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Highlights:

What are the main findings?
• Demonstrating the vulnerability of urban energy systems to coordinated cyberattacks

targeting the voltage profile through simulation and experimental validations.
• Highlighting the negative impacts of systematic false data injection attacks while taking

more than one objective function at a time.
What is the implication of the main finding?
• Enhancing the reliability of smart city energy systems.
• Providing a basis for designing resilient smart grid infrastructures against cyber threats.

Abstract: This article investigates the impacts of coordinated false data injection attacks
(FDIAs) on voltage profiles in smart microgrids integrated with renewable-based dis-
tributed energy resources (DERs), a critical component of urban energy infrastructure in
smart cities. By leveraging simulation and experimental methods, a coordinated frame-
work is developed for understanding and mitigating these threats, ensuring the stability of
renewable-based DERs integral to modern urban systems. In the examined framework, a
team of attackers independently identify the optimal times of two different cyberattacks
leading to undervoltage and overvoltage in a smart microgrid. The objective function
of each model is to increase the voltage violation in the form of either overvoltage or
undervoltage caused by the corresponding FDIA. In such a framework, the attackers de-
sign a multi-objective optimization problem (MOOP) simultaneously resulting in voltage
violations in the most vulnerable regions of the targeted microgrid. Considering the conflict
between objective functions in the developed MOOP, a Pareto-based solution methodology
is utilized to obtain a set of optimal solutions, called non-dominated solutions, as well
as the best compromise solution (BCS). The effectiveness of the unified FDIA is verified
based on simulation and experimental validations. In this regard, the IEEE 13-node test
feeder has been modified as a microgrid for the simulation analysis, whereas the experi-
mental validation has been performed on a lab-scale hybrid PV/wind microgrid containing
renewable energy resources.

Keywords: false data injection attack (FDIA); hardware-in-the-loop (HIL); overvoltage;
simulation and experimental validations; smart cities; undervoltage; urban energy systems
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1. Introduction
1.1. Background, Definitions, and Motivation

The sustainable transition of conventional energy systems toward smarter power
networks cannot come true without the concept of smart microgrids [1]. According to [2],
a smart microgrid is defined as an ideal way to integrate renewable-based distributed
energy resources (DERs) on the community level, allowing end-use customers to be able to
contribute to the electricity enterprise. In addition, the sustainable transition strategies need
to be in line with the Paris Agreement aiming at mitigating global warming by reducing
greenhouse gas emissions [3]. This is where the significance of renewable-based DERs as the
main assets of smarter power grids becomes clear from the viewpoint of system operators
as well as policymakers. However, such smart energy systems need to be monitored and
controlled via intertemporal communication platforms if an acceptable level of resilience
and reliability is to be achieved [4]. In other words, although the intersection of energy and
ICT (information and communication technology) infrastructures facilitates sustainable
development in the field of power and energy, it introduces a noticeable attack surface in
the cyber layer of smart power grids. In the context of smart cities, where power systems
are increasingly integrated with digital technologies to optimize energy distribution, these
vulnerabilities can compromise key objectives like energy efficiency, grid resilience, and
urban innovation. As an illustration, adversaries in the form of man-in-the-middle (MiTM)
can detour the security systems, penetrate the control center, and compromise the recorded
information, resulting in different operational issues including but not limited to congestion
in branches of systems [5], cascading failures [6], and blackouts [7]. One of the consequences
of false data injection attacks (FDIAs) targeting modern power systems, especially smart
urban microgrids, can be voltage violation in the form of overvoltage and undervoltage;
hence, the motivation of this paper is to scrutinize such cyberattacks.

1.2. Literature Review

In [8], a distributed resilient control framework was introduced to restore the voltage
profile of a cyber–physical microgrid, operated in standalone modality, that contained mul-
tiple energy storage systems. The proposed approach in [8] avoided the strictly increasing
behavior of controller’s gain to mitigate the impacts of faults and cyberattacks. In [9], the
voltage regulation issues as the consequence of cyberattacks were studied in single-phase
and three-phase microgrids in islanded modalities. The adaptive resilient secondary voltage
and frequency control problem was investigated in [10], where an islanded microgrid was
the target of data integrity attacks. The impacts of FDIAs over DC/DC voltage converters
on a smart microgrid were investigated in [11], where time-varying FDIAs were launched to
significantly affect the functionality of the system. In [12], two different models for FDIA were
introduced to compromise voltage measurements in a DC microgrid, affecting the voltage
regulation and current sharing. In [13], the stochastic stability of a standalone microgrid
was analyzed in the presence of a denial of service (DoS) cyberattack. Further, a remedial
action oriented toward control of secondary frequency regulation was proposed in [13] to
mitigate the impacts of a DoS attack. In [14], the voltage profile of a smart grid integrated
with photovoltaic (PV) units was the target of FDIAs resulting in voltage deviations in the
forms of overvoltage and undervoltage. It is noted that the proposed framework in [14]
contained different strategies to prevent and detect the cyberattacks targeting smart power
grids. Moreover, in the earlier step of this research, a hardware-in-the-loop (HIL) setup was
developed in order to (a) detect the presence of false data, stealthily injected into the sensors’
readings of a lab-scale microgrid, and (b) distinguish transient phenomena from malicious
FDIAs resulting in a shortage of power in the microgrid [15].
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1.3. Research Gap and Contribution of This Work

Although relevant research works (e.g., [8–15]) are proposed in the field of analyzing
the impacts of cyberattacks targeting voltage profile of smart grids, there is no work to
develop and experimentally validate a multi-objective framework to scrutinize the impacts
of FDIAs targeting smart microgrids to cause voltage violation (i.e., both overvoltage and
undervoltage at the same time) when the microgrid is most vulnerable to deviation in
voltage. To address the indicated research gap, we scrutinize a FDIA framework, which
has the following contributions:

• Designing a multi-objective unified framework from attackers’ standpoints to target
smart microgrids at the most vulnerable time to undervoltage and overvoltage, re-
sulting in a set of non-dominated solutions (i.e., Pareto-front) to obtain a range of
overvoltage and undervoltage rates,

• Experimentally validating the developed framework on a lab-scale smart microgrid,
containing wind turbines and PV modules, besides the simulation-based validation to
identify the best compromise solution (BCS) between undervoltage and overvoltage.

In summary, the findings of this research address a critical gap in the ability to protect
smart microgrids from cyberattacks targeting voltage regulation. By improving the security,
efficiency, and resilience of urban energy systems, this work directly supports the develop-
ment of secure, reliable, and adaptable infrastructures in smart cities. These advancements
are essential for achieving the broader goals of energy efficiency, urban resilience, and the
integration of innovative technologies in the urban ecosystem.

2. Materials and Methods
The developed framework in this section is validated through simulation and exper-

imental tests. Specifically, the experimental validation of FDIA scenarios on a lab-scale
microgrid provides a valuable prototype for real-world smart city scenarios by simulating
critical components of urban microgrid configurations. In practice, smart cities integrate
DERs (e.g., PV and wind units) with advanced control systems for energy management
and distribution, much like the lab-scale microgrid used in this study. By replicating these
elements within a controlled experimental setup, this research can model how cyberattacks
could impact voltage stability, energy efficiency, and overall grid performance in a typical
urban environment.

2.1. Developed Framework

The developed multi-objective framework is illustrated in Figure 1. According to Fig-
ure 1a, a typical smart microgrid can be targeted by N attackers to significantly enhance the
negative impacts of the unified attack framework; however, for the sake of clarity as well as
elaborating the idea, Figure 1b only includes two attackers. From Figure 1b, it can be inferred
that Attacker 1 targets the microgrid, which can be operated in both grid-connected and
standalone modalities, via a FDIA resulting in overvoltage (OV) at the most vulnerable time.
In addition, Attacker 2 in another independent cyberattack targets the microgrid to cause
undervoltage (UV) at the optimal time. It is noted that these two cyberattacks are designed as
bi-objective optimization problems (BOOPs) to obtain a set of optimal solutions instead of one
unique solution. The objective functions of these two BOOPs include (a) maximizing the rate
of overvoltage/undervoltage in the microgrid and (b) minimizing the amount of false data (to
be injected to the system) to ensure the intended rates of voltage violation. This is to ensure
that the attackers can maximize the voltage violation while the injected false data vectors
remain small enough. The results of these two attacks might not necessarily affect each other
since (a) the objective functions are not in accord with each other and (b) the optimal time of
the FDIAs may be different.
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Figure 1. The developed FDIA framework leading to voltage violation in (a): general microgrid, and
(b): critical building block of urban energy systems in smart cities.

It is noted that after each independent cyberattack, the microgrid operator may apply
appropriate remedial action schemes to bring back the system to the normal operation.
More importantly, the remedial actions might implement different techniques since the
nature of the cyberattacks is different. However, in order to validate the worst-case scenario,
this paper presents a unified FDIA, which is oriented to a multi-objective optimization
problem (MOOP), including three different objective functions (i.e., simultaneously maxi-
mizing the rate of overvoltage, maximizing the rate of undervoltage, and minimizing the
amount of false data to be injected to the cyber layer). In other words, the microgrid can be
targeted by a unified stealthy cyberattack leading to overvoltage and undervoltage at the
same time (i.e., the contribution of this paper). In addition, the vector of (to be injected)
false data is minimized to reduce the chance of being caught by the microgrid’s operator.
Hence, the microgrid operator will need a powerful remedial action to be implemented
against both cyberattacks. This will be the scope of our future work.

According to Figure 1b, in order to target the microgrid via two simultaneous FDIAs,
the team of two attackers solves an MOOP to recognize the set of non-dominated solutions,
called the Pareto-optimal front, and saves them in a repository. Although the MOOP has
three objective functions, Figure 2 illustrates only overvoltage and undervoltage objective
functions to obtain a better perspective about the Pareto-front. From Figure 2, it can be
perceived that after solving the MOOP by the attackers, a set of optimal solutions (see the
red circles presented in Figure 2) is obtained instead of one unique optimal solution. Hence,
attackers can control the severity of undervoltage and overvoltage in the unified cyberattack
and identify the best compromise solution (BCS) as a trade-off between objective functions.
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Figure 2. The typical two-dimensional Pareto-optimal front associated with the developed FDIA
framework in this paper.

2.2. Problem Formulation
2.2.1. Pre-Attack Evaluation to Pinpoint the Most Vulnerable Node

This section presents an optimization problem that provides both attackers introduced
in Figure 1b with better understandings about the most vulnerable node to deviation
in voltage in the microgrid as well as the optimal time of the attack. To this end, both
attackers solve Equation (1) considering Equations (2)–(8) as the technical constraints of
the problem. It is noted that attackers have access to the original voltage profile of the
microgrid. This is called realistic attack assumption, which has been adopted from [16–18].
As a real-world example, the attackers targeting the Ukraine power grid in 2015 managed to
gain access to the computer networks and obtain sensitive information about the system’s
history, resulting in one to six hours of power shortage for 225,000 end-users [19]. Another
example is the U.S. power grid, which, in 2018, was the target of attackers attempting to
collect critical information about the power generation facilities [20]. After solving the
optimization problem (i.e., Equations (1)–(8)) to maximize the voltage deviation in the
microgrid, attackers will obtain a new voltage profile. Comparing these two voltage profiles
(i.e., the original profile and the one obtained from solving Equations (1)–(8)), they can
recognize the most vulnerable node to deviation in voltage and the optimal time of the (to
be performed) cyberattacks.

max

{
24

∑
t=1

Nn

∑
n=1

|1.00 − Vn,t|
}

(1)

PGeneration
t − PDemand

t − PLoss
t = 0 (2)

QGeneration
t − QDemand

t − QLoss
t = 0 (3)

Vmin ≤ Vn,t ≤ Vmax (4)

δmin ≤ δn,t ≤ δmax (5)

Pmin ≤ Pn,t ≤ Pmax (6)

Qmin ≤ Qn,t ≤ Qmax (7)

Imin ≤ Ib,t ≤ Imax (8)

where Vn,t is the voltage magnitude of node n at tth time interval and 1.00 p.u. is the nominal
voltage magnitude for buses throughout the distribution system; Nn is the total number of
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nodes in the microgrid excluding the PCC; Pt
Generation, Pt

Demand, and Pt
Loss are, respectively, the

total amount of active power generation, the total active demand, and the total active power
loss of microgrid at tth time slot; δn,t is the voltage phase angle associated with node n at tth
time slot; Pn,t and Qn,t are, respectively, the net active and reactive power for node n at time t;
and Ib,t is the magnitude of current flowing into bth branch at tth time interval.

2.2.2. Intentional Voltage Alteration from Attackers’ Standpoint

The equivalent circuit of a typical microgrid from the point of common coupling (PCC)
is depicted in Figure 3, where Zn

Eq is the equivalent impedance of the microgrid; Vn and
VPCC are, respectively, the voltage magnitude at node n and PCC; IDER is the magnitude
of the current from the DERs (e.g., PV panel and wind turbine). If (a) the voltage at PCC
is considered as the reference voltage and (b) power loss through Zn

Eq is neglected, the
magnitude of voltage at node n can be approximately written in (9).

Vn =

(
PG

n − PD
n
)
× REq

n +
(
QG

n − QD
n
)
× XEq

n

VPCC
+ VPCC (9)
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From Equation (9), it can be gathered that injecting false data (e.g., ∆Pn and ∆Qn) to the
net powers associated with node n (i.e., Pn and Qn) results in different rates of violation in
the voltage magnitude of node n. In other words, any positive or negative values of ∆Pn and
∆Qn will result in different rates of deviation in both forms of overvoltage and undervoltage
(see Figure 3). However, attackers need to ensure that the amount of false data injected into
both load centers and generation units installed on each node will not trigger the security
systems [16–18]. Toward this end, Equation (10) presents the developed optimization
problem that needs to be solved by attackers to recognize the minimum false data vectors
to be injected into the microgrid’s control center. It is noted that the optimization problem
presented in Equation (10) should be solved subject to satisfying Equations (2)–(8) to meet
the technical constraints of the microgrid as well as Equations (11)–(14) to ensure that the
cyberattacks do not violate the rated values.

min

{
24

∑
t=1

Nn

∑
n=1

∣∣∣∆PG
n,t + ∆PD

n,t + ∆QG
n,t + ∆QD

n,t

∣∣∣} (10)

−∂ × PG
n,t ≤ ∆PG

n,t ≤ ∂ × PG
n,t (11)

−∂ × PD
n,t ≤ ∆PD

n,t ≤ ∂ × PD
n,t (12)
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−∂ × QG
n,t ≤ ∆QG

n,t ≤ ∂ × QG
n,t (13)

−∂ × QD
n,t ≤ ∆QD

n,t ≤ ∂ × QD
n,t (14)

where ∂ is the percentage of injected false data to the rated values of generation and demand,
which will be up to 10% of the rated values; and ∆ indicates the alteration associated with
active and reactive powers, which is limited in order to decrease the chance of being caught
by detection systems.

2.2.3. Independent FDIA Model Leading to Overvoltage

The main objective function from Attacker 1’s point of view is presented in Equation (15),
which is adopted from [21]. It is noted that the objective function of maximizing the intentional
overvoltage (i.e., Equation (15)) and the objective function limiting the false data vectors (i.e.,
Equation (10)) should be optimized concurrently as a bi-objective optimization problem
(BOOP).

max


24
∑

t=1

Nn
∑

n=1
Vn,t − 24 × α × Vre f

Nn
∑

n=1
Vn,t

 (15)

where Vref is the reference voltage associated with node n; and α is a parameter controlling
the rate of overvoltage.

2.2.4. Independent FDIA Model Leading to Undervoltage

Adopted from [22], this section provides an optimization problem oriented to the un-
dervoltage proximity index from the viewpoint of Attacker 2 (refer to Figure 1b). Therefore,
the attacker maximizes the introduced index, as presented in Equation (16), along with
minimizing Equation (10) as a BOOP in order to push the microgrid toward undervoltage
in such a way that the vectors of injected false data remain below the threshold. Referring
to [22,23], objective Function (16) indicates the conditions based on which the probability
of undervoltage at node n is maximized.

max



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 −

24
∑

t=1

Nn
∑

m=1,m ̸=n
Vm,t ×

Ynm
Nn
∑

n=1,n ̸=k
Ynk

24
∑

t=1
Vn,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


(16)

where Ynm is the admittance between nodes n and m.

2.2.5. Unified FDIA Leading to Voltage Violation

The developed coordinated FDIA resulting in both overvoltage and undervoltage at
the same time needs to be solved as an MOOP with three objective functions. The first
objective function is to maximize the overvoltage (i.e., Equation (15)), the second objective
function maximizes the undervoltage (i.e., Equation (16)), and the third objective function
ensures the false data vectors to be injected into load centers and generation units are small
enough to prevent any violation in the rated values (i.e., Equation (10)). Therefore, the
developed FDIA has three dimensions; however, as an illustration, Figure 2 demonstrates
the Pareto-front associated with maximizing the main objective functions of this problem
(i.e., Equations (15)–(16)) to facilitate capturing the idea. More information about the 2D
and 3D Pareto-optimal fronts will be provided in Section 3.2.
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2.2.6. Formulation of the Embedded Multi-Objective Methodology

Since the objective functions associated with the developed BOOPs (refer to
Sections 2.2.3 and 2.2.4) and MOOP (see Section 2.2.5) lie in different numerical ranges,
their values should be converted to the unified range of [0–1], as displayed in Figure 4
and written in Equation (17). According to this figure, called the trapezoidal membership
function, one can infer that if the value of the function is equal to zero, the decision-maker
is not satisfied with the objective function; however, when the numerical value of the
membership function is equal to one, the decision-maker is fully satisfied [24].

Ψk(X) =


0 fk ≥ f max

k
f max
k − fk

f max
k − f min

k
f min
k ≤ fk ≤ f max

k

1 fk ≤ f min
k

(17)

where Ψk denotes the fuzzy set for kth objective function; fk indicates kth objective function;
fkmin and fkmax are, respectively, minimum and maximum boundaries for kth objective
function and X is the vector of decision variables of the problem.

Smart Cities 2025, 8, x FOR PEER REVIEW 8 of 24 
 

2.2.5. Unified FDIA Leading to Voltage Violation 

The developed coordinated FDIA resulting in both overvoltage and undervoltage at 
the same time needs to be solved as an MOOP with three objective functions. The first 
objective function is to maximize the overvoltage (i.e., (15)), the second objective function 
maximizes the undervoltage (i.e., (16)), and the third objective function ensures the false 
data vectors to be injected into load centers and generation units are small enough to pre-
vent any violation in the rated values (i.e., (10)). Therefore, the developed FDIA has three 
dimensions; however, as an illustration, Figure 2 demonstrates the Pareto-front associated 
with maximizing the main objective functions of this problem (i.e., (15)–(16)) to facilitate 
capturing the idea. More information about the 2D and 3D Pareto-optimal fronts will be 
provided in Section 3.2. 

2.2.6. Formulation of the Embedded Multi-Objective Methodology 

Since the objective functions associated with the developed BOOPs (refer to Sections 
2.2.3 and 2.2.4) and MOOP (see Section 2.2.5) lie in different numerical ranges, their values 
should be converted to the unified range of [0–1], as displayed in Figure 4 and written in 
(17). According to this figure, called the trapezoidal membership function, one can infer 
that if the value of the function is equal to zero, the decision-maker is not satisfied with 
the objective function; however, when the numerical value of the membership function is 
equal to one, the decision-maker is fully satisfied [24]. 

 

Figure 4. Trapezoidal membership function for all objective functions. 

( )
max

max min

0

1

k k
k

k k

f fX
f f


 −Ψ =  −


 

max
k kf f≥  

(17)min max
k k kf f f≤ ≤  

m in
k kf f≤  

where Ψk denotes the fuzzy set for kth objective function; fk indicates kth objective func-
tion; fkmin and fkmax are, respectively, minimum and maximum boundaries for kth objective 
function and X is the vector of decision variables of the problem. 

In order to recognize the set of non-dominated solutions (i.e., the Pareto-optimal 
front), first, an area will be defined for each solution stored in the repository. Then, by 
applying (18)–(19), the dominated solutions will be recognized and removed from the re-
pository. The rest is called the Pareto-optimal front. Based on (18)–(19), considering a min-
imization problem (e.g., (10)), x1 dominates x2 if the following statements are met: (a) x1 is 
no worse than x2 in all objective functions and (b) x1 is better than x2 in at least one of the 
objective functions [25]. 

1.0

Ψ

𝒇𝒌𝒎𝒊𝒏 𝒇𝒌𝒎𝒂𝒙
Figure 4. Trapezoidal membership function for all objective functions.

In order to recognize the set of non-dominated solutions (i.e., the Pareto-optimal front),
first, an area will be defined for each solution stored in the repository. Then, by applying
Equations (18) and (19), the dominated solutions will be recognized and removed from the
repository. The rest is called the Pareto-optimal front. Based on Equations (18) and (19),
considering a minimization problem (e.g., Equation (10)), x1 dominates x2 if the following
statements are met: (a) x1 is no worse than x2 in all objective functions and (b) x1 is better
than x2 in at least one of the objective functions [25].

fk(x1) ≤ fk(x2), ∀ f (18)

fk(x1) ≤ fk(x2), ∃ f (19)

After obtaining the Pareto-optimal front, Equation (20) will be applied on the reposi-
tory to identify the BCS (i.e., the trade-off among objective functions). In Equation (20), ΥΨ

indicates the BCS among objective functions; ξk denotes the weight factor for kth objective
function; Nobj and NNDS are, respectively, the number of objective functions and the number
of non-dominated solutions in the repository [26].

YΨ(k, i) =

Nobj

∑
k=1

ξk × Ψk,i

NNDS
∑

i=1

Nobj

∑
k=1

ξk × Ψk,i

(20)
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The implementation steps of the framework are illustrated in Figure 5, covering the
introduced FDIAs in Section 2.1 and Figure 1b. This chart illustrates the sequential flow
of the study, mapping each step of the methodology to its corresponding section in the
paper. The flow begins with the pre-attack evaluation to pinpoint the most vulnerable
node in the microgrid by solving the optimization problem defined in Equations (1)–(8).
This step identifies the nodes and time intervals most susceptible to voltage deviations,
providing critical inputs for the subsequent attack strategies. Next, the framework models
intentional voltage alteration from the attackers’ standpoint by formulating independent
optimization problems for overvoltage (Equation (15)) and undervoltage (Equation (16)) under
constraints defined in Equations (10)–(14). These objective functions are normalized using the
trapezoidal membership function described in Equation (17) to ensure compatibility across
differing numerical ranges. Once normalized, the independent optimization problems are
simultaneously solved as part of a multi-objective optimization problem (MOOP), capturing
the attackers’ ability to cause overvoltage and undervoltage simultaneously. Finally, the
results are processed using Equations (18)–(20) to identify the set of non-dominated solutions,
known as the Pareto-optimal front, and to determine the best compromise solution (BCS). This
process highlights the attackers’ capacity to optimize conflicting objectives while remaining
undetected, which is crucial for analyzing vulnerabilities in the targeted microgrid.
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2.2.7. Assumptions to Be Considered for This Type of Cyberattack

From an attacker’s perspective, targeting power systems requires several key assump-
tions to be considered for effective exploitation [5,6]. First, it is assumed that attackers
have access to critical infrastructure networks, which may be vulnerable due to weak or
outdated cybersecurity measures or social engineering tactics like phishing. However, in
real-world scenarios, obtaining such access would require attackers to breach multiple
security layers, often involving significant risk and resource investment. For example,
sophisticated attackers would need to navigate firewalls, intrusion detection systems, and
encrypted communication protocols, which may delay or limit the effectiveness of their
attack. Additionally, it is anticipated that power grids rely on complex, interconnected
systems, where compromising one component (e.g., a substation or control center) could
have cascading effects. However, it should be noted that the information attackers obtain
may be incomplete or outdated, increasing the likelihood of errors or miscalculations dur-
ing the attack. Communication delays and physical device limitations, such as hardware
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performance constraints or bandwidth restrictions, are also practical challenges that may
reduce the efficacy of an attack in real-world conditions.

Moreover, this study assumes that the grid’s monitoring and incident response capa-
bilities are insufficient or reactive rather than proactive, providing a window of opportunity
to cause disruption before detection. While this assumption allows for the evaluation of
worst-case scenarios, it is acknowledged that many power grid operators are continuously
improving their cybersecurity measures, employing advanced detection techniques, and
implementing redundancy to mitigate such threats. These assumptions align with the
realistic attack models discussed in the existing literature [11,17,18], which recognize that
while sophisticated attackers may exploit software vulnerabilities, manipulate control
protocols, or sabotage hardware, they often face significant challenges in bypassing well-
implemented security defenses. By explicitly including these considerations, this study
aims to highlight both the potential vulnerabilities and the inherent difficulties in executing
such coordinated cyberattacks. Future work will extend the framework to incorporate
dynamic security measures and evaluate the robustness of the proposed attack scenarios
under more stringent real-world constraints.

3. Simulation and Experimental Results
3.1. Initialization and Introducing the Case Studies

To evaluate the effectiveness of the developed multi-objective FDIA, two different
case studies are implemented. In the simulation analysis, the modified version of the IEEE
13-node test feeder (see Figure 6) is utilized as a microgrid to highlight the impacts of the
unified cyberattack on its voltage profile. To this end, a PV plant with a capacity of 200 kW
is added to node #6. In addition, a wind turbine, manufactured by Wind World [27], with
a rated power of 250 kW and blade diameter of 29.2 m is added to node #7. It is noted
that the solar irradiance at standard test conditions and the operating irradiance point are,
respectively, equal to 1000 W/m2 and 120 W/m2.
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Figure 6. The modified IEEE 13-node test system as a microgrid as a building block of real-world
smart cities.

It is also noted that the hourly active and reactive power profiles in a 24 h horizon are
adopted from [28,29], which are depicted in Figure 7. The rest of the system’s data can be
found in [30,31].
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Figure 7. Total hourly active and reactive power profiles for the modified IEEE 13-node test case.

The lab-scale microgrid developed in the first step of this research (see Figure 8) is
chosen for the experimental analysis [32,33]. According to Figure 8, one can perceive that
the lab-scale microgrid encompasses two horizontal axis and vertical axis wind turbines,
respectively, rated at 500 W and 400 W, two 160 W solar panels, a fan with 19,500 cubic
feet per minute (CFM) airflow to produce wind in the lab, four 2200 W LED lights to
produce solar radiation in the lab, two grid-connected power inverters rated at 500 W, one
standalone inverter and its controller rated at 2000 W, a hybrid energy storage system (i.e.,
a combination of batteries and supercapacitors), and the corresponding buses, switches,
and charge controllers. Interested readers are directed to the earlier steps of this research to
obtain detailed information about the lab-scale microgrid and its assets [32,33].
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Figure 8. The lab-scale smart microgrid developed at Power System Design Laboratory, containing
wind turbines and PV modules.

Figure 9 presents the HIL setup for the lab-scale microgrid [33–37]. The reliability of
the analysis results is validated through a combination of simulation using the IEEE 13-
node test system and experimental testing on a lab-scale microgrid. The lab-scale microgrid
utilizes HIL testing, integrating physical components such as PV panels, wind turbines,
and hybrid storage systems with real-time simulation. This setup closely mimics real-
world operational conditions, providing a reliable benchmark for evaluating the proposed
framework. These results demonstrate the framework’s effectiveness in reflecting realistic
behaviors within smart microgrid systems under coordinated cyberattacks.
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Figure 9. The HIL setup for the developed lab-scale microgrid illustrated in Figure 8 [33–37].

The optimization problems were modeled in MATLAB R2018b on an Intel (R) Core
(TM) CPU i5-7500 @ 3.4 GHz. Additionally, the MATPOWER package, a powerful tool
for simulating and optimizing electric power systems, was used to perform the Newton–
Raphson power flow calculations. Moreover, the problems were solved using the modified
whale optimization algorithm-wavelet mutation (MWOA-WM), introduced in [25].

In this regard, the size of whales’ population and the maximum number of iterations
are, respectively, set to 200 and 100. Interested readers are directed to [25] for more
information about the rationale behind the MWOA-WM and its performance over a variety
of complicated optimization problems including but not limited to power- and energy-
related problems.

3.2. Simulation Results on the Modified IEEE 13-Node System

The main goal of the pre-attack evaluation is to recognize the most vulnerable node
to deviation in voltage as well as the optimal time of the FDIAs. In this regard, attackers
solve Equations (1)–(8), aiming at increasing the voltage deviation in the microgrid. The
difference between the original voltage profile and the one obtained by the attackers is
provided in Figure 10. According to this figure, one can infer that only nodes #10, #11,
and #13 from 11 AM to 1 PM are susceptible to voltage deviation. However, the pre-attack
evaluation confirms that node #11 is the most vulnerable node in IEEE 13-node test systems
and the optimal time of the cyberattacks is 11 AM (see Figure 10).

Simultaneously optimizing objective Functions (10) and (15), Attacker 1 identifies the
non-dominated solutions as shown in Figure 11, causing different rates of overvoltage in
the microgrid. From Figure 11, it can be perceived that the Pareto-optimal front is well
distributed; hence, Attacker 1 can select one of these optimal solutions (e.g., the cyan circles)
and inject the corresponding false data vector to the load centers and generation units to
push the microgrid toward overvoltage. As an illustration, if Attacker 1 selects the yellow
triangle, the summation of false data injected into the system will be minimal; however, the
rate of overvoltage will be minimal, as well. If the attacker opts for the purple diamond,
although the rate of overvoltage will be maximal, the summation of false data to be injected
to the system will also be maximal. This is where the significance of approaching this
problem as a BOOP comes under the spotlight. Thus, if the importance of both objective
functions is equal, Attacker 1 sets ξk to 0.5 (see (20)) to find the best compromise solution
(BCS), as demonstrated by the red pentagram in Figure 11. It is worth stating that the
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percentage of conflict between the objective functions (i.e., yellow triangle and purple
diamond) is almost 95%, which is obtained by applying the Pythagorean Theorem (see
Figure 11).
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Figure 11. Two-dimensional Pareto-optimal front resulting in overvoltage in node #11.

Likewise, Attacker 2 targets the microgrid by (a) optimizing objective Functions (10)
and (16), (b) identifying the non-dominated solutions and storing them in a repository (see
Figure 12), (c) injecting the false data vector for the magenta pentagram, and (d) pushing
the microgrid toward undervoltage.

It is noted that the percentage of conflict between minimizing objective Function
(10) and maximizing objective Function (16) is more than 95%, obtained by applying
the Pythagorean Theorem, confirming the significance of solving such a problem as a
BOOP. To obtain a better perspective about the impacts of injecting the vectors of false
data, associated with pentagrams displayed in Figures 11 and 12, into the control center,
Figure 13 demonstrates the voltage profile of the microgrid after the FDIAs resulting in
overvoltage and undervoltage.
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Figure 13. The daily voltage profiles of node #11 after the cyberattacks at 11 AM.

To cause voltage violation (i.e., both overvoltage and undervoltage at the same time),
attackers optimize objective functions (10), (15), and (16) concurrently. Although the related
3D Pareto-optimal front is demonstrated in Figure 14, where the BCS among the three
indicated objectives is obtained by applying (20) and setting ξk to 1/3 for all three functions
(see the green hexagram), attackers have access to the set of 34 optimal solutions (see the
yellow circles displayed in Figure 14). Thus, they can control the rate of voltage violation in
the microgrid by opting for different solutions among the non-dominated solutions (i.e.,
yellow circles). As an illustration, if the intention is to increase the rate of overvoltage
compared to undervoltage, the attackers can set ξ1 (i.e., the weight factor associated
with overvoltage objective function) to 0.6, ξ2 (i.e., the weight factor corresponding to
undervoltage objective function) to 0.1, and ξ3 (i.e., the weight factor related to false data
vector) to 0.3 to ensure that the microgrid experiences a higher rate of overvoltage compared
to undervoltage by keeping the attack stealthy. It is noted that any other combinations are
valid since the repository includes 34 optimal solutions (i.e., yellow circles displayed in
Figure 14).
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To provide a technical assessment of the developed attack framework, Table 1 com-
pares its impact with two mainstream smart grid security defense mechanisms: moving
target defense (MTD) [38] and a deep learning-based false data detector [39]. This compari-
son highlights the strengths of the proposed framework in bypassing these defenses and
underscores the limitations of existing technologies against coordinated false data injection
attacks (FDIAs).

Table 1. Effectiveness of the developed FDIA framework against two mainstream defense mechanisms
on the modified IEEE 13-node test system.

Attack Phase Defense Phase

Developed FDIA Targeting Node
#11 (i.e., The Most Vulnerable

Node to Voltage Deviation)
Moving Target [38] Deep Learning [39]

Overvoltage Based on (15) 27.6% 16.6% 27.6%

Undervoltage Based on (16) 39.1% 21.4% 39.1%

The MTD mechanism, as detailed in [38], enhances grid security by frequently re-
configuring system attack surfaces, introducing unpredictability that makes it harder for
adversaries to exploit vulnerabilities. However, MTD primarily addresses static attack
vectors and cannot fully mitigate the stealthy and coordinated manipulation of data intro-
duced by the developed FDIA framework. For example, as shown in Table 1, the developed
framework achieves voltage deviations of up to 27.6% (overvoltage) and 39.1% (undervolt-
age) at the most vulnerable node (#11), whereas MTD reduces these deviations to 16.6%
and 21.4%, respectively, due to its dynamic nature.

Similarly, the deep learning-based false data detector, described in [39], focuses on
maintaining data integrity and system reliability by detecting anomalies in data streams.
While effective against traditional cyber threats, it fails to counteract the subtle, coordinated
manipulation of data by the proposed FDIA framework. The excessive training duration
and limited adaptability of the detector allowed the developed framework to bypass it
entirely, leading to the same voltage deviations as observed without the detector in place.

These findings demonstrate that while existing defenses are effective against tradi-
tional cyberattacks, they are less capable of addressing the challenges posed by coordinated,
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bi-objective FDIA strategies. Furthermore, the results in Table 1 show that by synchronizing
attack timings and targeting multiple distributed energy resources (DERs), the proposed
framework amplifies voltage deviations beyond those observed in single-attacker scenarios,
emphasizing its disruptive potential.

This comparative analysis underscores the need for more advanced and adaptive
defense mechanisms, such as real-time anomaly detection powered by digital twin, to
effectively counteract coordinated cyberattacks in modern smart grid systems. Interested
readers are directed to [38,39] for further details on the strengths and limitations of the
referenced defense mechanisms.

While the existing defense mechanisms, such as moving target defense (MTD) and
deep learning-based false data detectors, provide valuable protection, they have notable
limitations when countering sophisticated coordinated FDIAs. MTD, for instance, introduces
unpredictability by frequently changing the attack surface, but its effectiveness is reduced
when attackers employ adaptive strategies or exploit timing vulnerabilities. Similarly, deep
learning-based detectors rely heavily on the quality and diversity of training data, making
them susceptible to attacks that mimic normal system behavior or exploit gaps in training
datasets. To enhance the overall security and resilience of smart grids, combining multiple
defense mechanisms can be an effective strategy. For example, integrating MTD with real-
time anomaly detection powered by artificial intelligence (AI) could address both static and
dynamic attack vectors. MTD would limit the attacker’s ability to exploit known vulnera-
bilities, while AI-based detectors would identify and respond to subtle, coordinated attacks
in real time. Additionally, encrypted communication protocols can be combined with these
mechanisms to further secure data integrity and confidentiality. The effectiveness of defense
mechanisms also depends on the specific attack scenario. For example,

• Single-Attacker Scenarios: MTD alone may suffice by increasing the complexity of
identifying vulnerabilities.

• Coordinated Multi-Attacker Scenarios: a layered defense strategy, combining MTD,
anomaly detection, and advanced encryption, would be required to counteract syn-
chronized attacks targeting multiple DERs.

• Stealthy FDIAs: AI-based detectors with adaptive learning capabilities can enhance
detection accuracy by continuously updating models with real-time system data.

Deployment in real systems requires careful consideration of trade-offs between im-
plementation costs and system security. For instance, MTD is computationally efficient and
can be deployed without significant infrastructure changes, while AI-based detectors may
require additional computational resources and robust communication networks. A hybrid
approach, where defenses are prioritized based on the criticality of assets and vulnerability
assessments, could optimize both costs and security. By combining multiple mechanisms,
considering scenario-specific effectiveness, and strategically deploying defenses, the overall
security of smart grids can be significantly enhanced. Future work will focus on developing
a unified framework that integrates these approaches and evaluates their combined impact
on mitigating coordinated FDIAs in real-world smart grid environments.

3.3. Experimental Results on the Lab-Scale Microgrid

The lab-scale microgrid illustrated in Figures 8 and 9 is considered as a single node
connected to the PCC; hence, only the optimal time of the FDIAs will be the outcome of the
pre-attack evaluation (i.e., (1)–(8)) on the lab-scale microgrid. To this end, solving (1)–(8),
Attackers 1 and 2, respectively, obtain 9:30 A.M. and 12:30 P.M. as the optimal times for
their FDIAs to cause overvoltage and undervoltage on the microgrid.

To highlight the impacts of DERs in the voltage violations caused by Attackers 1 and
2, two different scenarios of attack are taken into account as follows:
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• Attacker 1 targets the PV panels to cause overvoltage in the microgrid. Further,
the attacker manipulates the sensor’s reading associated with the system’s load by
injecting only ∆PD, obtained after minimizing objective function (10),

• Attacker 2 targets the wind turbines to cause different rates of undervoltage in the
lab-scale microgrid.

It is noted that the indicated scenarios are experimentally accomplished via taking
advantage of the developed HIL setup (refer to Section 3.1)

The voltage profiles of the microgrid after the FDIAs launched by Attackers 1 and 2
(refer to Figure 5) are demonstrated in Figure 15, confirming successful overvoltage and
undervoltage with respect to the original voltage profile of the system (i.e., the green solid
curve). The BCSs along with the corresponding Pareto-optimal fronts, resulting in the
indicated overvoltage and undervoltage in Figure 15, are displayed in Figure 16.
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Figure 16. Two-dimensional Pareto-optimal fronts associated with FDIAs resulting in overvoltage
and undervoltage.

According to Figure 16, it can be gathered that the Pareto-fronts, which are well
distributed, provide a range of overvoltage and undervoltage from 1% to more than 31%.
In addition, the BCSs (i.e., green hexagram and yellow pentagram) are obtained while
ξk for both objective functions (i.e., summation of false data plus either overvoltage or
undervoltage) is equal to 0.5. Hence, the attackers can change the severity of voltage
violations by setting the weight factors to other values.
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To highlight the impacts of the unified FDIA targeting both renewable-based DERs
(i.e., PV panel and wind turbine), Figure 17 illustrates the voltage profile of the targeted
microgrid (black solid curve) compared to the original voltage profile (i.e., green dashed
curve) as well as those obtained after the independent cyberattacks (i.e., Figure 15). From
Figure 17, one can perceive that when the microgrid is targeted by a unified cyberattack
causing voltage violation (i.e., overvoltage and undervoltage), the system experiences a
malicious voltage profile for a longer period (i.e., more than six hours) compared to the
time periods at which the microgrid is targeted by two independent FDIAs (see Figure 15).
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Figure 17. Comparison of voltage profiles after independent FDIAs and the developed coordinated FDIA.

According to Figures 15–17, particularly Figure 16, the relationship between output
fluctuations, load changes, spurious data injection, and voltage deviation can be analyzed
through the interaction of these factors with the power flow dynamics in the system. Load
variations and DER output fluctuations directly influence the active and reactive power
balance, which, in turn, impacts the voltage profile. For instance, an increase in DER output
leads to overvoltage conditions, whereas load surges can cause undervoltage. Spurious
data injection, on the other hand, disrupts the control system by introducing false signals
that either overestimate or underestimate the actual system state, amplifying these voltage
deviations. The extent of voltage deviation is also affected by key system parameters such
as line impedance, the level of DER penetration, the sensitivity of voltage to active and
reactive power changes, and the delay or responsiveness of control mechanisms. For example,
systems with higher DER penetration exhibit greater sensitivity to spurious data due to the
reliance on inverter-based resources, which are more susceptible to control errors. During
the experiments, these parameters were kept constant to isolate the effects of spurious data
injection and power flow changes. This analysis highlights the need for coordinated defense
strategies that address not only the physical system dynamics but also the robustness of control
algorithms against cyber intrusions. By understanding these relationships, grid operators can
prioritize investments in real-time monitoring and adaptive control solutions to mitigate the
risks posed by cyberattacks and operational disturbances.

It is noted that, for the sake of clarity, the focus of this paper was to elaborate the
developed coordinated multi-objective attack framework with two attackers with different
objectives; however, the developed framework can be generalized to N attackers to target
larger scale microgrids via FDIAs with various objective functions. Toward that end, the
proposed framework in this paper can be extended to accommodate scenarios involving
multiple attackers (e.g., N attackers) coordinating their actions to maximize the negative
impact on the microgrid. In such scenarios, each attacker can independently select distinct
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objectives (e.g., overvoltage, undervoltage, system congestion, power outages, etc.), tar-
geting different aspects of the system. To model the complexity of such coordinated false
data injection (FDI) cyberattacks, the optimization problem presented in this paper (i.e.,
Equations (1)–(20)) can be reformulated to include an additional coordination constraint.
This constraint ensures that the actions of different attackers are complementary rather
than conflicting, thereby amplifying the overall attack impact. This coordination can be
implemented using a multi-agent optimization approach, where attackers solve a shared
global optimization problem that includes individual subproblems specific to each attacker.
The coordination constraint would penalize conflicting actions and align objectives to
maximize the attack’s cumulative consequences. Furthermore, timing strategies can be
incorporated through the introduction of a time-dependent vulnerability function, which
enables attackers to identify and synchronize their actions at the most effective time in-
tervals. These enhancements ensure that the extended framework realistically simulates
coordinated attack scenarios and captures the compounded impact of multiple attackers
on voltage stability.

3.4. Simulation Results on the Large-Scale 136-Node Distribution System

This section validates the proposed RAS using a widely recognized 136-bus distribu-
tion system [40], which has been modified into an unbalanced three-phase system to better
represent the nature, scale, and complexity of real-world and actual urban microgrids. For
further details on this case study, readers are referred to [41]. Table 2 outlines the results
obtained from the modeled FDI cyberattack.

Table 2. Results obtained from targeting the most vulnerable bus in 136-node distribution system.

Optimal Result

Execution Time (s) to
Obtain the Result from

the Attackers’
Perspective

Buses Susceptible to Voltage Violation #21, #30, #36, #78, #91,
#115 17.22

The Most Vulnerable Bus #91 2.6

Overvoltage (OV)
False Load Data Injected
into Smart Meters (kW) 23.91

34.1
% of OV 21.35

Undervoltage (UV)
False Load Data Injected
into Smart Meters (kW) 21.01

33.3
% of UV 21.84

Based on the information in this table, it can be concluded that while the developed
attack framework causes significant voltage violations in the 136-bus distribution system,
the system is particularly more vulnerable to undervoltage. This is evident as injecting a
relatively small amount of false data into the smart meters of the nodes (e.g., 21.01 kW)
results in a higher percentage of voltage deviation (e.g., 21.84%). Additionally, the results
in Table 2 confirm that the proposed attack framework can induce substantial voltage
violations in power systems of various sizes.

To show the effectiveness of the multi-objective attack framework while attackers
have access to a very limited information about the 136-node distribution system, a series
of simulated attacks were conducted using random false data injections, demonstrating
that significant voltage violations can still be induced under such constraints. Table 3
displays the differences in attack effectiveness under these conditions compared to the
original assumption of full attacker access. For instance, with incomplete information,
the maximum voltage deviation observed during overvoltage scenarios decreased by a
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maximum of 17.2%, while the timing precision constraint resulted in a 7.3% increase in
the duration required to achieve the same level of disruption. To efficiently simulate these
results, we adjusted the optimization algorithm to include probabilistic constraints on
attacker knowledge, representing uncertainty in system parameters. By integrating these
more realistic assumptions, the revised framework provides a comprehensive evaluation of
attack strategies under practical constraints, highlighting the reduced but still significant
impact of coordinated attacks when attackers operate with incomplete information.

Table 3. Results obtained from FDI attack with limited information about the actual distribution
system to result in different levels of overvoltage.

Undervoltage (%) Execution Time (s)

Original Attack Scenario 21.84 33.32

Targeting a Random Bus within a
Set of 10 buses 18.08 35.76

Targeting a Random Bus within a
Set of 50 buses 18.21 36.11

Targeting a Random Bus within a
Set of 100 buses 19.63 36.20

Targeting a Random Bus within a
Set of 136 buses 19.17 36.04

4. Conclusions and Future Work
In this article, a unified multi-objective framework was presented to scrutinize the

impacts of coordinated false data injection attacks (FDIAs) on smart city microgrids to result
in voltage violation. The effectiveness of the developed framework was verified based
on (1) simulation on the IEEE 13-node test system, modified as a building block of urban
energy systems, and (2) experimental validation on a physical lab-scale smart microgrid
containing wind turbines and PV modules. The obtained simulation and experimental
results demonstrate that modeling the investigated FDIAs as multi-objective optimization
problems can be a more effective approach with respect to the available single-objective
alternatives in the literature. This is due to the fact that the objective functions are not
necessarily in the same line, meaning that they need to be optimized concurrently. To be
more specific, the following simulation/experimental-based observations are extracted
from the results:

• In the simulation-based validation, the percentage of conflict between minimizing
the false data vectors and maximizing the rate of voltage violation (e.g., overvoltage,
undervoltage, or both) was more than 94% in all simulated scenarios. Hence, such
objective functions cannot be aggregated with penalty weights to ensure simultaneous
optimization. This is where the significance of solving the problem as a multi-objective
optimization problem, providing a set of optimal solutions, comes under the spotlight.

• In the experimental-based validation, although the microgrid experienced rates of
overvoltage and undervoltage of, respectively, 17% and 15% after the independent
FDIAs, the period of voltage violation was on the minute basis. On the other hand, in
the unified cyberattack, the microgrid experienced a lower rate of voltage violation
(i.e., almost 11%); however, the microgrid was affected for more than 6 h, which
significantly reduced the reliability of the microgrid. This is where the importance of
the introduced attack framework comes under the spotlight, since the investigated
issue can be more noticeable in larger scale microgrids with thousands of end-users.

The research explicitly considered factors such as the severity and timing of FDIA sce-
narios, employing an optimization framework to maximize voltage violations (overvoltage
and undervoltage) while minimizing false data injection. It also accounted for microgrid
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operational modes, accommodating both grid-connected and standalone configurations,
and included experimental validation through an HIL setup, using a lab-scale microgrid
with PV panels, wind turbines, and hybrid storage systems to replicate critical urban energy
components. A Pareto-based solution methodology was used to manage conflicts between
multiple objectives, ensuring a robust framework. However, certain factors were excluded
to maintain tractability, including dynamic topology changes, weather-induced variability,
real-world communication network delays, and economic or market considerations. These
exclusions were necessary to focus on the study’s core objectives, but future research could
expand this work by integrating dynamic topology, communication delays, and economic
impacts to further enhance the framework’s applicability.

In future research, we will extend the proposed framework to include a detailed model
and analysis of coordinated attacks involving multiple attackers. This extension will focus
on specific implementation details, including the design of a multi-agent optimization
framework where attackers share information and coordinate their actions to achieve
maximum impact. Each attacker will be modeled as an independent agent with specific
objectives, such as inducing overvoltage, undervoltage, or targeting system reliability. A
shared global optimization problem will be formulated, incorporating coordination con-
straints and information-sharing protocols to align the objectives of multiple attackers. The
model will also explore trade-offs between different attack targets by introducing a weight-
ing mechanism that balances the relative importance of each objective (e.g., maximizing
voltage deviations vs. inducing power outages). For instance, attackers may prioritize
voltage deviations in one scenario while focusing on system congestion in another, de-
pending on the attack’s overall goals and resource constraints. This trade-off analysis will
allow for a more comprehensive understanding of how attackers allocate their resources to
maximize disruption. To evaluate the impact of these coordinated attacks, future studies
will include simulation and experimental validations under different scenarios. Dynamic
test cases, such as varying load profiles and real-time renewable energy fluctuations, will
be used to assess the effectiveness of coordinated strategies. Experimental validations will
involve adapting the lab-scale microgrid to simulate inter-attacker communication and
coordination mechanisms, providing practical insights into the compounded effects of
multi-attacker scenarios. These studies will not only deepen the understanding of multi-
attacker coordinated attacks but also serve as a foundation for developing more robust
defense strategies.

Moreover, in the next phase of this research, where a remedial action will be proposed
for this type of cyberattack, the economic costs and social impacts associated with attack
and defense strategies will be thoroughly investigated. Additional constraints and eval-
uation metrics will be included to quantify these factors. The economic costs of attack
implementation will be modeled by incorporating parameters such as hardware expenses,
computational resources required to design and execute the attack, and the risks and ef-
forts involved in circumventing existing security measures. Similarly, the economic costs
of defense measures will include investments in cybersecurity infrastructure, real-time
monitoring systems, and personnel training. These considerations will allow for a balanced
assessment of the resource investments needed for both attack and defense. Additionally,
a societal impact function will be introduced to evaluate the broader consequences of
voltage violations caused by FDIAs. For industrial users, this will include production
downtimes, damage to sensitive equipment, and reduced operational efficiency. For resi-
dential users, disruptions such as appliance malfunctions, energy outages, and reduced
quality of life will be quantified. These social and economic costs will be integrated into
the optimization problem as objective functions or penalty terms to simulate the trade-offs
between security investments and potential losses. By incorporating these factors, the
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extended framework will enable a more comprehensive analysis of the overall economic
and social benefits of maintaining stable and secure smart city microgrids. This integration
will not only emphasize the severity of coordinated FDIAs on urban energy infrastruc-
ture but also provide actionable insights for policymakers and grid operators to prioritize
investments in advanced defense strategies that balance cost-effectiveness with societal
benefits. Future extensions of this research will also incorporate dynamic environmental
factors, such as weather changes, load fluctuations, and varying renewable energy outputs,
into the proposed attack framework. These dynamic conditions significantly influence
voltage distribution and the overall impact of coordinated FDIAs. By integrating real-time
weather data and stochastic load profiles, the extended framework will simulate the inter-
actions between environmental variability and attack strategies. This will enable a more
comprehensive evaluation of the framework’s effectiveness and stability under realistic
operating conditions. These enhancements will not only improve the accuracy of the attack
impact analysis but also provide valuable insights for designing more resilient and adaptive
defense mechanisms for smart grid environments.
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