very heavyweight with training and
testing time of 460.719 s and 14.935 s, respectively, bringing into question its suitability
for events requiring instant fast decision. In a related study [16], a generative adversarial
network-based anomaly detection scheme is proposed for smart cars. The study presented
fairly good results based on different parameters of confusion matrix as hit rate, miss rate,
false alarm, and correct rejection rates. Giving no information about anomaly detection
time and limited to single attack type, the study fails to provide its effectiveness for multiple
attack designs and the smart car used for the data collection is undefined.

Realizing the consequeses of cyber attacks and leveraging the ML techniques, Shahriar
et al. [17] proposed a single level deep learning-based anomaly detection system, CAN-
Shield for the SCs. The CANShield model comprises the data preprocessing, data analyzer,
and ensemble method-based AD modules. The preprocessing module processes and man-
ages the complex data, the analyzer module investigates the time-series data, whereas
the detection module offers the final outcome. Despite the comprehendible performance
results, the study fails to provide the details about the car type used for data collection, the
accuracy measure, and the computational time to make the classification decision. Featured
with an LSTM-based ML technique, an IDS for the intrusion detection for a CAN-bus
network in smart cars is proposed in [18]. The study investigated the effect of DoS, fuzzy,
and spoofing attacks on CAN messages transmitted by different ECUs for normal SCs
functionality. The simulation results presented considerably good sensitivity and specificity
scores; however, the study lacks details of model accuracy and computational time, which
are crucial parameters of an IDS designed for SCs.

Employing feature engineering for the selection of highly significant variables to train
a model, the researchers devised a deep learning-based solution for the detection of flaws
and anomalies in SCs. They utilized an IVS-Hackathon dataset, which included four differ-
ent types of cyber attacks. Achieving 95% accuracy, the study provided good comparison
with baseline methods and recent studies; however, it neither considered the computa-
tional complexity nor the model verified for different datasets. Further, the accuracy value
could be increased [19]. Kim et al. [20] determined the performance of an anomaly detec-
tion model developed utilizing an LSTM-based autoencoder approach. While presenting
the comprehensive simulation results, the study is limited to a single attack type, i.e.,
a fuzzy attack considering only one dataset. In another similar study, Wang et al. [21]
proposed a GAN-based IDS for anomaly identification in a CAN-FD-bus in SCs. The model
employed DoS, fuzzy, PRM/Gear Spoofing attack, and normal data for model training.
The results showed an outstanding detection rate of 99.93%; however, the study skipped
the other performance evaluation metrics (F1-score, precision, recall, ROC) and also the
computational time.

Kishoare et al. [22] proposed an intelligent IDS for SCs to identify intrusions, anomalies,
and flaws in CAN-bus data utilizing the Bidirectional Long Short-Term Memory technique
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employed on the “Car Hacking: Attack and Defense Challenge, 2020” dataset. They
found that the proposed scheme achieved a 99.09% detection accuracy with 0.9910 and
0.9901 F1-score and precision, respectively. Aldhyani and Alkahtani [23] evaluated the
performance of a deep learning-based security system developed to protecting CAN-bus
data from various cyber intrusions and assaults. The study presented a 97.43% accuracy to
identify and detect CAN-bus anomalies by the proposed system. He et al. [24] studied the
behavior of the anomaly detection model in connected and autonomous cars (CAVs) using
decision tree and naive-bayesian machine learning schemes employed on a KDD99-based
CAV-KDD dataset. The study concluded that a decision tree is superior to naive bayes
in anomaly detection requiring less simulation time. To locate false messages injected
into a CAN-bus, Pawar et al. [25] used k-nearest neighbour (kNN)- and decision tree
(DT)-based ML models and found 81.48% and 77.99% detection accuracy values for kNN
and DT, respectively. Gupta et al. [26] presented a novel graph-based ML scheme to
secure smart cars from anomalies. Employing the machine learning and event-triggered
interval method, Han et al. [27] detected and identified the abnormalities in CAN-bus
data in SCs, and the model achieved up to 99% detection accuracy with 0.990 F1-score and
0.991 precision. While introducing different cyber attacks on a SC in a laboratory setup
and collecting real-time data, Onur et al. [28] investigated the performance of an IDS by
employing various machine learning techniques. The simulation results showed that the
random forest surpassed the other schemes with 0.923 F1-score, 0.925 precision, and 96.1%
classification accuracy. Similarly, Alalwany et al. [29] analyzed the performance of an IDS
to classify different cyber assaults on CAN-bus data. Their model incorporated machine
learning and ensemeble methods including random forest, decision tree, eXtreme gradient
boosting, stacking, bagging, and voting with Kappa architecture. The study concluded
that outperforming the other methods, the stacking ensemble classifier achieved the best
results, i.e., a 98.5% accuracy with 0.985 F1-score and 0.987 precision. In similar studies by
Alsaade and Al-Adhaileh [1] and Anand et al. [30], a deep learning method was applied
to identify erroneous information and malicious network traffic in smart cars. Reviewing
the various studies carried out for anomaly detection in CAN-bus, the authors analyzed
different IDSs on the basis of the detection technique, the attack type, and evaluation
metrics, and summarized the findings in [31]. Table 1 presents the comparison of the
proposed study with some relevant studies in terms of investigating the impact of different
cyber attacks on CAN-bus data in smart cars.

Table 1. A comparative overview of various machine learning-based studies for anomaly detection
in CAN-bus in smart cars and identification of the research gap.

References
Attack Type

No. of Datasets Detection Method Research Gap
DoS Fuzzy Flooding Spoofing Impersonation Malfunction

[32]
√ √

✕
√

✕ ✕ 1 FFS-ML ✕
[33] ✕

√
✕

√
✕ ✕ 1 NN Heavyweight

[34]
√ √

✕
√

✕ ✕ 1 NN, MLP ✕
[35]

√ √
✕

√
✕ ✕ 1 ML ✕

[36]
√ √

✕ ✕
√

✕ 1 BN ✕
[37]

√ √
✕ ✕

√
✕ 1 ML Heavyweight

[38]
√ √

✕
√

✕ ✕ 1 TCAN-ML Heavyweight
[39]

√ √
✕

√
✕ ✕ 1 Deep-CNN Heavyweight

[15]
√ √

✕ ✕
√

✕ 1 DT, SVM, RF,
MLP Heavyweight

[40] ✕
√

✕ ✕ ✕ ✕ 1 NN ✕
[14]

√ √ √
✕

√ √
2 SVM, KNN, DT Heavyweight

[41]
√ √

✕
√

✕ ✕ 1 DNN ✕
[42]

√ √
✕ ✕

√
✕ 1 EM Heavyweight

[43]
√ √

✕ ✕
√

✕ 1 NB, RF, RT, SGD Heavyweight
This study

√ √ √ √ √ √
6 PD-ML Lightweight

Acronyms are defined in “Abbreviations” section.

As evident from the literature above, significant contributions have been made by the
researchers to propose an anomaly detection model for smart cars. However, limited to the
utilization of a single dataset to train an ML-IDS for the detection of a few cyber attacks
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injected to CAN-bus in SCs, these IDSs are comparatively heavyweight with computational
costs as high as 86.67% [44] compared to this work. Further, the applicability of an IDS
should be extended to different makes of the smart car while tackling different types
of cyber intrusions. To our knowledge, the literature lacks a simple, fast, lightweight,
and efficient intrusion detection system capable of instant decision-making power with
zero delay on real-time data while being concurrently applicable to different car models.
Additionally, the literature would gain strength by the addition of a combined unified
model proposed in this study featuring detection accuracy as high as 99.922% with a 99.9%
precision along with detection time reduced to 0.00027 s while becoming equally efficient
for various types of smart cars such as KIA Soul, Hyundai Avante CN7, Hyundai YF Sonata,
Genesis g80, and CHEVROLET Spark. In pursuit of this, the paper proposes a machine
learning-based novel approach to develop a simple, lightweight but efficient intrusion
detection classifier for smart cars.

1.2. Contributions

In the real-world scenario, the timely identification of an intrusion is crucial, as delays
can lead to severe, threatening consequences. A simple but robust and efficient PD-ML
method to detect intrusions, flaws, and anomalies injected by the intruders through the
OBD-II port in CAN-bus is proposed in this study. Additionally, the model is evaluated
using six different realistic datasets which include 13 different types of attack injections.
The main technical contributions to the knowledge are listed below:
• Development of a lightweight novel Pythagorean distance-based machine learning

(PD-ML) classifier for intrusion detection in CAN-bus of smart cars;
• Employment of 13 unique cyber attacks categorized into six different classes obtained

from six different widely accepted CAN-bus datasets to evaluate the performance of
the proposed scheme;

• A comparison of the outcomes by the proposed scheme with distance metrics, existing
baseline methods and recent studies. The results show that the proposed scheme
outperforms the existing schemes, increasing 2.48%, 2.16%, 2.13%, and 1.75% in
accuracy and remarkably reducing by 99.77%, 99.58%, 99.47%, 96.61%, and 86.67% in
computational cost.

The remaining paper is organized as follows. Section 2 offers an overview of smart
cars with a brief description of CAN-bus protocol, cyber vulnerabilities, cyber attacks on an
in-vehicular network and their impacts on car safety and passenger security. The proposed
PD-ML scheme for anomaly detection is presented in Section 3, whereas Section 4 discusses
the simulation results. Finally, the paper is concluded in Section 5.

2. Overview of Smart Cars

Smart cars are the intelligent cars capable of automated multi-tasking performed
through an efficient and well-established communication mechanism. It could be vehicle to
everything, vehicle to vehicle, and in-vehicle communication. It involves the utilization of
various components such as sensors and computing and communication elements which
allow data collection, sharing, and processing among different ECUs for efficient and safe
driving. Presenting the overview of a SC, Figure 1 highlights various smart features, CAN-
bus connectivity to ECUs, and possible cyber attack injections in SCs where sensor data are
transmitted through communication modules over the network controlled by the ECUs.
The infotainment feature allows navigation and various entertainment activities like music,
video playback, and connectivity with mobile phones. Similarly, the human–machine
interface enables communication between the car and its occupants through different
systems such as voice recognition and gesture controls.
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Figure 1. An overview of key features in a smart car. Various electronic control units communicate
with each other using CAN-bus, connected in bus topology. Cyber attack injection can be wired
through OBD-II port to CAN-bus or wireless by means of sensors.

2.1. Controller Area Network

Owing to large number of ECUs and complex dense electrical wiring in the conven-
tional cars which has increased the overall weight of the car and reduced fuel efficiency,
there is a need of an efficient lightweight wiring mechanism. Thanks to the controller area
network, the building block for infotainment and connectivity not only reduces the car
weight but also transformes the concept of a smart car into reality. A general view of wiring
in conventional and smart cars is presented in Figure 2.

The development of a controller area network dates back to early 1986 by Robert Bosch
GmbH, who aimed to introduce an acceptable weight-saving communication strategy
for the auto-industry. With the years of development stages, CAN was recognized by
The International Standards Organization (ISO) as ISO-11898 [45,46], in 1993. The CAN
standard continued to evolve according to the growing demands of smart cars, resulting
in the ISO-11898-I [45,46] flexible data CAN (CAN-FD) standard in 2005 followed by the
start of CAN-XL development in 2018. Surprisingly, the independent operation of the new
communication protocol like local area network (LIN) is not possible. Depending on CAN,
the LIN operates on top of CAN or in its coordination, which signifies the role of CAN
in SCs.

The physical structure of a CAN-bus consists of a twisted pair cable with two wires,
CAN-low and CAN-high. CAN-low is used for smart operations which require low
speed such as power windows, dashboard controls, and displays, whereas for high-speed
applications and high data accuracy like engine control, anti-lock braking, and electronic
stability control, CAN-high is used. The ends of the wires are connected with terminal
resistors to reduce noise disturbance and ensure signal integrity over the bus.
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(a) Dense, complex and heavy
electrical wiring

(b) Lightweight 2-wire CAN-bus,
an alternate to (a)

Figure 2. Representation of wiring in a car [47].

In addition, an on-board diagnostic port is also part of the CAN-bus system, which
allows interfacing between external devices and ECUs via CAN-bus. Communication
through CAN-bus employs the multi-master concept, i.e., any ECU in the network can take
control of the bus, send message and request data from any other electronic control unit in
the vehicle. In short, it is a message-oriented communication protocol with a data length of
eight bytes and an up to 1 Mbps bit rate [48]. Typically, the CAN-bus protocol includes two
types of data frames: standard and extended. The standard CAN frame utilizes an 11-bit
identifier (2048 message identifier combinations) for the identification of the destination,
which was later extended to 29 bits (537 million message identifier combinations) and
given the name of an extended CAN frame. Figure 3 provides insight of a typical standard
CAN frame.

Figure 3. Representation of a typical CAN frame.

The functionality of SCs heavily relies on over the cloud connectivity in the cyber
space, which opens the door for cyber attacks. In subsequent sections, we see various cyber
attack surfaces and attacks in SCs.

2.2. Cyber Vulnerability

By the expanded reliance on the connectivity to ensure intelligent smart functioning of
a SC, the vulnerability risk to cyber attacks is increased, presenting various features as a soft
lucrative target for the cyber criminals. During the last few years, many key features were
identified as attack surfaces serving as entry points for intelligently crafted cyber attacks
in smart cars. It includes keyless entry and ignition, airbag, electric window lift, media
and infotainment system, and many others to name. Depending on software and sensors,
the driver assistance system could be compromised by the remote assailant, disrupting the
normal operations accordingly. Access to the infotainment system can be misleading and
distracting for the driver. Insecure communication channels for telemetry can be exploited
by malicious agents to transmit unauthorized commands. Threat actors can compromise
the keyless entry system to unlock and start the car by introducing cyber attacks like a relay
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attack. Hackers can gain access to the SCs function by the data breach in cloud services,
which provide personalized services and predictive maintenance.

2.3. Impacts of Cyber Attacks

Different types of cyber attacks can have serious impact, from disabling various
key functions to disrupting car control and safety features. Primarily, we consider the
CAN-bus spoofing attack where the hacker impersonates the legitimate user and sends
manipulated data into the bus, which results in loss of critical control features such as
steering, braking, and acceleration commands. Passenger security is compromised when
the hackers successfully spoof the control mechanism and deactivate the car windows or
doors, hijack and trap the riders. Compromised by the DoS attack, the communication
and control network, among various ECUs facilitating sending and receiveng vital signals
such as engine, adaptive cruise, and collison avoidance control, fails. It also disturbs
airbags, lane keeping assistance, emergency braking system, traction control, and many
other safety functions. Further, passenger safety is at risk when the DoS attack floods
the network by sending enormous amounts of idle data prohibiting authentic ECU from
sending valid data results in delayed emergency response and rescue measures. ADAS
systems, being highly dependent on sensor data, may misfire the obstacle detection by the
spoofed sensors sending misleading data values. Falsified sensor values can delude the
driver guiding to locations where risks of injuries, collisions, or other perils to security are
enormous. A compromised GPS system could drive the car to unwanted dangerous routes
and sites. Infotainment systems infiltrated by intruders can change the infotainment display
to flashing images ditracting the driver, which can increase the risk of possible accidents.
Malicious remote disabling of the car electronic control system can leave commuters in
dangerous situations, i.e., stranding in unsafe areas, losing control on the crucial security
systems, and putting them at high risk of collisions especially during driving. Among all
impacts, compromised keyless entry by impersonation attacks is the most dire. Once
becoming successful in key fob cloning, the adversary can gain physical access to the car,
allowing malevolent use of the car, and perform privacy invasion [49] which can result
in sensitive data loss and leakage, change in the firmware, alteration in its cofiguration,
alteration in the personal preferences and theft of driver identity to perform fraudulent
activities. In short, the hacktavist gains full access to the car, enjoying the rights of the legal
owner of the car. A summary of the various cyber attacks and their impacts on vehicle
safety and passenger security is given in Figure 4.

Figure 4. An overview of various cyber attacks and their impact on vehicle safety and passenger
security.
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In short, these attack surfaces can experience numerous intrusions initiated by the
intruders to take control of the car. These flaws, intrusions and attacks can delay the data
transmission, infuse false contents in the message, resend the same information multiple
times, and so forth. Table 2 highlights different types of cyber attacks introduced in the
CAN-bus data.

Table 2. An overview of various cyber attacks launched in CAN-bus messages to negatively impact
the communication between different ECUs.

Attack Type Description

DoS (Denial of
Service)

Transmission is interrupted by sending messages of the highest priority at
unusually high speed.

Fuzzy Actual data are manipulated by injecting random bits in arbitrarily
selected identifiers.

Flooding Authorized user is disconnected from the network by the congestion of
network traffic with malicious data.

Spoofing False messages are injected by the hacker pretending to be the
authorized user.

Malfunction Normal data are replaced with malicious data to impact data integrity.

Impersonation A threat actor impersonates as a legitimate user to steal sensitive data.

3. Proposed Methodology

While the development of smart cars facilitates the driving experience with connec-
tivity and real-time information, the security risk associated with the car control and
communication in the cyber space is tremendous. Numerous studies have been conducted
to develop an attack detection system in smart cars, but still there is a gap to realize a
simple, fast but lightweight and efficient self-defense mechanism. In this study, we propose
a machine learning-based intrusion detection classifier employing six distinct real-time
CAN-bus datasets collected from different cars including KIA Soul, Hyundai Avante CN7,
Hyundai YF Sonata, CHEVROLET Spark, and Genesis g80. The datasets differ in attack
types, car status, car model, and the collected time. The datasets and the proposed classifier
are explained in detail in the following subsections.

3.1. Datasets

While learning of an ML model highly depends on the information embedded in the
data, selection of the dataset is crucial to build an ML-based intrusion detection classifier
for critical applications like smart cars. In pursuit of this, the current study utilizes real-
time data as a more realistic approach to propose an IDS. While working in the Hacking
and Countermeasure Research Lab, South Korea, the data were collected by capturing
the controller area network traffic through the OBD-II port connected to Raspberry pi3
coupled with a laptop through wireless connection. To obtain more accurate data, several
different smart cars including Hyundai YF Sonata, KIA Soul, and Genesis g80 were tested
with different types of cyber attacks introduced in the CAN-bus data [50]. Depending
on the car model, type of attacks, injection frequency, and collection time, there were six
independent datasets. These were: (1) Car Hacking: Along normal values, it contains
intrusions launched on CAN-bus for 3 to 5 s in Hyundai YF Sonata; (2) Car Hacking:
Attack and Defense Challenge 2020: Targeting the Hyundai Avante CN7, attacks were
introduced with different injection frequencies; (3) In-vehicle Network Intrusion Detection
Challenge: It includes CAN-bus data from CHEVROLET Spark, KIA Soul, and Hyundai
Sonata collected while the car was in a stationary position; (4) CAN-Intrusion-Dataset
(OTIDS): The CAN-bus data with intrusions were recorded from KIA Soul; (5) M-CAN
Intrusion Dataset: M-CAN is a variant of CAN-bus where different multimedia devices and
navigation modules communicate. Genesis g80 was used in this case; (6) CAN-FD Intrusion
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Dataset: CAN-FD is an extension of CAN-bus with a high data rate. The CAN-bus data
were collected from the smart cars released in 2021. Table 3 highlights the various features
including attack types, dataset publication year, and a total number of samples for the
mentioned datasets.

Table 3. An overview of 6 different CAN-bus datasets used in this study.

Dataset No. of Samples Attack Types Publication Year

1 17,558,462 DoS, Fuzzy, Spoofing (Gear), Spoofing (RPM) 2018
2 8,694,507 Flooding, Spoofing, Fuzzing, Reply 2020
3 9,367,773 Flooding, Fuzzy, Malfunction, Replay 2018
4 4,613,909 DoS, Fuzzy, Impersonation 2017
5 2,952,620 DDoS, Fuzzing 2022
6 7,120,602 Flooding, Fuzzing, Malfunction 2022

3.2. Data Preprocessing

In machine learning-based model development, data are normally preprocessed for
better model training to improve performance and enhance convergence with better inter-
pretation of data features. Preprocessing can be standardization- and normalization-based.
Standardization is primarily used for the preprocessing of Gaussian distribution data, while
for non-Gaussian data and where the impact of attacks and outliers is to preserve, normal-
ization is used. The data used in this study are highly non-Gaussian, along with a significant
impact of cyber attacks; therefore, normalization was used to preprocess the CAN-bus data.
Given the varying range of data sent among different ECUs, the normalization helps in
reducing the repercussions of differing sclaes. More specifically, Min–Max normalization is
employed to scale down the data between 0 and 1. Avoiding the biasness and enhancing
the model learning, this allows efficient convergence of the data required to optimize the
detection accuracy and computational cost of the proposed classifier. Equation (1) explains
the general normalization process, while Equation (2) is used to transform it to the 0 and
1 scale.

X =
x − xmin

xmax − xmin
, (1)

X =
x − xmin

xmax − xmin
(Nmax − Nmin) + Nmin (2)

where X and x are normalized and acutal data points, xmax and xmin are the maximum and
minimum values of the data, and Nmax and Nmin are the new maximum and minimum
values when scaled down to 1 and 0.

3.3. Attack Design

With the assumption that the attacker is fully aware of the network structure, an attack
is launched which disrupts the normal network traffic, resulting in malfunctioning of the
system. The attack design for various cyber attacks are given in Equation (3). For example,
an intelligently crafted attack design includes injection of all zero (0 × 000) values in
the data for DoS, masqueraded and faked data for specific CAN ID in a spoofing attack,
and random values for arbitrary CAN ID for a fuzzy attack. DoS is primarily performed by
the blockade of service to the legitimate ECU by sending the CAN messages of the highest
priority. In the CAN-bus network, any message with the 0 × 000 identifier is interpreted as
of the highest priority, which actually contains no meaningful information except making
the bus idle.

c =
[0, 0, . . . , 0], f or DoS attack

[s1, s1, . . . , sn], f or spoo f ing attack
random([s1, s2, . . . , sn]), f or f uzzy attack

(3)
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The input dataset after the addition of attack vector becomes

X̂ = X + c (4)

where X is the normal data values, without addition of an attack vector.

3.4. Proposed PD-ML Intrusion Detection Classifier

In order to classify the CAN-bus data as normal or attacked, this study presents a
novel machine learning-based lightweight intrusion detection classifier. To learn the pattern
and identify relationships among different features of the data for accurate predictions on
new data, an ML-based scheme requires splitting of input data into training and testing sets
in a suitable proportion. In the proposed scheme, the classifier is trained using 70% of the
total samples while holding out the remaining 30% samples used for testing. The selection
of 70/30 is a normal practice adopted by researchers as in [51,52] for the development
of machine learning-based models. In addition, performing an extensive working on
algorithmic splitting, the authors of [53] proposed 70/30 as the best ratio for model training
and testing. N-fold cross-validation is also opted in ML models, where N-1 × folds are used
for training and 1 × fold is used for testing in each iteration, and the process is repeated
N times. Consequently, the N-fold cross-validation approach ends with the development
of a heavyweight ML model, increasing the computational time by N times, rendering its
impracticality in the case of smart cars where a fast decision-making power is required
in real time. Therefore, the 70/30 training/testing approach is adopted for developing
a lightweight ML classifier. Further, splitting the data by 70/30 overcomes the model
over-fitting problem, which normally results in 80/20 and 90/10 data division.

The proposed scheme is simple, lightweight and efficient involving (i) attack injection
by the threat actor followed by its (ii) detection using a PD-based ML classifier. During the
injection, the adversary acting as an authentic ECU gains unauthorized access to the smart
car through the OBD-II port connected to Raspberry pi3 coupled with a laptop through
wireless connection. The cyber intrusion is then injected into the CAN-bus, manipulating
the normal data transmitted on the bus by the legitimate ECU. The affected ECU can be
the engine control unit, the body control module, the brake control module, the battery
management system, or any other. Next, the CAN-bus traffic including data from both
normal and compromised ECUs are fed to the network monitoring unit for analysis and
monitoring. The proposed PD-based ML intrusion detection classifier, a part of the network
monitoring unit, collects all the incoming traffic, evaluates the data samples on trained PD-
ML calculation (calculation process is explained in Section 3.4.1), and makes the decision by
comparing the samples with the threshold value. A holistic view of the proposed classifier,
including attack injection and detection, is given in Figure 5, and the pseudocode outlining
the key steps involved in the classifier development for intrusion detection is presented in
Algorithm 1.
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Figure 5. Representation of the proposed scheme.

Algorithm 1 PD-based ML Classifier for Intrusion Detection

% Step-I Data Collection
data = CAN_bus_data()

% Step-II Data Preprocessing
X̂ = normalize(data)

% Step-III Data Splitting
For input X̂()

input.split f (train sample, test samples)
For training samples

Y = input.uplimit → 0.7 * X̂
For test samples

Z = input.uplimit+1:end → 0.3 * X̂
% Step-IV PD-ML Vectors Calculation

Function = OutlierDetection()
For input Y()

calculate centroid, µ
calculate PD vector, SR,
calculate average of SR, SRavg

For input Z()
calculate PD vector, ST ,

% Step-V Intrusions Detection
Check

if ST > SRavg

Ŷ = It is compromised data
else

Ŷ = It is normal data
end

% Step-VI Classifier Development
Classifier(inputs = X̂, outputs = Ŷ)

3.4.1. Measurement of PD-ML Vectors

In line with the basic workflow of machine learning techniques, the input data
X̂ = [x1, x2, . . . , xm] where m is the total number of samples are first splitted into a train
sample Y = [y1, y2, . . . , ya], where a is the total number of samples, and a test sample
Z = [z1, z2, . . . , zb], where b is the total number of samples. During the training phase, the
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centroid µ of m samples each withan a number of features is calculated. The calculation
of the centroid is the measure of central tendency which ensures that the impact of all the
values in the data is considered, and variation in any single value is highlighted in the mean
value. The pythagorean distance (PD) vector SR is then designed by measuring the distance
of each point in the data pool from the centroid. Then, the model training ends with the
calculation of average PD, SRavg . Next, the model testing begins with the measurement of
the PD vector ST for test samples. The classifier model then decides for identification of
normal and attacked values by checking the condition as ST > SRavg . If the given condition
is met, it is then an outlier; otherwise, it is a normal value. The set of equations governing
the working of the proposed classifier includes Equations (5)–(8).

cd = [µ1, µ2, . . . , µa], (5)

where µi =
1
m ∑a

i=1 xi
SR = [SR1, SR2, . . . , SRa], (6)

where SRp =
√

∑a
i=1(µi − yi)2, and yi is the training dataset, p = [1, 2, . . . , a].

SRavg =
1
m

a

∑
i=1

SRp, (7)

ST = [ST1, ST2, . . . , STb], (8)

where STq =
√

∑b
i=1(µi − zi)2, and zi is the test dataset, q = [1, 2, . . . , b].

3.5. Performance Evaluation Metrics

This section describes the elementary evaluation metrics used for the performance
analysis of an ML-based classifier. It includes accuracy, F1-score, precision, recall, and
receiver operating characteristic (ROC) curves. For the better understanding of the given
metrics, let us first see the associated parameters governing these terms.

• True positive value, Tp: The actual positive value is correctly predicted as positive.
• False positive value, Fp: The actual negative value is falsely predicted as positive.
• True negative value, Tn: The actual negative value is correctly predicted as negative.
• False negative value, Fn: The actual positive value is falsely predicted as negative.

Accuracy is a measure of total correctly predicted values including both true positives and
true negatives. F1-score is a measure of model effectiveness by evaluating its class-wise
prediction skills contrary to accuracy which considers the overall model performance.
It is the harmonic mean of recall and precision. Recall presents the measure of rightly
predicted positives out of all the positive values in the given data. Precision offers an
understanding of rightly measured positive values of all the predicted positives. All these
metrics are significant in determining the efficiency of an ML model; however, precision is
most relevant when considering the prediction of a particular target, i.e., attacked data in
this case. Mathematical description of these metrics is given in Equations (9)–(12).

Acc =
Tp + Tn

Tp + Fp + Tn + Fn
(9)

F1 = 2
(

Pr × Re

Pr + Re

)
(10)

where precision Pr and recall Re are computed as follows:

Pr =
Tp

Tp + Fp
(11)
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Re =
Tp

Tp + Fn
(12)

3.5.1. ROC Curve

The receiver operating characteristic curve contributes significantly to evaluating the
performance of a binary classifier, which is a case this study deals with. It is a graphical
representation of the model’s sensitivity (sensitivity is analogous to recall) (true positive
rate, Equation (13)) and specificity (false positive rate, Equation (14)) with area under
the curve (AUC) summarizing the overall model’s performance. The curve closer to the
top-left corner where sensitivity and specificity are high represents the optimal model’s
performance. Moreover, an AUC value approaching one or zero presents the best or the
worst model development.

Sensitivity =
Tp

Tp + Fn
(13)

Speci f icity =
Fp

Fp + Tn
(14)

3.5.2. Error Metrics

Along other performance measuring metrics, error metrics has great significance in
analyzing the performance of a machine learning classifier. Primarily, it is a quantitative
measure of performance discrepancy and a function of measured output and maximum
theoretical output as given in Equation (15). In this study, absolute error is calculated using
Equation (16), which is a difference in the measured and actual values, and it offers a clear
insight to assess the classifier’s reliability and effectiveness.

Error = f(Ŷ, max Ŷ) (15)

Absolute Error =
∣∣Ŷ − max Ŷ

∣∣ (16)

4. Results

In order to evaluate the performance of the proposed classifier, various widely accepted
CAN-bus datasets with multiple attack designs are employed. As described above, many
simulation parameters are used for the model configuration, performance optimization,
and overcoming model over-fitting and under-fitting problems.

The simulation results presented in Tables 4–6 show an extraordinary performance
for basic requirements from an ML model, i.e., simultaneously obtaining high accuracy,
good precision, commendable recall, and excellent F1-score. There are indicators of overall
correctness, minimized false positive predictions, and model suitability for the imbal-
anced data.

4.1. Accuracy

Accuracy being the measure of overall correct predictions by the classifier is calculated
using Equation (9), and the obtained results are given in Table 4. These results show
outstanding classifier performance, as with >99% efficiency it correctly classifies the at-
tacked and normal data for a range of cyber attacks introduced in the CAN-bus system
of different types of SCs. Specifically for the fuzzing attack in Dataset 5, the accuracy
measure was 99.922% followed by 99.716%, 99.691%, 99.691%, and 99.568% for the spoofing
attack in Dataset 2, and fuzzy, impersonation, and DoS attacks in Dataset 4, respectively.
The range of accuracy measurements for different attacks is as follows: 97.833–99.568%
(DoS), 98.167–99.716% (spoofing), 99.691–99.922% (fuzzy), and 95.0–99.412% (flooding).
The malfunction and impersonation attacks in Datasets 3 and 4 also presented measurable
accuracy results of 98.722% and 99.691%. However, the lowest achieved accuracy value was
95.0% for the flooding attack in Dataset 3, and the possible reason of this deviation by 5%
from the maximum value could be the dataset size and or inappropriate classifier tuning
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for classification. Summing up, the obtained results are sure proof of the dynamic nature of
the proposed classifier and its ability to detect the attacks with high degree of accuracy.

Table 4. Accuracy measure of the proposed classifier for six datasets under different attack designs.

Datasets Attack Type Accuracy (%)

Dataset 1
DoS 97.833

Spoofing (Gear) 99.50
Spoofing (RPM) 98.167

Dataset 2 Flooding 99.390
Spoofing 99.716

Dataset 3 Flooding 95.00
Malfunction 98.722

Dataset 4
DoS 99.568

Fuzzy 99.691
Impersonation 99.691

Dataset 5 DoS 98.585
Fuzzing 99.922

Dataset 6 Flooding 99.412

4.2. F1-Score

F1-score, a measure of the classifier reliability and its effectiveness in making class-
wise predictions, is measured using Equation (10), and the calculated results are presented
in Table 5. Normally, a scale of 0–1 is used for the efficiency measurement of F1-score:
the closer the value is to one, the better the performance, and vice versa. Satisfying
the classifier performance, the F1-score for all the attack designs and datasets is almost
one in the range of 0.95541–0.99961 with a maximum and minimum absolute errors of
0.04459 and 0.00039, respectively. Analyzing the datasets, Datasets 2, 4, 5, and 6 performed
exceptionally well with the highest F1-scores of 0.99857, 0.99844, 0.99961, and 0.99488,
respectively. However, Datasets 1 and 3 also showed remarkable performance with the
lowest values of 0.96073 and 0.95541. Attack-wise analysis showed that the best results
were obtained for fuzzy attacks (Absolute Error: 0.00156–0.00039), followed by spoofing
attacks (Absolute Error: 0.02949–0.00143), DoS attacks (Absolute Error: 0.03927–0.00219),
and flooding attacks (Absolute Error: 0.04459–0.00375). F1-score for the malfunction
and impersonation attacks in Datasets 3 and 4 is also apprehendable, showing values of
0.98432 and 0.99844, respectively. Summarizing, the proposed classifier is highly reliable in
attack classification and detection for the imbalanced datasets. Note that all the datasets
considered are imbalanced as the sample size for attacked and normal data is different.

4.3. Precision

Precision, a measure of correct positive predictions out of all the predictions, is calcu-
lated using Equation (11), and the measured results are shown in Table 6. The proposed
classifier showed extraordinary performance for the fuzzing attack in Dataset 5, with a
precision score of 0.999, reducing error to 0.001. In the same fashion, the classifier’s out-
come for other attack designs and datasets is also up to mark, showing precision of 0.997,
0.996, 0.993, 0.99, 0.985, and the list goes on with all values > 0.9 (≈1). The maximum
absolute error found in precision results is 0.085, and this could be due to imbalanced
data. Wrapping up, the output of the proposed classifier proves its capability to identify
attacks, anomalies and flaws in the controller area network in smart cars with minimal
false positives and high precision.
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Table 5. F1-score measure of the proposed classifier for six datasets under different attack designs.

Datasets Attack Type F1-Score

Dataset 1
DoS 0.96024

Spoofing (Gear) 0.9923
Spoofing (RPM) 0.97051

Dataset 2 Flooding 0.99625
Spoofing 0.99857

Dataset 3 Flooding 0.95541
Malfunction 0.98432

Dataset 4
DoS 0.99781

Fuzzy 0.99844
Impersonation 0.99844

Dataset 5 DoS 0.99266
Fuzzing 0.99961

Dataset 6 Flooding 0.99488

Table 6. Precision measure of the proposed classifier for six datasets under different attack designs.

Datasets Attack Type Precision

Dataset 1
DoS 0.929

Spoofing (Gear) 0.985
Spoofing (RPM) 0.943

Dataset 2 Flooding 0.993
Spoofing 0.997

Dataset 3 Flooding 0.915
Malfunction 0.969

Dataset 4
DoS 0.996

Fuzzy 0.997
Impersonation 0.997

Dataset 5 DoS 0.985
Fuzzing 0.999

Dataset 6 Flooding 0.99

In summary, the precision score for all the datasets and the attack designs is above 0.9
achieving the maximum value of 0.999 (Absolute Error: 0.001) This is a clear indication of
the outstanding performance by the proposed classifier in accurately predicting the true
positives with little or no false positive predictions. In addition, the detection accuracy
and F1-score in all the cases are more than 99% and 0.99, respectively, except for the DoS
and spoofing (RPM) attacks in Dataset 1, malfunction and flooding attacks in Dataset 3,
where the accuracy values are 97.833%, 98.167%, 98.722%, and 95.0% with 0.96073, 0.97051,
0.98432, and 0.95541 F1-score, respectively. These values are even close to the perfect results
(1.0) with a maximum error of 0.04459.

4.4. Recall

Accuracy, F1-score, and precision posess inbuilt trade-offs like insensitivity to im-
balanced data and no differentiation between false negative and false postivie errors by
the accuracy measure. F1-score offers equal weight to precision and recall and does not
count for true negatives, which is important in spam filtering for incorrect flag detection.
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Precision focuses only on false positives and is inappropriate when false negatives are
costly. In these scenarios, the proposed model needs to be evaluated for recall, ROC-AUC
to check its authenticity while applying for imbalanced data or in applications where true
negatives or false negatives are important. This section evaluates the recall rate, while the
next section discusses ROC and AUC for the proposed classifier.

Recall, a measure of correctly predicted positives of all the positives in the given
data, is calculated using Equation (12), and the calculated results are presented in Table 7.
The results are remarkable, where the actual positive instances are 100% accurately pre-
dicted as positives for all the attack designs except for the DoS anomaly in the Car Hacking
dataset. The possible reason for this discrepancy is more imbalanced data distribution in
DoS attacks compared to other anomalies disturbing the normal functioning of a smart car.
The presence of a noise element could also contribute towards this slight deviation from
the maximum achievable value. Ensuring suitability, these results encourage the adoption
of the proposed classifier in smart cars for intrusion detection.

Table 7. Recall measure of the proposed classifier for six different datasets under different attack designs.

Datasets Attack Type Recall

Dataset 1
DoS 0.994

Spoofing (Gear) 1.0
Spoofing (RPM) 1.0

Dataset 2 Flooding 1.0
Spoofing 1.0

Dataset 3 Flooding 1.0
Malfunction 1.0

Dataset 4
DoS 1.0

Fuzzy 1.0
Impersonation 1.0

Dataset 5 DoS 1.0
Fuzzing 1.0

Dataset 6 Flooding 1.0

4.5. ROC Curves

Receiver operating characteristic curves offer a visual insight into the overall model
performance and robustness along with the area under the curve demonstrating the effec-
tiveness of the model. Describing the discriminative power of a machine learning classifier,
the area under the curve (AUC) value is a good mearue to distinguish a normal sample
from a malicious one at a probability scale of zero and one. The AUC value 0 < AUC < 0.5 in-
dicates an issue in the classifier design, AUC = 5 reflects randomness in anomaly detection,
whereas 0.5 < AUC < 0.7 shows a suboptimal classifier, 0.7 < AUC < 0.8 represents a decent
classifier, 0.8 < AUC < 9 indicates a good classifier, and AUC > 0.9 reflects an excellent
classifier with high discriminating capability. Following the norms of the literature, a 95%
confidence Interval is selected for calculating AUC values. Figures 6–8 show ROC curves
obtained from the output of the proposed classifier for multiple cyber attacks introduced
in CAN-bus data of different smart cars. It is clearly visible that all the curves (bends)
are closely aligned with the top left corner where sensitivity and specificity values are
high. Further, the AUC value is above 0.95, almost approaching 1 for all ROC curves with
a minimum value being 0.9569, representing the high reliability and applicability of the
proposed classifier for intrusion detection in the controller area network in smart cars.
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Figure 6. ROC curves for the proposed ML classifier for different cyber attacks in (a) car hacking and
(b) car-hacking challenge datasets.
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Figure 7. ROC curves generated using the outcome of the proposed ML classifier for different cyber
attacks in (a) IVN Intrusion and (b) CAN Intrusion datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate, fpr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

, 
tp

r

M-CAN

DoS (AUC=0.9823)

Fuzzing (AUC=0.9997)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate, fpr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

, 
tp

r

CAN-FD

Flooding (AUC=0.9944)

(b)

Figure 8. ROC curves generated using the outcome of the proposed ML classifier for different cyber
attacks in (a) M-CAN and (b) CAN-FD datasets.
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4.6. Confusion Matrices

Lastly, the measure of any machine learning performance parameter is directly linked
with the calculation of the confusion matrix. It helps visualize the potency of the ML classi-
fier by evaluating the actual and predicted values. Figure 9 shows the general structure of a
confusion matrix. Given the same nature of the actual and predicted values, the outcome
is a true function and vice versa. Analysis of the confusion matrix involves the values in
its diagonal. The primary diagonal (true) values should count to the maximum while the
secondary diagonal (false) values should approach zero, ideally be zero instead. Given
the various datasets and cyber attacks in this study, the confusion matrices obtained from
the proposed classifier are given in Figures 10–13. Having a close look at these matrices,
all the true positives and true negatives show a reasonably good count of correct predic-
tions. The false positives are all zero except for the first case where it is ‘one’, indicating
exceptionally high recall and precision rates. The possible reason of low false positives and
negatives is the classifier’s sensitivity towards predicting normal instances when certain
anomaly encounters smart cars. While developing the model, the number of samples varies
as attack type varies; this is because of overall variation in the data size. We focus on the
CAN-Intrusion and M-CAN datasets, where the true positives are low, which is conven-
tionally accepted to be high in the case of high accuracy, F1-score, and precision. The low
value of true positives primarily reflects the low number of positive samples in the datasets,
indicating the presence of imbalanced data linked with diverse functionalites of smart cars.

Figure 9. General representation of a confusion matrix of an ML classifier.

Figure 10. Confusion matrix of the proposed ML classifier for different cyber attacks in the car
hacking dataset.
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(a) (b)

Figure 11. Confusion matrices of the proposed ML classifier for different cyber attacks in (a) challeng-
ing and (b) IVN Intrusion detection challenge datasets.

Figure 12. Confusion matrix of the proposed ML classifier for different cyber attacks in the CAN-
Intrusion dataset.

Figure 13. Confusion matrices of the proposed ML classifier for different cyber attacks in M-CAN
and FD-CAN datasets.

4.7. Performance Comparison
4.7.1. Computational Time

Computational time plays a key role in real-time cyber attack detection. It is a measure
of the total time required for building the model followed by model testing. The simulation
environment for the computation of the proposed classifier uses MATLAB 2023a installed
on the Microsoft Windows 11 Pro operating system in the computational machine with an
Intel(R) Core(TM) i7-1165G7 @ 2.80GHz processor with 12 GB RAM.

While evaluating the time complexity of various traditional machine learning schemes
for cyber attack detection, it is found that the proposed classifier detects the intrusion in a
CAN-bus network in smart cars at greatly reduced time, evident from Table 8. Utilization
of the quadratic programming to find the hyperplane for data segregation contributes to the
increased computational complexity of SVM taking more time to tune the model limiting
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the use in fast detection applications. Compared to SVM, the computational cost for NN is
low, but is 99.99% higher compared to the proposed scheme. The probable cause could be
multiple hidden layers, the batch processing and backpropagation phenomenon, which
is an integral part of the neural network learning process. With the inherent nature of the
idle during training phase, the kNN is considered a lazy approach. Extending all efforts
to calculate the threshold value and make predictions during the testing phase increases
the computational cost considerably. The recursive nature of DT, which involves repetition
of the training process for optimal selection of split to classify data as compromised or
normal, increases computational time by many times. Compared to all these baseline
methods, the proposed scheme is free from recursive nature, backpropagation, and the
quadratic programming issue. Further, it calculates the threshold value during the training
phase, where during testing, simple comparison is made between the incoming value
and the threshold value. Similarly, comparison with some studies which have proposed
different cyber intrusion detection mechanisms given in Table 9 reflected an extraordinary
performance by the proposed classifier in reducing computational complexity.

Table 8. Computational time-based performance comparison of the proposed study with existing
ML schemes.

ML Schemes Computational Time (s)

Support Vector Machine 25.71253
Neural Network 1.735529

k-Nearest Neighbor 14.20163
Decision Tree 10.97992

Proposed study 0.058697

Table 9. Computational time-based performance comparison of the proposed study with exist-
ing studies.

References
Computational Time (s)

Build Time Execution Time

He et al. [24] 2.42 0.94
Khan et al. [42] 403 3
Ullah et al. [54] - 51
Kang et al. [44] 4.15 0.0020584
Proposed study 0.058427 0.00027

4.7.2. Distance Metrics-Based Comparison

Distance metrics can be used for classification and clustering of points with similar
characteristics. As the proposed scheme relies on Pythagorean distance, its comparison
with other distances is necessary to justify its choice for the classifier design. It is given
in Table 10. It shows that the proposed distance performed extraordinarily good with a
38% higher accuracy than the Mahalanobis distance followed by 24%, 5.7%, and 3% better
performance than the Manhattan, Minkowski, and Chebyshev distances, respectively.

Table 10. Distance metrics-based performance comparison.

Distances Accuracy (%) F1-Score

Manhattan 75.746 0.867875
Minkowski 94.154 0.89764

Mahalanobis 61.94 0.57382
Chebyshev 96.891 0.94279

Proposed study 99.922 0.99961
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4.7.3. Comparison with Existing ML Schemes

Machine learning schemes are well-established techniques for classification of normal
and compromised data. Comparison of the proposed scheme with existing ML schemes
is crucial in order to validate its performance. Table 11 presents performance comparison
with some ML schemes. It clearly shows the outstanding performance of the proposed
scheme in cyber attack detection for the chosen datasets. The proposed scheme showed
2.4%, 2.1%, 2.1%, and 1.7% better performance in accuracy compared to ML schemes,
where this difference in F1-score is 4.5%, 3.9%, 3.9%, and 3.4%. As the smart car data are
highly non-linear, linked with diverse functionalities, the SVM showed less efficiency as
one class dominates over the other class in the dataset. Neural networks showed good
performance but were comparatively less efficient, probably because the number of neurons
are in the saturation region, which does not contribute to the learning process, leading to
reduced efficiency. Other possible reasons could be the convergence issue, overfitting, and
or underfitting problems. Comparatively low efficiency of NN highlights the sensitivity
of NN to variations in the data. Small changes in the smart car data result in significant
change in the DT structure, reducing the learning efficiency which decreases the overall
efficiency. Conversely, the proposed scheme is sound as the data sensitivity is overcome by
calculating the centroid, and there is no concept of the saturation region.

Table 11. Performance comparison of the proposed study with existing ML schemes.

ML Schemes Accuracy (%) F1-Score

Support Vector Machine 97.5 0.95441
Neural Network 98.2 0.96552

k-Nearest Neighbor 97.833 0.96024
Decision Tree 97.833 0.96024

Proposed study 99.922 0.99961

4.7.4. Comparison with Recent Studies

A comprehensive comparison of the proposed system and the various relevant studies
is presented in Table 12. Researchers have investigated the various ML-based anomaly
detection classifiers both for single and multiple attack types. A comprehendible detection
accuracy of 99.8% and 99.43% is achieved for single and multiple type of cyber assaults,
respectively; however, these studies offer no information about F1-score and precision
results, which are important parameters while analyzing the efficiency of any ML classifier.
The other relevant studies which include all the evaluation metrics presented good perfor-
mance results, but the proposed study outperformed these with percentage gains of 1.163,
1.862, and 1.301 in accuracy, F1-score, and precision, respectively. Moreover, most of the
studies remained silent when it comes to the area under the curve. AUC offers better un-
derstanding of the classifier’s performance, measuring how well the classifier distinguishes
between attacked and normal data. The proposed classifier AUC could achieve a 0.9997
score, showing a difference of 0.0003 from the ideal result, i.e., AUC = 1.0.

Generalizability of an IDS lies in its effectiveness to detect anomalies on unseen data.
Utilizing the CAN-bus data, which represents the overall behavior of SCs, the proposed
classifier was tested on new unseen real-time data collected from 6 different smart cars,
i.e., Hyundai YF Sonata, Hyundai Avante CN7, CHEVROLET Spark, KIA Soul, Hyundai
Sonata, and Genesis g80. Additionally, employing the 13 unique attack scenarios, the model
presented a comprehendible performance as discussed above.
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Table 12. Performance comparison of various machine learning-based studies for anomaly detection
in smart cars. Accuracy is measured in percentages, whereas for the rest of the parameters, a scale of
0–1 is used, where 0 indicates the minimum value and 1 shows the maximum achievable number.

References Attack Types Accuracy Precision F1-Score AUC

Kishore et al. [22] Multiple 99.09 0.9901 0.9910 0.9990
Alalwany et al. [29] Multiple 98.5 0.987 0.985 1.0
Altalbe [32] Multiple 99.2207 96.3853 97.3098 -
Pascale et al. [36] Multiple - 0.986 0.981 -
Salek et al. [40] Single 98.3 - - -
Khan et al. [42] Multiple 86 0.9493 0.9497 -
Ahmed et al. [55] Single 99.8 - - -
Aloqaily et al. [56] Multiple 99.43 - - -
Zhu et al. [57] Multiple 90.1 0.856 0.913 -
Seo et al. [58] Multiple 98 0.983 - 0.999
Loukas et al. [59] Multiple 86.9 - - -
Kang & Kang [44] Single 97.8 - - -
Yang et al. [60] Single 98.76 - - -
Aldhyani & Alkahtani [23] Multiple 97.3 0.97 0.96 -
Mehedi et al. [61] Multiple 98.1 0.9814 0.9783 0.9542
Ma et al. [62] Multiple - 0.9995 0.9992 -
This study Multiple 99.922 0.999 0.99961 0.9997

5. Conclusions

The controller area network is an integral element to realize the concept of smart cars.
It establishes communication among different electronic control units for various intelligent
functionalities such as engine management, the braking system, remote monitoring and
control, etc. However, owing to the inherited broadcasting and non-delineating nature,
CAN-bus is highly vulnerable to cyber assaults and intrusions presenting serious security
risks to the passengers. With the purpose of enhancing SC security, a PD-ML-based
intrusion detection classifier is proposed to detect the cyber attack and separate it from
the normal network traffic while employing real CAN-bus datasets with different types
of attacks launched in the system. The simulation results showed a detection accuracy
of 99.922% with a 0.99961 F1-score, 0.999 precision, and 1.0 recall rate in identifying and
detecting the intrusions in the CAN-bus data with computational time reduced by 99.77%
99.58%, 99.47%, 96.61%, and 86.67% compared to existing schemes. The performance
statistics indicate that the proposed model is highly sensitive to positive predictions,
making it a good choice for smart cars, directly connected with the life of the commuters.
The proposed classifier is a decent choice for the imbalanced datasets and can be utilized
in critical applications like spam identification, fraud detection, healthcare monitoring,
smart grids, autonomous drones, financial analytics, and many others. Additionally, this
study can be extended to address the impact of cyber attacks not discussed here. Further,
the development of firmware compatible with the central gateway and the target ECU in
SCs is a key adaption challenge and could be an extension of this study.
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