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Highlights:

What are the main findings?
• The proposed framework offers a robust and accurate method for modeling and understanding

urban residents’ lifestyles by analyzing anonymized mobile network data.
• We have defined a set of analytical patterns designed to extract key insights and valuable knowl-

edge from the input data. By fusing this information with ontological data and geographical maps,
our approach uncovers significant and straightforward perspectives that enhance understanding
of urban lifestyles.

What is the implication of the main finding?
• The framework allows for identifying lifestyle patterns and epidemic behaviors enabling more

informed decision-making and strategic planning, ensuring that services and infrastructure can
be tailored to meet the specific needs of different urban areas.

• This approach provides valuable insights into daily routines, preferences, and behaviors, which
can be crucial for urban planners, policymakers, and businesses.

Abstract: The increasing use of mobile networks is an opportunity to collect and model users’
movement data for extracting knowledge about life and health while considering privacy leakage risk.
This study aims to approximate the lifestyles of urban residents, employing statistical information
derived from their movements among various Points of Interest (PoI). Our investigations comprehend
a multidimensional analysis of key urban factors to provide insights into the population’s daily
routines, preferences, and characteristics. To this end, we developed a framework called LEAF
that models lifestyles by interpreting anonymized cell phone mobility data and integrating it with
information from other sources, such as geographical layers of land use and sets of PoI. LEAF
presents the information in a vector space model capable of responding to spatial queries about
lifestyle. We also developed a consolidated lifestyle pattern framework to systematically identify
and analyze the dominant activity patterns in different urban areas. To evaluate the effectiveness of
the proposed framework, we tested it on movement data from individuals in a medium-sized city
and compared the results with information collected through surveys. The RMSE of 5.167 between
the proposed framework’s results and survey-based data indicates that the framework provides a
reliable estimation of lifestyle patterns across diverse urban areas. Additionally, summarized patterns
of criteria ordering were created, offering a concise and intuitive representation of lifestyles. The
analysis revealed high consistency between the two methods in the derived patterns, underscoring
the framework’s robustness and accuracy in modeling urban lifestyle dynamics.

Keywords: smart city; lifestyle approximation; mobility data analysis; vector space model

1. Introduction

Lifestyle is the distinctive and recognizable mode of living and consists of observable
and deducible expressive behaviors [1]. Understanding the lifestyle of individuals in a
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specific city area is motivated by various factors. For instance, selecting a residence in
a community with a compatible lifestyle is crucial for personal satisfaction and social
harmony [2,3]. Businesses benefit from this understanding by strategically placing product
or service centers to meet the needs and preferences of the local population [4]. Additionally,
location-based advertising becomes more effective when tailored to the lifestyle patterns of
the target audience [5,6]. Moreover, urban planning and development can be optimized by
facilitating conscious facility relocation, ensuring that public services and infrastructure
are accessible and aligned with residents’ behaviors, income levels, and preferences [7,8].
Another critical motivation is the modeling and analysis of epidemics; understanding
movement patterns and lifestyle behaviors aids in predicting and controlling the spread
of infectious diseases [9,10]. These motivations collectively highlight the importance of
modeling and analyzing urban residents’ lifestyles to enhance city life and public health.

Human mobility data are a precious source of information about lifestyle [11,12]. It
is shaped by structural patterns influenced by geography and social norms [13,14] and
facilitates the extraction of contextual information and analysis of the periodic nature of
visitation behaviors [15]. This information includes the footprint of individual or group
lifestyles, incorporating a contextual framework linked to real-world locations. In addition,
an anthology of the associated places facilitates lifestyle structure analysis according to
visitation frequencies. On the other hand, utilizing cell phone location data to analyze
urban-scale and larger-scale human mobility patterns is a preferred approach [16–18].
Identifying the location of a cell phone involves various technologies including GPS, WiFi,
IP address, and cell triangulation [19–21]. Privacy considerations precede the granularity
of the data source, a factor directly impacting accuracy. Utilizing anonymized data from
network operators is a viable method to acquire location data, and multiple algorithms
have been developed for cellular location calculation using such data [22–24].

In this investigation, we utilized data from BTS antennas to analyze the anonymous
tracking of mobile phones. Each device was assigned a unique key, accompanied by a
collection of points, each associated with specific start and end times. We also developed
a framework for indexing and interpreting cell phone tracking data to provide an API
for inquiring about some dimensions of urban areas’ lifestyles. This framework aims to
deliver a location-based lifestyle search service, applying artificial intelligence techniques
to spatial data derived from individuals’ cell phone movements. The presentation includes
an abstraction of lifestyle, elucidating the data flows and components constituting the
approximation framework. Methodologically, we delve into the processing, indexing,
retrieval, query evaluation, and inferencing of lifestyle for specific areas. The proposed
framework underwent evaluation using real data from a study area, demonstrating close
alignment between patterns obtained through the framework and those observed in the
collected information.

The remainder of this paper is structured as follows. Section 2 provides background
information and discusses related research on cell phone data collection and related archi-
tectures. Section 3 details the proposed framework. Section 4 presents experimental results
from a mid-sized city as a case study. Finally, Section 5 concludes the research.

2. Background and Related Work

Mobile phone data can be categorized into event-driven and network-driven types [25].
Event-driven data captures details of interactions like phone calls, text messages, or internet
access. Network-driven data are aggregated at the cell tower level and include passive
location updates from the Base Transceiver Station (BTS), reflecting regular intervals,
device power changes, signal reception, and connection-type changes. Figure 1 illustrates
a schematic of user trajectory data collection facilitated by BTS antennas using mobile
phone signals. It displays a mobile phone in seven distinct positions, capturing data on
coordinates, time, and the device’s assigned ID for each position. The user’s presence
at a specific location can be determined by analyzing the tracking data and overlaying
them with geographic information. Also, the probabilistic approaches process mobility
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data and estimate devices’ mobility from cellular data [26], and techniques such as spatial
interpolation and AI-based methods enhance data quality for further processing [27,28].
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Figure 1. Collection of mobile phone signaling data and user trajectories by BTS.

Mobile phone network data have been used for various purposes, including estimating
population distribution, identifying activities in different city areas, determining mobility
patterns, analyzing local events, and examining the geography of social networks [29,30].
It can describe how people organize their visitation patterns and mobility around the city,
uncovering that lifestyles are a continuum spectrum of the relative balance between work,
shopping, transportation, or leisure time [31]. Specifically, by integrating with other data
sources such as remote sensing imagery, PoI, or road networks, it enables the extraction
of new insights, including land use patterns [32,33], traffic monitoring [34], analyzing the
influence of environmental factors on mobile-phone-distracted driving [35], optimizing
parks and promoting human well-being [36], and mitigating negative ecological effects
to improve transit-oriented development in urban areas [37]. Analyzing mobile phone
mobility data in healthcare is crucial in tracking the spread of infectious diseases [38],
monitoring public health trends [39], optimizing healthcare resource allocation [40], and
improving emergency response times [41]. Also, it aids in understanding population
demographics and mobility changes during outbreaks, which can inform public health
interventions and policy decisions, ultimately enhancing the effectiveness of healthcare
systems [42,43]. While these studies provide valuable insights into mobility patterns, land
use, and public health trends, our proposed framework builds upon these achievements
by introducing a more refined approach to lifestyle pattern recognition. Specifically, we
employ BTS-based mobility data and geospatial analysis to capture a more granular view
of urban lifestyles. This research integrates the strengths of previous methods, such as
spatial-temporal patterns and PoI visiting analysis. Still, it extends them by incorporating
the duration of stay at specific locations and multi-dimensional lifestyle indicators.

Lifestyle modeling and analysis according to PoI visiting capture the collective effects
of population activities and the restoration of infrastructure and business services [44].
Government agencies and planning departments can leverage these insights to ensure
sustainable development and enhance the quality of life [45]. Figure 2 provides an overview
of the techniques for processing and analyzing human mobility data. The raw data consist
of multiple sources, including various datasets related to human mobility and the geofence
of PoIs. Data analysis involves merging these diverse data sources to track visits at POIs
and employing comprehensive methods for clustering the data. The metrics, which are the
final outputs of these methods, include calculating recovery trajectories and other relevant
indicators to assess the restoration and dynamics of population activities. Of course, differ-
ent methods have been developed for characterizing lifestyle signatures, each contributing
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unique insights into understanding human behavior and mobility patterns. The framework
proposed in [12] identifies lifestyle signatures in four steps. First, visits between PoIs are
detected. Second, a network of places is generated, where nodes represent PoIs and links
represent visits, with weights indicating the number of visits. Third, human visitation
motifs are constructed, and fourth, these motifs are characterized by calculating distances
and counting quantities for uncovering spatiotemporal disparities. Also, in LTP-Net [46],
the spatial-temporal-pattern dimensions of human mobility are combined to provide more
comprehensive information for individual identification. It analyzes the spatial, tempo-
ral, and pattern dimensions according to the trajectory heat map, location–time pattern
sequence, and some profile features extracted from the trajectory. Another graph-based
mobility profiling is also presented in [47]. They utilized this graph representation to intro-
duce a workflow for identifying groups of individuals based on their mobility behavior.
Their method contributes to a deeper understanding of lifestyle signatures and helps refine
lifestyle modeling techniques by categorizing individuals through movement patterns.
While previous approaches, such as network generation and spatial-temporal analysis,
provide valuable techniques for identifying lifestyle signatures, our proposed framework
significantly extends these methods by introducing new analytical models specifically
designed to capture the dynamic nature of urban residents’ lifestyles. Moreover, by intro-
ducing novel analytical methods, our framework surpasses existing models by capturing
the sequence of visits to PoIs by urban subdivision residents in addition to the spatial
and temporal nuances of their mobility. This enables more informed decision-making,
optimizing public services, resource allocation, and even healthcare interventions based on
the dynamic lifestyle patterns of city residents.

Figure 2. Specifying population visitation to POIs to characterize lifestyle patterns [44].

3. Proposed Framework

In this section, we present the proposed Lifestyle Approximation Framework (LEAF).
Figure 3 illustrates the components of LEAF. We discuss these components in four cate-
gories: data providers, data storage, processing nodes, and data flows.

3.1. Data Providers

These components are the data gateways to LEAF fetching the required information
from various sources and transferring them to the storage. The main functionalities of these
providers are data integration, management, access, and retrieval. Integrating data with
other datasets within the system provides enriched information and ensures compatibility
and interoperability of data from different sources.
Mobility data collector. The mobility data collector is critical for gathering and processing
anonymous cell phone tracking data. This component is responsible for understanding
and analyzing human mobility patterns by capturing detailed and continuous location
information from mobile devices. It ensures that all collected data are anonymized to
protect user privacy.
Geodata provider. This component is designed within the framework to supply and
manage geographic information essential for spatial analysis. Its primary function is to act
as a centralized source of all geographical data, ensuring that other system components
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have seamless access to location-based information. This includes providing data such as
the coordinates of PoIs, land use classifications, and spatial relationships like distances
or adjacency between different geographical entities. The Geodata provider is respon-
sible for retrieving raw geographic data and organizing, processing, and delivering it
in a format that components like the Refiner, Indexer, or Query engine can immediately
utilize. This allows other parts of the system to incorporate spatial context into their
analyses, such as calculating proximity to landmarks or overlaying mobility data with
geographic boundaries.
Ontology provider. An ontology is a formal, explicit specification of a shared conceptual-
ization. It provides a structured framework to categorize and describe the properties and
relationships of concepts within a specific domain [48]. The ontology provider is a core
component of the proposed framework and is responsible for supplying, managing, and
facilitating access to ontological data. It acts as a centralized repository for domain-specific
knowledge, ensuring that different components within the system can consistently interpret
and process these data. The ontology defines the concepts, relationships, and hierarchies
relevant to the urban environment, such as types of locations, PoIs, and their connections to
various lifestyle criteria. It allows the seamless integration of geospatial data with lifestyle
criteria by ensuring that the system components interpret the information consistently. The
ontology provider supports querying for domain-specific data and reasoning about the
relationships between different location types. This allows the system to deduce patterns
like a user’s likelihood of visiting multiple PoIs in a category and infer broader lifestyle
patterns. Also, as urban environments and data sources evolve, the ontology provider can
be updated to reflect new concepts or relationship changes, ensuring that the framework
remains adaptable to different cities or regions.
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Figure 3. The proposed architecture of LEAF.

3.2. Data Storages

The proposed architecture consists of four storages for the mobility data, ontology,
maps and PoIs, and indexing data provided by processing nodes or data providers.
Mobility database. This database consists of two main tables. The first table includes
columns for the tracking ID, point coordinates, and the timestamp of arrival at each location.
The second table, derived from the information in the first table, contains columns for
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the tracking ID, representative point coordinates (latitude and longitude), the timestamp
of arrival, and the duration of presence at that location. The coordinates are captured
at regular intervals to create a comprehensive movement trajectory. In the second table,
several closely located points that occur in sequence are aggregated into a single point,
allowing for the calculation of the duration spent at these locations.
Ontology database. This component serves as a centralized repository dedicated to storing
structured domain-specific knowledge that is critical for interpreting and enriching the
data within the framework. Unlike other data components, which primarily handle raw or
processed spatial and mobility data, the ontology database is responsible for managing high-
level conceptual information. This information includes location types (such as universities,
hospitals, or factories) as well as higher-level categories that group multiple location types
under each category. Additionally, the relationships between different location types and
PoI are also stored in this database. The database ensures that this knowledge is readily
accessible for the system’s components, such as the Indexer, enabling them to map raw
mobility and geographical data to relevant ontological categories. By doing so, it allows
the framework to move beyond simple spatial analysis, providing context that helps in
recognizing patterns in user behavior, activities, and urban lifestyles. The data stored in
the ontology database also supports the framework’s ability to infer higher-level insights,
such as which categories of locations are frequently visited and how different activities are
distributed across urban spaces.
Geodatabase. The geodatabase includes spatial information, such as maps, geographic
features, and geofencing data. The geofences define virtual boundaries around specific
areas of interest, ensuring that only mobility data within these boundaries are processed.
Index database. It is a specialized data repository within the LEAF architecture designed
to store and manage indexed representations of individual mobility patterns. This database
plays a critical role in capturing and organizing the lifestyle indices of individuals based on
their frequency of visiting PoIs. The lifestyle index is structured based on the vector space
model, where each dimension represents a PoI type. Here, a record consists of the ID and a
weighted array, which serves as the individual’s lifestyle index.

3.3. Processing Nodes

The LEAF architecture includes three key processing nodes: the Refiner, the Indexer,
and the Query Engine. Each node plays a distinct role in ensuring the effective processing,
management, and retrieval of mobility data.
Refiner. This component removes the irrelevant mobility data points. It applies a dynamic
geospatial buffer around the PoIs, utilizing geofencing data and other geographic datasets.
Geofencing involves defining a virtual boundary around a physical location using GPS,
Wi-Fi, or cellular data. For each PoI, a specific buffer radius is determined based on the
nature of the location, which could be influenced by local infrastructure, land use, or the
expected range of influence of the PoI. Only data points within the specified buffered zones
around PoIs are considered relevant here.
Indexer. The main role of the indexer is to present each person based on the frequency of
visiting PoIs. Index information records include the ID and a weighted array presenting the
individual’s lifestyle index. The lifestyle is indexed based on the vector space model [48],
where the determination of weights is based on fuzzy logic. In lifestyle vectors, cells
correspond to PoI types. Also, each PoI with type p is associated with a fuzzy membership
function µp. Let µp be the frequency of p and wp be the value (weight) assigned to the
corresponding cell in the lifestyle array. Then, wp = µp( fp). For example, let the set
of PoI types include gym, restaurant and university, with fuzzy membership functions
µg(x) = LF(x; 0, 10), µr(x) = LF(x; 0, 4) and µu(x) = LF(x; 0, 15), where:

LF(x; a, b) =


0, x < a
b−x
b−a , a ≤ x ≤ b
1, x > b
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Now, the index vector corresponding to frequency vector F = [10, 1, 0] is I = [1, 0.25, 0],
and its normalized version is Î = [0.8, 0.2, 0].
Query engine. This module retrieves records from the database for the specified target area
upon receiving a request through the Application Programming Interface (API), delivering
the results to the user. The input query may entail a polygon within the target area or a
singular point. In the latter scenario, the target area is determined by intersecting the point
with the spatial layer of urban subdivisions. Subsequently, records within this polygon
are extracted, and the area’s lifestyle is computed following Algorithm 1. The algorithm
takes indices, criteria, and the relationship between criteria and place types as input. It
then extracts the weights associated with each criterion’s location types, clusters them into
low, moderate, and high categories, and calculates the frequency of weights in each cluster.
The lifestyle information encompasses the area’s sample count and the percentages of low,
moderate, and high populations for each criterion.

Algorithm 1: Calculating the lifestyle indicators for an urban area.

input : I , // the set of retrieved indices

C , // the set of criteria

R // the relation between criteria and place types

1 for each criterion c ∈ C do

2 W ← {wi
p | i ∈ I, (c, p) ∈ R} // the associated weights of place types to criterion c

3 LB← {0.2, 0.3, 0.4} // the set of candidate lower bounds

4 UB← {0.6, 0.7, 0.8} // the set of candidate upper bounds

5 for each b ∈ LB ∪UB do

6 nb ← | {w ∈W | w ∈ [b− 0.05, b + 0.05]} |

7 lb←
∨ {

b ∈ LB | nb =
∧

b′∈LB

nb′
}

// the selected lower bound for clustering

8 ub←
∧ {

b ∈ UB | nb =
∧

b′∈UB

nb′
}

// the selected upper bound for clustering

9 Lc ←
∣∣∣ {W ∩ [0, lb)

} ∣∣∣ // the number of individuals in the low cluster

10 Mc ←
∣∣∣ {W ∩ [lb, ub]

} ∣∣∣ // the number of individuals in the moderate cluster

11 Hc ←
∣∣∣ {W ∩ (ub, 1]

} ∣∣∣ // the number of individuals in the high cluster

12 return L⃗, M⃗, H⃗

3.4. Data Flows

This section explores the four main types of data flows in the proposed framework:
mobility data flow, ontology data flow, geographical data flow, and processed/fused data
flow. Each one flows between specific components in the system to provide comprehensive
analysis and decision-making processes.
Mobility data flow. Mobility data represents user movement information, collected from
mobile sources and transmitted from the mobility data collector to the refiner. In the
refiner, the raw data are processed to remove irrelevant data and noise. The refined data
are then stored in the mobility DB and passed on to the indexer to generate indices that
facilitate analysis.
Ontology data flow. Ontology data are generated by the ontology provider, responsible
for supplying structured domain-specific knowledge such as categorizations of locations,
activities, or relationships relevant to the framework. Once generated, these data are
transmitted to the ontology DB, where it is securely stored and maintained for efficient
access. The ontology DB serves as a centralized repository that manages the storage and
retrieval of ontological knowledge. From the ontology DB, the data are forwarded to the
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indexer, where it is integrated with other data types like mobility and geographical data. In
the indexer, the ontology data are used to contextualize and enrich the mobility data by
associating locations and activities with their corresponding ontological categories. This
allows the system to create more meaningful knowledge and insights, as it can interpret
users’ movements geographically, considering the meaning and multi-level interpretation
of their activities and roles in urban lifestyles.
Geographical data flow. Geographical data are provided by the geodata provider and
stored in the geodatabase. From there, it is distributed to several components: buffered PoI
and geofence are sent to the refiner, PoI goes to the indexer, and maps are sent to the query
engine. This type of data encompasses geographical features, PoIs, and area boundaries.
Geographical data support spatial analysis within the framework. It helps define the
physical environment in which mobility occurs, which is crucial for understanding how
users interact with different locations. By integrating maps and geofences, the framework
can refine user movements concerning these geographical elements.
Processed/Fused data flow. Processed or fused data are generated within the indexer, where
multiple sources of information, such as mobility data, geographical data, and ontology
data are combined to create a unified and enriched dataset. This fusion process involves
associating users’ movement patterns with geographical locations and categorizing them
based on predefined ontological frameworks. Once the data are processed and fused in
the indexer, it flows to the index DB, where it is securely stored in a structured format
optimized for fast retrieval. The Index DB acts as the core repository for this processed data,
ensuring that it is readily available for complex queries. The stored data in the index DB
contains valuable insights, such as categorized locations, behavioral patterns, and lifestyle
signatures, making it a key resource for various types of analysis. From the index DB, the
processed data are forwarded to the query engine. The query engine is responsible for
handling requests from external applications or services, typically through the client API.
When a user or system sends a query via the client API, the query engine interprets the
request and retrieves the relevant processed data from the index DB. The query engine
then processes these data, performing any necessary filtering, aggregation, or analysis, and
returns the most accurate and relevant information in response to the user’s query.

4. Case Study

Our study area is Shahrood; a city and capital of Shahrood City, Semnan province, Iran.
This city is located at latitude 36°25′ N and longitude 55°01′ E. It has a population of about
150, 000 and an area of 52 km2. An overview of Shahrood is shown in Figure 4, where areas
N1,. . . , and N8 are selected randomly from the urban subdivision map. The city is equipped
with base transceiver stations, allowing us to index the mobility data for December 2019
for 4000 cell phones in areas N1 through N8. We have calculated the lifestyle parameters
for these eight areas according to Algorithm 1 based on the 4000 indexed mobility datum,
five criteria, and 13 related places illustrated in Figure 5.

4.1. Materials and Methods

The proposed framework is implemented in Java to evaluate it with real data. In addi-
tion, we employed a development stack consisting of PostgreSQL for managing geospatial
data, and PostGIS for spatial queries. The combination of these technologies supports
seamless integration with various GIS layers and provides a flexible environment for pro-
cessing mobility data. Also, we compared the output provided by the framework with
the information obtained from statistical analysis of field survey data. Figure 6 shows an
overview of the data and the procedures performed in this study. The proposed LEAF
framework leverages cell phone mobility data and various GIS layers, including the study
areas, land use layer, PoI layer, and the set of criteria illustrated in Figure 5. Each criterion
corresponds to specific location types, with some location types being common across
multiple criteria.
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Figure 4. An overview map of Shahrood.
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Figure 5. Criteria and location types used in the case study and their interrelations.

In addition to approximating lifestyle parameters for the candidate urban subdivisions
by LEAF, we collected the field data corresponding to the list of test criteria for comparison.
Therefore, we designed a tablet app with a slider of 0 to 100 for each criterion and then
used it to collect the data for 8000 random people in the eight areas (about 1000 people in
each area). The app was designed to collect data on participants’ presence in 13 different
types of locations listed in Figure 5. Users were prompted to report their level of presence
at each location by interacting with a slider, which allowed them to rate their presence on a
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scale of 0 to 100. To ensure optimal user engagement and accurate data reporting, the app’s
interface was carefully designed with usability in mind. The user interface is minimalist,
focusing on clarity and ease of interaction, with a simple slider for each location type.
The design ensures that participants can quickly input data without confusion, enhancing
the user experience by maintaining consistency and intuitive flow throughout the app.
The color scheme is neutral, with visual cues to guide users through the data submission
process. The data collected includes self-reported scores from participants, indicating their
perceived level of presence in various locations.

After data collection, the raw scores were processed to remove inconsistencies or
outliers, ensuring data integrity. Next, statistical outlier detection techniques, such as the
interquartile range method, were applied to flag and exclude scores that deviated signifi-
cantly from the median values. This was especially important for locations where typical
presence scores followed a certain pattern. Finally, redundancy checks were conducted
to ensure that duplicate entries from the same participant were either consolidated or
removed, depending on the nature of the duplication. The processed data were then com-
pared against the lifestyle parameters inferred by the proposed LEAF framework. Statistical
analysis was performed to identify correlations between self-reported presence data and the
framework’s outputs, validating or refining the lifestyle estimates for different urban sub-
divisions. The output of both procedures (proposed framework and field survey analysis)
for each study area is a normalized vector, each dimension of which corresponds to one of
the input criteria. Next, we compared the vectors of each area obtained from two different
procedures and analyzed the difference in weights obtained for the corresponding criteria
to evaluate the lifestyle approximation.

LEAF Search Engine Statistical Refinement

Mobile Network Data

Study Areas GIS Layer

Criteria / Ontology Questionnaire Data

Comparison / Evaluation

Discussion / Results

Proposed Framework Field Data Analysis Method

Figure 6. The data and procedures employed in this study.

4.2. Results and Discussion

In our study, we categorized each criterion Medical (M), Scholar (S), Agriculture (A),
Industrial (I), and Recreation (R) into three levels: High (H), Balanced (B), and Low (L).
These levels represent the frequency of visits to PoIs related to each criterion, with “High”
indicating frequent visits, “Balanced” indicating moderate visits, and “Low” indicating
infrequent visits. This classification allows us to model and understand lifestyle patterns
within different urban subdivisions, as well as across the entire city. For each urban area
(e.g., N1 to N8), we identified the dominant patterns by analyzing the order of the criteria
based on the level of visit frequency. For instance, as presented in Figure 7, individuals
in area N1 classified under category H displayed the pattern RSAMI, which indicates
that their visit frequency is highest for Recreation (78.6%), followed by Scholar (35.6%),
Agriculture (5.6%), Medical (2.7%), and Industrial (2.2%). This sequence shows the priority
or preference of individuals in this area for different activities and services. Additional
considerations include the percentage difference between the two methods, with a small
difference suggesting close information alignment. In cases of significant differences,
we delve into contextual factors such as geographical layers of land use, demographic
information, and visit data to understand the causes.
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Figure 7. Comparison of the proposed framework and field data for area N1.

By classifying visit frequencies into high, balanced, and low categories, we system-
atically identify dominant activity patterns across different areas, providing a structured
method to compare lifestyle patterns across various regions and demographics. The use of
ordered patterns, such as RSAMI, simplifies complex data into understandable lifestyle
signatures, facilitating straightforward comparisons between areas and highlighting the
primary focus of the population in terms of activities and services. Understanding which
criteria dominate in each area, such as high recreational visits in area N1, provides valuable
insights into the lifestyle and needs of the residents. This approach is instrumental in urban
planning and resource allocation, ensuring that the people’s needs are effectively met.

Figure 7 displays the experiment results for area N1. The level pattern for all criteria
in the proposed framework closely mirrors the field data, with negligible differences in
three out of five criteria. Notably, the Scholar and Recreation criteria, exhibiting more diver-
gence, share similar patterns in both methods. Criteria are further arranged in descending
order for classes H and B. The results for class H and class B, except for the Recreation crite-
rion, are consistent across both the proposed framework and field data, both demonstrating
the RSAMI pattern. The four criteria related to workplaces reveal valuable insights into jobs
and lifestyles, particularly highlighting the significant presence of academic professionals
in an area known as the University Town, close to several universities.

Figure 8 presents the experimental results for area N2. The level pattern of the Medical
criterion exhibits slight variation between the proposed framework and field data analysis:
LBH for the former and LHB for the latter. However, the values for both B and H in each
method are small, with negligible differences. The combined percentages of B and H for
each technique indicate that a limited number of individuals in this area frequent medical-
related places. Despite the slight disparity in the level pattern for the Medical criterion,
the overall inconsistency is insignificant. The level pattern for the remaining four criteria
remains consistent between the two methods. In the Agriculture criterion, the percentage of
individuals in class H is minimal for both methods, but class B holds significance only for
the proposed method. Further investigation into geographic information and neighborhood
features revealed the area’s absence of fresh vegetable sales (Alborz Town). Consequently,
a substantial number of residents opt to visit organic orchards for crop purchases. To
substantiate this observation, a review of movement data in the area confirmed that while
several individuals visit agricultural areas, their visits are numerous but of short duration.
Additionally, criteria are ordered separately in descending order for classes H and B. The
class H result in the proposed framework and field data analysis is RSIM/A. Although the
percentages for Medical and Agriculture criteria exhibit slight differences, they interchange
between the two methods, denoted by a slash in the pattern.



Smart Cities 2024, 7 3326

 L M  H L M H L M H L M H L M H

Medical Scholar Agriculture Industrial
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 Field Data 95.6 1.9 2.5 79.5 3.7 16.8 94.1 3.8 2.1 85.3 0.8 13.9 14.1 9.2 76.7
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Figure 8. Comparison of the proposed framework and field data for area N2.

Figure 9 depicts the experimental outcomes in area N3. The level pattern for all
criteria in the proposed framework aligns precisely with the field data analysis. Particularly
noteworthy is the Recreation criterion, with a class H percentage of approximately 90%, a
logical observation given the proximity of the area to the RC. Regarding job-related criteria,
Agriculture exhibits the highest percentages in both classes H and B among the measured
criteria. Consequently, the demographic structure of this area suggests a prevalence of
individuals engaged in agricultural occupations, contrasting with areas N1 and N2, which
have a lower proportion of academic professionals. Furthermore, criteria are arranged in
descending order for classes H and B in this area. The result for class H for both methods
is RAISM. Similarly, the result for class B for both methods is approximately ARI/SM.
Although the percentages for Industrial and Scholar criteria exhibit slight differences
and interchange between the two methods, the overall similarity of these patterns is
deemed acceptable.
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 Framework 93.4 2.8 3.8 88.8 4.8 6.4 62.1 14.5 23.4 87.3 4.1 8.6 4.5 6.0 89.5

 Field Data 96.5 1.1 2.4 92.1 1.7 6.2 74.1 9.2 16.7 94.9 1.9 3.2 6.3 7.9 85.8
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Figure 9. Comparison of the proposed framework and field data for area N3.

Figure 10 showcases the outcomes of our experiments in area N4. The level pattern
for all criteria in the proposed framework mirrors the analyzed field data, with small
differences in almost all cases. Additionally, the percentage of individuals in class H
for the Recreation criterion is approximately 90%, a norm considering the proximity of
this area to the RC. Another comparative analysis involves the arrangement of criteria
in descending order for class H, resulting in RISMA for both methods. Similarly, the
pattern for class B in both methods is SRI/AM. Although the positions of the Industrial
and Agriculture criteria are switched, it is crucial to note that these two criteria exhibit very
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close percentages, indicating that the patterns in both methods are nearly identical. In terms
of job-related criteria, the chart highlights that among the measured criteria, Industrial
stands out significantly. This observation suggests a notable presence of individuals in this
area who regularly visit industrial environments such as factories and industrial parks.
This could be indicative of a strong industrial sector in the region, potentially contributing
significantly to local employment and economic activity.
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Figure 10. Comparison of the proposed framework and field data for area N4.

Figure 11 presents the outcomes of our experiments in area N5. Notably, the level
pattern for all criteria is consistent for both methods in this area. Furthermore, when
criteria are ordered based on the values of class H, the resulting pattern is identical for
both methods, denoted as RAISM. Class H represents individuals who frequently visit
related locations, while class B includes people with a lower frequency of visits to the
desired locations. However, in this area, ordering criteria based on class B yields different
patterns for the two methods. To assess the impact of this discrepancy with the adaptation
of the class H pattern, we sorted the criteria in descending order according to the sum of
classes H and B (similar to sorting criteria by class B in ascending order). The resulting
pattern is consistent for both methods and aligns with the classification pattern based on the
frequency of class H. Despite the notable differences between the two methods in criteria
such as Agriculture, Industrial, and Recreation, the level of pattern matching is deemed
acceptable for area N5.

 L M  H L M H L M H L M H L M H

Medical Scholar Agriculture Industrial

 Framework 97.8 1.0 1.2 90.2 4.7 5.1 46.8 15.8 37.4 56.5 17.0 26.5 32.2 18.5 49.3

 Field Data 97.4 0.3 2.3 91.0 3.2 5.8 70.3 6.2 23.5 81.0 6.1 12.9 32.9 4.5 62.6

 Difference 0.4 0.7 1.1 0.8 1.5 0.7 23.5 9.6 13.9 24.5 10.9 13.6 0.7 14.0 13.3

0

10

20

30

40

50

60

70

80

90

100

%
 In

d
iv

id
u

al
s

Recreation

Figure 11. Comparison of the proposed framework and field data for area N5.
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Figure 12 illustrates the outcomes of experiments in area N6. The level pattern of
all criteria, except Industrial, is consistent for both proposed methods. When sorting the
criteria based on the frequency of individuals in class H, the proposed framework yields
the RAISM pattern, while the field data analysis leads to the RASMI pattern. However,
removing the criterion Industrial results in identical patterns. Notably, the criterion In-
dustrial exhibits a significant percentage difference of individuals in class H (14.2%). In
terms of job-related criteria, the proposed framework suggests a demographic context
in this area that includes a notable number of individuals who frequent industrial and
agricultural places, with secondary connections to academic or medical locations. Similarly,
according to field data analysis, the demographic context involves a significant number of
people traveling to agricultural places, with secondary connections to academic or medical
locations. Despite the major discrepancy in one of the five criteria, the level of pattern
matching in this area is considered acceptable.
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Figure 12. Comparison of the proposed framework and field data for area N6.

Figure 13 depicts the outcomes of our experiments in area N7. Notably, the level
pattern for the three criteria Medical, Industrial, and Recreation is consistent, and for
Scholar and Agricultural, where classes H and B are merged, their values are negligible
and closely aligned. Hence, the compatibility of these two patterns is deemed acceptable.
Furthermore, the pattern of ordering the criteria based on the values of class H is identical
in both methods, denoted as RIASM. Regarding job-related criteria, based on the values
of classes H and B, it can be inferred that the residents of this area predominantly visit
industrial places, followed by agricultural locations.
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Figure 13. Comparison of the proposed framework and field data for area N7.
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Figure 14 illustrates the outcomes of our experiments in area N8. The level pattern
is consistent for both methods in all criteria except Medical. Further investigations in this
area revealed a significant increase in the number of people traveling to the hospital due
to a prevalent disease during the test period, directly impacting the number of people in
class B in the Medical criterion. It is crucial to note that in the proposed framework, we
rigorously defined the membership function for classes B and H of the Medical criterion so
that with the number of regular visits, the degree of membership in these classes increases.
By ordering the criteria based on the percentage of people in class H, the IARSM pattern
is obtained for the proposed framework, and the RAISM pattern is proposed for field
data analysis. Since the values of class H in the three criteria Agriculture, Industry, and
Recreation in the proposed framework are close to each other, with slight neglect, IAR and
RAI can be considered similar here. Therefore, the patterns of class H in this area exhibit an
acceptable similarity for both methods.
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Figure 14. Comparison of the proposed framework and field data for area N8.

We calculated the Root Mean Square Error (RMSE) for both anonymized mobile move-
ment data and survey-based questionnaire (field) data to compare the measured lifestyle
patterns across all studied areas. The analysis was also performed for the three classes
(High, Medium, and Low) based on the number of visits to PoIs. The RMSE was calcu-
lated using Equation (1) to evaluate the consistency between the two methods. Here, di
represents the ith cell in the difference row within the desired tables (Figures 7–14).

RMSE =

√
1
n

n

∑
i=1

(di)2. (1)

Table 1 presents the RMSE values indicating the discrepancy between mobile data and
survey data across different regions and classes. Notably, the overall RMSE for all regions
(5.167) suggests a moderate level of agreement between the two data collection methods.
However, the specific RMSE values for each class (High, Balanced, Low) reveal nuanced
differences in data consistency. Generally, RMSE values are higher in the Low visitation
class across most regions, indicating that occasional frequency visits are more challenging to
estimate accurately using mobile data or surveys. The Balanced and High categories show
relatively lower RMSE values, suggesting that moderate or higher visit patterns are more
consistently captured across data sources. In addition, the aggregate RMSE values across
all regions (7.032 for Low, 3.869 for Balanced, and 3.959 for High) underscore the variability
inherent in anonymous mobility data versus field data, especially in diverse urban settings.
The discrepancies highlighted by the RMSE analysis suggest several factors influencing data
accuracy, such as the anonymous nature of mobile movement data and potential variability
in responses due to different individuals completing the surveys. These variations can
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arise from differences in individuals’ perceptions of what constitutes a visit to a PoI or from
limitations in the granularity and coverage of mobile data. Despite these differences, the
findings indicate that the proposed framework is capable of providing a good estimation of
lifestyle patterns across diverse urban areas. This capability underscores the framework’s
potential as a reliable tool for urban planners and policymakers in understanding and
addressing the needs of urban populations.

Table 1. Comparison of RMSE between the proposed framework and field data.

Area RMSEL RMSEM RMSEH RMSE

N1 4.913 5.282 6.070 5.443
N2 11.588 9.994 4.240 9.168
N3 6.716 3.132 4.237 4.928
N4 4.379 2.078 3.195 3.351
N5 15.191 9.052 10.552 11.889
N6 9.250 4.480 6.797 7.114
N7 5.990 2.311 4.244 4.444
N8 13.239 6.707 11.015 10.670
All 7.032 3.869 3.959 5.167

4.3. Study Limitations

Despite the strengths of the proposed framework, several limitations must be acknowl-
edged. These limitations highlight areas for further research and refinement, particularly
in terms of improving data resolution, enhancing validation efforts, and expanding the
framework to different urban settings.
Data Granularity. The mobility data collected from BTS signals are less precise compared
to GPS data. While BTS data allow for capturing general movement patterns, they may
lack the granularity needed to accurately identify visits to small or closely located PoIs,
such as shops or residential buildings.
Field Data Collection. While field data were collected for validation, the limited sample
size and potential biases in self-reported data (e.g., inaccurate recall or subjective judgments)
may affect the generalizability of the findings. Larger-scale field studies may be required
for more robust validation.
Anonymization and Privacy Constraints. Due to privacy concerns, the dataset used in
this study was anonymized, preventing us from linking specific mobility behaviors to
socio-demographic factors.

4.4. Feature Applications

The proposed framework was built with a focus on adaptability to make it suitable
for deployment in production environments across various domains and flexible enough
to support the development of diverse APIs for seamless integration with other systems
and services. The real-time processing of large datasets, particularly in densely populated
areas, requires sufficient computational resources. Cloud-based solutions and distributed
computing can mitigate this challenge, enabling real-time analysis and reporting. This
section clarifies how our framework can be adapted for real-world applications.
Urban Planning and Infrastructure Development. The framework can be integrated
into city planning systems to analyze the lifestyle patterns of residents and identify high-
demand areas for transportation, commercial activities, or public services. By understand-
ing the dynamic nature of urban mobility, planners can make more informed decisions
regarding infrastructure investments and urban design.
Optimization of Public Services. Government agencies and municipalities can use the
insights generated by this framework to optimize public service distribution. For example,
transportation networks, waste collection, or emergency response services can be adjusted
based on mobility patterns and lifestyle indicators in different urban subdivisions.
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Healthcare and Epidemic Control. The framework can be applied in healthcare settings to
monitor mobility patterns during disease outbreaks, enabling targeted interventions and
efficient allocation of healthcare resources. Additionally, by tracking changes in population
movement, healthcare providers can improve emergency response times and plan better
for future healthcare needs.
Business and Commercial Strategy. Businesses can utilize the framework to identify areas
of high commercial potential based on foot traffic and visitation patterns to specific points of
interest. These data can guide location-based marketing strategies, optimize retail location
planning, and improve customer experience by tailoring services to local lifestyle patterns.
Environmental Monitoring and Sustainability. The framework can help monitor the envi-
ronmental impacts of human mobility and inform sustainability efforts. By understanding
how residents move and congregate, urban planners can design more environmentally
friendly transportation systems and mitigate the ecological effects of urban sprawl.

5. Conclusions

This article introduces a lifestyle approximation framework called LEAF that collects,
indexes and analyzes human movement using cell phone tracking data. LEAF characterizes
the human lifestyle based on the frequency of visiting specific PoI classes. The evaluation of
the framework involves studying a mid-scale city, indexing data from eight neighborhoods
based on 13 location types, and calculating approximations for five criteria at three levels:
low, moderate, and high. Next, for each studied area, the criteria pattern at each level
was calculated based on the frequency order of their visits. The framework’s efficiency is
assessed by comparing the obtained patterns with analyzed field data. The comparison
involves extracting patterns based on criteria and subclasses to evaluate the alignment
of corresponding patterns. Our systematic classification of visit frequencies provides a
comprehensive framework for understanding and comparing lifestyle patterns across
different regions. The RMSE of 5.167 between the proposed framework’s results and
survey-based data suggests that the framework provides a reliable estimation of lifestyle
patterns across diverse urban areas. Additionally, the proposed ordered patterns distill
complex data into accessible insights, revealing the primary activities and services that
shape the daily lives of residents. The LEAF framework offers substantial potential beyond
lifestyle pattern analysis by systematically categorizing human movement data based on
visit frequencies to PoIs. It can provide valuable insights for urban planning, helping
planners optimize infrastructure and services according to residents’ mobility and usage
patterns. High PoI frequencies could indicate the need for improved transportation or
healthcare, while low frequencies might highlight underserved regions. LEAF also benefits
urban design by aiding the creation of walkable, accessible spaces. Future research could
expand LEAF by incorporating socioeconomic factors and enhancing its application in
urban dynamics prediction and strategic planning. Its cross-regional validation creates
opportunities for global smart city initiatives.
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